
RSOME in Python: An Open-Source Package

for Robust Stochastic Optimization Made Easy

Zhi Chen†, Peng Xiong‡

†Department of Management Sciences, College of Business, City University of Hong Kong

‡Department of Analytics & Operations, NUS Business School, National University of Singapore

We introduce a Python package called RSOME for modeling a wide spectrum of robust and distributionally

robust optimization problems. RSOME serves as an open-source framework for modeling various optimiza-

tion problems subject to distributional ambiguity in a highly readable and mathematically intuitive manner.

It is versatile and fits well in the open-source software community, in the sense that (i) it is consistent with

NumPy arrays in indexing and slicing, as well as array operations; (ii) together with the rich Python libraries

for machine learning, data analysis and visualization, it is easy to implement data-driven models; and (iii)

it provides convenient interfaces for users to switch and tune parameters among different solvers.

Keywords: (Distributionally) Robust Optimization, Algebraic Modeling Package, Adaptive Decision-

Making, Data-Driven Analytics.

1 Introduction

Robust and distributionally robust optimization has developed into one of the most popular

paradigms for addressing decision-making in the presence of uncertainty. Typically, uncertainty

is modeled as a random variable governed by an ambiguous probability distribution about which

we only have partial knowledge. In robust optimization (Ben-Tal and Nemirovski 1998, Bertsimas

and Sim 2004, El Ghaoui et al. 1998, Soyster 1973), such partial knowledge is an uncertainty set to

which the support of uncertainty is confined; while in distributionally robust optimization (Ben-Tal

et al. 2013, Chen et al. 2019, Delage and Ye 2010, Goh and Sim 2010, Mohajerin Esfahani and Kuhn

2018, Wiesemann et al. 2014), it is an ambiguity set characterized by various types of statistical

information—such as support, moments and distance to some reference distributions. We refer

to Rahimian and Mehrotra (2019) and references therein for a comprehensive review and recent

advances in robust and distributionally robust optimization. Apart from rich characterizations on

the partial knowledge about the ambiguous distribution, another notable advantage of robust and

distributionally robust optimization models is that for a variety of practical problems and a rich

family of uncertainty/ambiguity sets, these models admit reformulations that are “equivalent” to

their deterministic counterparts in terms of computational complexity.

1



Along with the theoretical studies, progress has also been made in developing accompanying

technology to facilitate the implementations of new robust and distributionally robust models.

Nowadays, commercial optimization solvers (e.g., CPLEX, Gurobi, and MOSEK) and open-source

optimization solvers (e.g., CBC from COIN-OR (Martin 2010) and OR-Tools) provide APIs for

commonly used programming languages, including C/C++, Java, Python and R. These APIs are

typically restricted to formulating deterministic problems, thus users have to manually convert a

(distributionally) robust model into its deterministic counterpart before it can be solved. Such a

conversion, however, could be rather tedious and error-prone.

Modeling packages, which are different from APIs and rely on external optimization solvers to

solve optimization models, provide friendly algebraic modeling environments for specifying models

and automatically transforming them into standard forms that solvers recognize. Such packages

include, for example, the commercial AIMMS and open-source ones such as CVX (Grant and Boyd

2014) and YALMIP (Lofberg 2004) in MATLAB, as well as JuMP (Dunning et al. 2017) in Julia.

It is worth noting that as robust optimization has gained increasing popularity in recent years,

AIMMS, YALMIP, and JuMP are all upgraded with new add-ons for building robust optimization

models directly; see, for example, the JuMPeR extension that builds on JuMP. However, modeling

capabilities of these packages (e.g., JuMPeR) are still largely unexplored, especially in dealing with

adaptive decisions or distributionally robust optimization models.

Early attempts in developing modeling packages for more general adaptive (distributionally)

robust optimization problems can be traced back to ROME (Goh and Sim 2011) in MATLAB.

This work then inspires follow-up theoretical and software developments: for example, Bertsimas

et al. (2019) propose a unified framework for adaptive distributionally robust optimization, based

on which modeling packages ROC1 in C++ and XProg2 in MATLAB are developed. The framework

of Bertsimas et al. (2019) has been substantially extended in a more recent work of Chen et al.

(2020) to incorporate event-wise distributional information and to devise more flexible event-wise

recourse adaptations. The concept of Chen et al. (2020) has been applied in RSOME3—a generic

algebraic modeling package in MATLAB that encompasses a wide spectrum of (distributionally)

robust optimization models with possibly data-driven approaches. More recently, Vayanos et al.

