Zhi Chen, Department of Management Sciences, College of Business, City University of Hong Kong

Peng Xiong, Department of Analytics & Operations, NUS Business School, National University of Singapore

 

This research is supported by the Ministry of Education, Singapore, under its 2019 Academic Research Fund Tier 3 grant call (Award ref: MOE-2019-T3-1-010)
ABSTRACT

We introduce a Python package called RSOME for modeling a wide spectrum of robust and distributionally robust optimization problems. RSOME serves as an open-source framework for modeling various optimization problems subject to distributional ambiguity in a highly readable and mathematically intuitive manner. It is versatile and fits well in the open-source software community in the sense that (i) it is consistent with NumPy arrays in indexing and slicing and; (ii) together with the rich Python libraries for machine learning, data analysis, and visualization, it is easy to implement data-driven models; and (iii) it provides convenient interfaces for users to switch and tune parameters among different solvers.