(2020) develop an ROC++ package for robust optimization models involving possibly endogenous

1ROC website: https://github.com/g0900971/RobustOptimization/.
2XProg website: http://xprog.weebly.com/.
3RSOME website: https://www.rsomerso.com/.

2

https://github.com/g0900971/RobustOptimization/
http://xprog.weebly.com/
https://www.rsomerso.com/


and binary-valued adaptive decisions,4 while Isenberg et al. 2020 and Wiebe and Misener (2021)

develop (respectively) PyROS and ROmodel to extend the modeling capabilities of the algebraic

modeling language Pyomo in Python to robust optimization problems. However, none of these

three packages addresses distributionally robust optimization models. The Python package PICOS5

(Stahlberg 2020) supports a number of robust and distributionally robust optimization models that

may impose additional restrictions on the ambiguity set: for example, the current version of PICOS

only accommodates the whole real space as support and the L2-norm as cost function of transport

when considering Wasserstein ambiguity.

In this paper, we introduce the Python version of RSOME as a new open-source modeling

framework for robust and distributionally robust optimization. To the best of our knowledge,

it is the first modeling package in Python that is designed for addressing such a wide variety

of (distributionally) robust optimization models. Instead of merely migrating from MATLAB to

Python, the new RSOME package in Python is upgraded with the following new features.

1. The package consists of four layers of modules, each of which targets specifically a class of

optimization problems. Such a multi-layer structure is not only more efficient in reusing

the code and maintaining the project, but also serves as an open-source framework, which

could be smoothly upgraded in the future in ways that new modeling frameworks as well as

applications are built upon existing modules rather than starting from scratch.

2. RSOME in Python generates robust counterparts in a standard format of a Pandas

DataFrame,6 which can be easily processed, analyzed, and exported using analytical tools

in the Pandas library. When passing robust counterparts to solvers, RSOME provides inter-

faces to both the state-of-the-art commercial solvers (such as CPLEX, Gurobi, and MOSEK)

and free open-source ones. This benefits users who do not have access to commercial solvers.

3. The RSOME package is more flexible in specifying optimization models. Specifically, com-

pared with the MATLAB version that is restricted to two-dimensional matrices and defines

only a single uncertainty/ambiguity set for a given model, the Python package enables users

(i) to define variables, functions, and constraints in an arbitrary dimensional array and (ii)

to specify different uncertainty/ambiguity sets for the objective function and each constraint.

4ROC++ website: https://sites.google.com/usc.edu/robust-opt-cpp/.
5Documentation of PICOS: https://picos-api.gitlab.io/picos/index.
6We write code segments, objects, and Python packages or modules in monospaced letters (e.g., code).

3

https://sites.google.com/usc.edu/robust-opt-cpp/
https://picos-api.gitlab.io/picos/index


4. The package is freely distributed on GitHub7 to facilitate version control and collaborative

developments. It can be conveniently installed via the third-party software repository PyPi,

and it comes accompanied with detailed documentation and application examples.8

Main contributions of RSOME in Python lie in being an open-source framework for modeling

robust and distributionally robust optimization problems. The package is consistent with existing

Python packages in syntax rules and arithmetic operations, thus is friendly to users who have

engaged with Python programming. Unlike most of other modeling packages that define variables

as scalars, vectors or matrices, RSOME inherits the widely used N -dimensional arrays and their

operations (such as indexing, slicing, broadcasting, transpose, as well as element-wise and algebraic

computations) in the NumPy libarary. Hence, models in RSOME can be defined with concise and

highly readable array expressions. Our package also benefits from the large and active ecosystem of

Python programming. It is easy to implement data-driven models using RSOME along with other

machine learning and analytical libraries for processing data, tuning hyper-parameters, testing

model performance, as well as visualizing results.

The rest of this paper proceeds as follows. In Section 2, we introduce the four-layer structure

of RSOME and focus on the top-layer framework for modeling distributionally robust optimization

problems. In Section 3, we discuss the logic and basic syntax of building distributionally robust

models in RSOME. Features and modeling capabilities of RSOME is demonstrated through a

vehicle pre-allocation problem in Section 4. Section 5 concludes our work.

2 Frameworks of RSOME

Unlike the MATLAB version that provides a generic robust stochastic optimization framework

for modeling all applicable optimization problems, RSOME in Python is built upon four layers of

modules: see an illustration in Figure 1. The lower two layers of RSOME modules provide modeling

tools for deterministic linear and second-order cone (SOC) programs, which are the cornerstones for

building the upper-level robust and distributionally robust optimization modules. In the Python

version of RSOME, all robust counterparts of upper-level robust and distributionally robust models

are formulated into the lower-level deterministic problems before being sent to solvers.

7RSOME in Python package: https://github.com/XiongPengNUS/rsome/.
8RSOME in Python website: https://xiongpengnus.github.io/rsome/.

4

https://github.com/XiongPengNUS/rsome/
https://xiongpengnus.github.io/rsome/


Figure 1. The structure of RSOME modeling frameworks

We note that a higher layer of RSOME module could address a more general class of problems

compared with lower-layer ones. The top layer dro module for distributionally robust optimization,

associated with the event-wise ambiguity sets proposed in Chen et al. (2020), is the most general

framework among all. For example, robust optimization problems can be treated as special cases of

a distributionally robust optimization problem where the ambiguity set, specifying only the support

information, reduces to an uncertainty set; while deterministic problems are special cases of a robust

optimization problem whose uncertainty set reduces to a known singleton. The romodule, although

less general, provides a tailored modeling framework specifically for robust optimization problems,

thus it models uncertainty sets and formulates the worst-case objective function as well as robust

constraints in a more concise manner. Besides targeting to and tailoring for different types of

optimization problems, the multi-layer structure is more effective in reusing existing codes. This

benefits the maintenance of the open-source software and also enables easy upgrades in the future

since new modeling frameworks could be developed upon the existing layers. Nevertheless, each

layer of RSOME modules follows the consistent syntax in defining variables, objective functions,

and constraints. In the remainder, we will focus on the most general dro framework and we leave

detailed discussions on the ro framework to an online supplement of this paper.

Models supported by the dro module can be cast into the following standard format:

minimize
x, y

sup
P∈F0

EP[a
⊤
0 (s̃, z̃)x(s̃) + b⊤0 (s̃)y(s̃, z̃) + c0(s̃, z̃)]

subject to max
s∈[S], z∈Zms

{
a⊤
m(s, z)x(s) + b⊤m(s)y(s, z) + cm(s, z)

}
≤ 0 ∀m ∈ M1

sup
P∈Fm

EP[a
⊤
m(s̃, z̃)x(s̃) + b⊤m(s̃)y(s̃, z̃) + cm(s̃, z̃)] ≤ 0 ∀m ∈ M2

xi ∈ A(Ci) ∀i ∈ [Ix]

yi ∈ Ā(C̄i,Ji) ∀i ∈ [Iy]

x(s) ∈ Xs ∀s ∈ [S],

5



where z̃ is a J-dimensional vector of random variables, s̃ is a random scalar indicating the outcome

of a random scenario, and vectors x and y are decision variables that follow different adaptation

schemes denoted by A(C) and Ā(Ci,Ji), respectively. Here, in a fixed scenario s, Xs is an SOC

representable feasible set of decision variables x(s), and for each m ∈ M1 ∪ M2 ∪ {0}, bm(s) =

bms ∈ RIy is a vector of fixed parameters of y while uncertain parameters am(s, z) as well as

cm(s, z) are affine mappings of uncertainty realization z:

am(s, z) = a0
ms +

∑
j∈[J ]

aj
mszj and cm(z) = c0ms +

∑
j∈[J ]

cjmszj ,

where aj
ms ∈ RIx and cjms ∈ R, indexed by j ∈ [J ] ∪ {0}, are proper coefficients.

The hard constraints (with indices m ∈ M1) must be satisfied almost surely. The soft con-

straints (with indices m ∈ M2), on the other hand, only needs to be satisfied in expectation over

all possible distributions within an event-wise ambiguity set introduced by Chen et al. (2020):

Fm =


P ∈ P0(RJ × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(z̃, s̃) ∼ P

EP[z̃ | s̃ ∈ Emk] ∈ Qmk ∀k ∈ [K]

P[z̃ ∈ Zms | s̃ = s] = 1 ∀s ∈ [S]

P[s̃ = s] = ps ∀s ∈ [S]

for some p ∈ Pm


.

Here, for the objective and constraints indexed by m ∈ {0} ∪ M2, conditional expectations of z̃

over events (defined as subsets of scenarios and denoted by, e.g., Emk ⊆ [S]) are known to reside

in SOC representable sets Qm1, . . . ,QmK , respectively; the support of z̃ in each scenario s ∈ [S] is

another SOC representable set Zms; and probabilities of scenarios, collectively denoted by a vector

p, are confined to an SOC representable subset Pm ⊆ {p ∈ RS
++ | e⊤p = 1} in the probability

simplex. We would like to note that unlike the standard form proposed by Chen et al. (2020),

which accommodates only one ambiguity set, the dro framework enables users to define different

ambiguity sets for the objective function and constraints.

In the standard form, decisions x and y, which are potentially adaptive and can be an arbitrary

functional of uncertainty realization z given scenario s, are infinite-dimensional and thus are hard

to to optimize. A common technique for tractability, called linear decision rule (or affine decision

rule), is to restrict adaptive decisions to simpler and easy-to-optimize affine functions of revealed

uncertainty given a scenario s. In RSOME, such dynamics of decision-making are captured by the

6



event-wise recourse adaptation of two types—the event-wise static adaptation A(C) for decision x,

and the event-wise affine adaptation Ā(C,J ) for decision y. In particular, given a fixed number

of S scenarios and a partition C of these scenarios (i.e., a collection of mutually exclusive and

collectively exhaustive events), the event-wise recourse adaptation is formally defined as follows:

A(C) =

x : [S] 7→ R

∣∣∣∣∣∣ x(s) = xE , E = HC(s)

for some xE ∈ R

 ,

Ā(C,J ) =

y : [S]× RJ 7→ R

∣∣∣∣∣∣∣
y(s, z) = y0(s) +

∑
j∈J

yj(s)zj

for some y0(s), yj(s) ∈ A(C), j ∈ J

 .

Here, HC : [S] 7→ C is a function such that HC(s) = E maps the scenario s to the only event E in

C that contains s, and J ⊆ [J ] is an index subset of random components z̃1, . . . , z̃J that the affine

adaptation depends on. Note that in the dro framework, we do not differentiate here-and-now

decisions (made before any uncertainty realization) and wait-and-see decisions (made after partial

uncertainty realization): by default, a here-and-now decision follows a special event-wise static

adaptation A(C), where C = {{1, . . . , S}} is a singleton set of the event {1, . . . , S} that consists of

all scenarios. Thus, both here-and-now and wait-and-see decisions are defined by the same function

in the dro library and their adaptation schemes are then specified respectively.

3 Basics of Modeling in RSOME

The RSOME package is developed based on the large and active open-source ecosystem of Python,

wherein it can be easily upgraded and integrated with other Python libraries for various applica-

tions. The steps of modeling in RSOME are summarized (with sample code) in Figure 2.

The first step is to create a dro model, whereafter decisions and random variables can be defined

as components of the model in the second step. Users could also define an ambiguity set of random

variables, as well as the event-wise recourse adaptation for decision variables in Step 2. In Step 3,

these decisions and random variables are used to specify the objective function and constraints.

RSOME enables users to define variables, functions, and constraints as arrays, which are consistent

with the widely used NumPy arrays in operations such as indexing, slicing, broadcasting, transpose,

and vectorization. Hence, RSOME is friendly to users who have engaged with Python programming

7



Figure 2. Steps of modeling in RSOME.

and are familiar with the NumPy analytical tools. For example, the constraint system∑
i∈[I]

bixi = 1 (1a)

∑
i∈[I]

Ajixi ≤ cj ∀j ∈ [J ] (1b)

∑
j∈[J ]

∑
i∈[I]

yji ≥ 1 (1c)

∑
i∈[I]

yji ≥ 0 ∀j ∈ [J ] (1d)

yji ≤ cj ∀j ∈ [J ], i ∈ [I] (1e)

Ajixi ≥ 1 ∀j ∈ [J ], i ∈ [I] (1f)

Ajiyji + xi ≥ 0 ∀j ∈ [J ], i ∈ [I] (1g)

with decision variables x ∈ RI and y ∈ RJ×I , as well as parameters A ∈ RJ×I , b ∈ RI and c ∈ RJ ,

can be conveniently specified through highly readable array operations as follows.9

9Although the example only shows operations on one and two-dimensional arrays, the same NumPy-style syntax

applies to arrays of an arbitrary shape or dimension. We refer interested readers to our online example “Integer

Programming for Sudoku”, where three-dimensional arrays are used.

8

https://xiongpengnus.github.io/rsome/example_sudoku
https://xiongpengnus.github.io/rsome/example_sudoku


1 # define variables as arrays

2 x = model.dvar(I) # define x as an I-dimensional array

3 y = model.dvar((J, I)) # define y as a JxI array

4

5 # constraints are specified below

6 b @ x == 1 # constraints (1a)

7 A @ x <= c # constraints (1b)

8 y.sum() >= 1 # constraints (1c)

9 y.sum(axis=1) >= 0 # constraints (1d)

10 y.T <= c # constraints (1e)

11 A * x >= 1 # constraints (1f)

12 A*y + x >= 0 # constraints (1g)

RSOME will automatically transform well-specified distributionally robust models into their

deterministic reformulations, which are then passed to the selected external solver. The current

version of RSOME provides interfaces to open-source and commercial solvers listed in Table 1.

Solver License type RSOME interface Integer variables SOC constraints

scipy.optimize Open-source lpg solver No No

CyLP Open-source clp solver Yes No

OR-Tools Open-source ort solver Yes No

ECOS Open-source eco solver Yes Yes

CPLEX Commercial cpx solver Yes Yes

Gurobi Commercial grb solver Yes Yes

MOSEK Commercial msk solver Yes Yes

Table 1. Solver interfaces in RSOME.

Once installed, these solvers can be imported and used to solve an RSOME model. The sample

code below demonstrates how Gurobi is selected via the interface grb to solve an RSOME model.

Other commercial or open-source solvers can be chosen in a similar manner, so one can switch from

one solver to another with negligible effort.

1 from rsome import grb_solver as grb # import interface for Gurobi

2

3 model.solve(grb) # solve the model by Gurobi

9



4 A Demo Application

In this section, we solve a vehicle pre-allocation problem (which originates from Hao et al. 2020) to

demonstrate the syntax and basic features of RSOME. Consider an urban area with I supply nodes

and J demand nodes. The operator, before the random demand d̃ = (d̃j)j∈[J ] realizes, allocates xij

vehicles from supply node i ∈ [I] (which has a number qi of idle vehicles) to demand node j ∈ [J ] at

a unit cost cij . After demand realization, the operator collects
∑

j∈[J ] rj min{
∑

i∈[I] xij , dj} revenue.

The pre-allocation decision is made by solving a distributionally robust optimization problem

minimize
x, y

∑
i∈[I]

∑
j∈[J ]

(cij − rj)xij + sup
P∈F

EP

∑
j∈[J ]

rjyj(s, d̃, ũ)


subject to yj(s,d,u) ≥

∑
i∈[I]

xij − dj ∀(d,u) ∈ Zs, s ∈ [S], j ∈ [J ]

yj(s,d,u) ≥ 0 ∀(d,u) ∈ Zs, s ∈ [S], j ∈ [J ]

yj ∈ Ā(C,J ) ∀j ∈ [J ]∑
j∈[J ]

xij ≤ qi ∀i ∈ [I]

xij ≥ 0 ∀i ∈ [I], j ∈ [J ],

(2)

where ũ denotes auxiliary random variables and y is a vector of wait-and-see decisions accounting

for bookkeeping revenues. The random demand d̃ is captured by the ambiguity set below:

F =


P ∈ P0(RJ × RJ × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(d̃, ũ, s̃) ∼ P

EP[d̃ | s̃ = s] = µs ∀s ∈ [S]

EP[ũ | s̃ = s] ≤ ϕs ∀s ∈ [S]

P[(d̃, ũ) ∈ Zs | s̃ = s] = 1 ∀s ∈ [S]

P[s̃ = s] = ws ∀s ∈ [S]


, (3)

which involves a number of S random scenarios. For each scenario s ∈ [S], the conditional distribu-

tion of d̃ is characterized by the conditional mean µs and variance ϕs, as well as the lifted support

Zs = {(d,u) ∈ RJ × RJ : d ∈ [ds, d̄s], (dj − µj)
2 ≤ uj ∀j ∈ [J ]}. The vector w is used to denote

scenario weights, which amount to the fractions of data points residing in each scenario. Scenarios

of the ambiguity set are generated from the historical data10 of the regional taxi demands (with

noise added for data desensitization) and side information in terms of the rainfall records using

10Available at the “taxi rain.csv” file in our online example “Robust Vehicle Pre-Allocation”.

10

https://xiongpengnus.github.io/rsome/example_ro_vehicle


decision tree regressor. The code for generating scenarios and calculating parameters µ, ϕ, d̄, ds

and w (i.e., mu, phi, d ub, d lb, and w in the code segment, respectively) is given as follows.

1 from sklearn.tree import DecisionTreeRegressor

2 import pandas as pd

3

4 data = pd.read_csv(’https://xiongpengnus.github.io/rsome/taxi_rain.csv’)

5

6 D, V = data.iloc[:, :10], data.iloc[:, 10:] # D: demand & V: side information

7

8 regr = DecisionTreeRegressor(max_leaf_nodes=4, # max leaf nodes

9 min_samples_leaf=3) # min sample size of each leaf

10 regr.fit(V, D)

11 mu, index, counts = np.unique(regr.predict(V), axis=0,

12 return_inverse=True,

13 return_counts=True) # conditional mean

14 w = counts/V.shape[0] # scenario weights

15 phi = np.array([D.values[index==i].var(axis=0)

16 for i in range(len(counts))]) # conditional variance

17 d_ub = np.array([D.values[index==i].max(axis=0)

18 for i in range(len(counts))]) # upper bound of each scenario

19 d_lb = np.array([D.values[index==i].min(axis=0)

20 for i in range(len(counts))]) # lower bound of each scenario

Parameters for the event-wise affine adaptation Ā(C,J ) are (i) J = [2J ] and (ii) C =

{{1}, . . . , {S}}, suggesting that each recourse decision yj affinely adapts to random variables (d̃, ũ)

and the affine adaptation could be different in each scenario. The distributionally robust model is

implemented by the code below.

1 from rsome import dro # import the dro module

2 from rsome import square # import the element-wise square function

3 from rsome import E # import the notion of expectation

4 from rsome import grb_solver as grb # import the Gurobi interface

5

6 model = dro.Model(S) # create a DRO model with S scenarios

7

8 d = model.rvar(J) # random demand as the variable d

9 u = model.rvar(J) # auxiliary random variable u

10 fset = model.ambiguity() # create an ambiguity set

11 for s in range(S): # for each scenario:

12 fset[s].exptset(E(d) == mu[s], # specify the expectation set of d and u

13 E(u) <= phi[s])

14 fset[s].suppset(d >= d_lb[s], # specify the support of d and u

15 d <= d_ub[s],

16 square(d - mu[s]) <= u)

17 pr = model.p # an array of scenario probabilities

18 fset.probset(pr == w) # w as scenario weights

19

20 x = model.dvar((I, J)) # here-and-now decision x

11



21 y = model.dvar(J) # wait-and-see decision y

22 y.adapt(d) # y affinely adapts to d

23 y.adapt(u) # y affinely adapts to u

24 for s in range(S): # for each scenario:

25 y.adapt(s) # affine adaptation of y is different

26

27 model.minsup(((c-r)*x).sum() + E(r@y), fset) # minimize the worst-case objective

28 model.st(y >= x.sum(axis=0) - d, y >= 0) # robust constraints

29 model.st(x >= 0, x.sum(axis=0) <= q) # deterministic constraints

30

31 model.solve(grb) # solve the model by Gurobi

32 objval = model.get() # get the optimal objective value

33 xsol = x.get() # get the optimal solution

34 status = model.solution.status # return the solution status

35 stime = model.solution.time # return the solution time

Here, random variables d and u are defined by the rvar() method in lines 8 and 9, where J specifies

the shape of the variable array. In line 10, the ambiguity() method is called to create an ambiguity

set, whose support and expectation information are specified by the suppset() and exptset(),

respectively. The scenario weights are specified in line 18, where pr is pre-defined to be an array of

scenario probabilities in line 17. Decision variables and their adaptations are defined from line 20

to line 25. Note that decision variables are recognized as here-and-now by default, while decision

y becomes adaptive after the adapt() method is called to specify its event-wise affine adaptation.

The subsequent lines define the objective function and constraints. Finally, the model is solved by

Gurobi via the grb solver interface. Once the solution procedure completes, the optimal objective

value and the optimal solution of a given decision variable can be retrieved using the get() method;

see lines 32 and 33. Users can also obtain the solution status and computation time as attributes

of the model.solution object, as shown in lines 34 and 35.

Different robust and distributionally robust models, with ambiguity sets of their own emphases

and the corresponding event-wise affine adaptations, could be seeminglessly recast as an instance

of problem (2) with an ambiguity set (3). For more detail, we refer to our online materials11.

5 Conclusion

We introduce an algebraic modeling package RSOME in Python for modeling robust and distribu-

tionally robust optimization problems in a highly readable and mathematically intuitive manner.

We believe that RSOME in Python, served as an open-source modeling framework, remains open

11Available at “RSOME Paper Numerical Cases”.

12

https://github.com/XiongPengNUS/rsome-paper-numerical-cases


to further developments that depend on the needs of users. For example, robust satisficing models

that arise from the recent frameworks in Long et al. (2022) can be deployed in RSOME if prop-

erly tailored. As another example, customized parameter settings (such as those of mixed-integer

models) in a solver are also possible.

Acknowledgements. We are grateful to Erick Delage and Melvyn Sim for encouragement and

inspiring discussions that motivated this project. We thank Zhaowei Hao, Long He, Zhenyu Hu

and Jun Jiang for helpful discussions on the vehicle pre-allocation problem and for sharing the taxi

demand and rainfall data. Valuable feedback from RSOME users is also gratefully acknowledged.

The research of Zhi Chen is funded by the Strategic Research Grant (project number: 7005792)

from the City University of Hong Kong. The research of Peng Xiong is supported by the Ministry

of Education, Singapore, under its 2019 Academic Research Fund Tier 3 grant call (Grant MOE-

2019-T3-1-010).

References

Ben-Tal, Aharon, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, Gijs Rennen. 2013. Robust

solutions of optimization problems affected by uncertain probabilities. Management Science 59(2) 341–

357.

Ben-Tal, Aharon, Arkadi Nemirovski. 1998. Robust convex optimization. Mathematics of Operations Re-

search 23(4) 769–805.

Bertsimas, Dimitris, Melvyn Sim. 2004. The price of robustness. Operations Research 52(1) 35–53.

Bertsimas, Dimitris, Melvyn Sim, Meilin Zhang. 2019. Adaptive distributionally robust optimization. Man-

agement Science 65(2) 604–618.

Chen, Zhi, Melvyn Sim, Peng Xiong. 2020. Robust stochastic optimization made easy with RSOME. Man-

agement Science 66(8) 3329–3339.

Chen, Zhi, Melvyn Sim, Huan Xu. 2019. Distributionally robust optimization with infinitely constrained

ambiguity sets. Operations Research 67(5) 1328–1344.

Delage, Erick, Yinyu Ye. 2010. Distributionally robust optimization under moment uncertainty with appli-

cation to data-driven problems. Operations Research 58(3) 595–612.

13



Dunning, Iain, Joey Huchette, Miles Lubin. 2017. JuMP: a modeling language for mathematical optimization.

SIAM Review 59(2) 295–320.

El Ghaoui, Laurent, Francois Oustry, Hervé Lebret. 1998. Robust solutions to uncertain semidefinite pro-

grams. SIAM Journal on Optimization 9(1) 33–52.

Goh, Joel, Melvyn Sim. 2010. Distributionally robust optimization and its tractable approximations. Oper-

ations Research 58(4) 902–917.

Goh, Joel, Melvyn Sim. 2011. Robust optimization made easy with ROME. Operations Research 59(4)

973–985.

Grant, Michael, Stephen Boyd. 2014. CVX: MATLAB software for disciplined convex programming, version

2.1. http://cvxr.com/cvx.

Hao, Zhaowei, Long He, Zhenyu Hu, Jun Jiang. 2020. Robust vehicle pre-allocation with uncertain covariates.

Production and Operations Management 29(4) 955–972.

Isenberg, Natalie, John Siirola, Chrysanthos Gounaris. 2020. PyROS: A Pyomo robust optimization solver

for robust process design. 2020 Virtual AIChE Annual Meeting . AIChE.

Lofberg, Johan. 2004. YALMIP: a toolbox for modeling and optimization in MATLAB. 2004 IEEE inter-

national conference on robotics and automation. IEEE, 284–289.

Long, Daniel Zhuoyu, Melvyn Sim, Minglong Zhou. 2022. Robust satisficing. Forthcoming in Operations

Research.

Martin, Kipp. 2010. Tutorial: COIN-OR: software for the OR community. Interfaces 40(6) 465–476.

Mohajerin Esfahani, Peyman, Daniel Kuhn. 2018. Data-driven distributionally robust optimization using

the Wasserstein metric: performance guarantees and tractable reformulations. Mathematical Programming

171(1-2) 1–52.

Rahimian, Hamed, Sanjay Mehrotra. 2019. Distributionally robust optimization: a review. arXiv preprint

arXiv:1908.05659.

Soyster, Allen. 1973. Convex programming with set-inclusive constraints and applications to inexact linear

programming. Operations Research 21(5) 1154–1157.

Stahlberg, Maximilian. 2020. Robust conic optimization in Python. Master thesis, Technische Universität

Berlin, Germany.

14

http://cvxr.com/cvx


Vayanos, Phebe, Qing Jin, George Elissaios. 2020. ROC++: robust optimization in C++. arXiv preprint

arXiv:2006.08741.

Wiebe, Johannes, Ruth Misener. 2021. ROmodel: modeling robust optimization problems in Pyomo. Opti-

mization and Engineering 1–22.

Wiesemann, Wolfram, Daniel Kuhn, Melvyn Sim. 2014. Distributionally robust convex optimization. Oper-

ations Research 62(6) 1358–1376.

15



Online Supplementary of “RSOME in Python: An Open-Source

Package for Robust Stochastic Optimization Made Easy”

1 The Robust Optimization Framework

The ro module in RSOME is designed for robust optimization problems, where tailored modeling

tools are developed for specifying random variables, uncertainty sets, the objective function or

constraints under the worst-case scenarios that may arise from the uncertainty set, as well as

decision rules for recourse decisions. The general framework is given by

minimize
x, y

max
z∈Z0

{
a⊤
0 (z)x+ b⊤0 y(z) + c0(z)

}
subject to max

z∈Zm

{
a⊤
m(z)x+ b⊤my(z) + cm(z)

}
≤ 0 ∀m ∈ M

yi ∈ L(Ji) ∀i ∈ [Iy]

x ∈ X .

Here, parameters of proper dimensions,

am(z) := a0
m +

∑
j∈[J ]

aj
mzj and cm(z) := c0m +

∑
j∈[J ]

cjmzj ,

are defined similarly as in the distributionally robust optimization framework and X is an SOC

representable feasible set of the here-and-now decision x. The wait-and-see decision y is restricted

to a simpler and easy-to-optimize affine function in the following form:

L(J ) :=

y : R[J ] 7→ R

∣∣∣∣∣∣ y(z) = y0 +
∑
j∈J

yjzj

 ,

where the prescribed subset J ⊆ [J ] includes indices of those random components z̃1, . . . , z̃J of z̃

to which a particular non-anticipative decision can adapt.

2 Vehicle Pre-Allocation Problem Revisit

In this section, we revisit the vehicle pre-allocation problem and use the ro framework to build a

robust model and a sample robust model (proposed by Bertsimas et al. 2022b) for this problem.

1



We also look at the sample robust model from the distributionally robust optimization perspective

and relate it to other data-driven distributionally robust models.

2.1 The Robust Model

The robust model is given by

minimize
xxx, yyy

max
ddd∈Z

∑
i∈[I]

∑
j∈[J ]

(cij − rj)xij +
∑
j∈[J ]

rjyj(ddd)


subject to yj(ddd) ≥

∑
i∈[I]

xij − dj ∀ddd ∈ Z, j ∈ [J ]

yj(ddd) ≥ 0 ∀ddd ∈ Z, j ∈ [J ]

yj ∈ L([J ]) ∀j ∈ [J ]∑
j∈[J ]

xij ≤ qi ∀i ∈ [I]

xij ≥ 0 ∀i ∈ [I], j ∈ [J ].

(1)

Here, the wait-and-see decision y is approximated by a linear decision rule L([J ]), implying that

each yj affinely depends on the demand realization d. The uncertainty set Z is a box with upper

and lower bounds identified as follows.

1 import pandas as pd

2

3 data = pd.read_csv(’taxi_rain.csv’) # read data from the csv file

4

5 demand = data.loc[:, ’Region1’:’Region10’] # taxi demand data

6

7 d_ub = demand.max().values # upper bound of demand

8 d_lb = demand.min().values # lower bound of demand

The robust optimization model can be implemented with the following code segment.

1 from rsome import ro # import the ro module

2 from rsome import grb_solver as grb # import the Gurobi interface

3

4 model = ro.Model() # create an RO model

5

6 d = model.rvar(J) # create an array of random variables

7 zset = (d <= d_ub, d >= d_lb) # define a box uncertainty set

8

9 x = model.dvar((I, J)) # define here-and-now decisions as array x

2



10 y = model.ldr(J) # define linear decision rules as array y

11 y.adapt(d) # y affinely adapts to d

12

13 model.minmax(((c-r)*x).sum() + r@y, zset) # minimize the worst-case objective

14 model.st(y >= x.sum(axis=0) - d, y >= 0) # robust constraints

15 model.st(x.sum(axis=1) <= q, x >= 0) # deterministic constraints

16

17 model.solve(grb) # solve the model with Gurobi

2.2 The Sample Robust Model Using the ro Framework

Suppose there are a collection {d̂1, . . . , d̂S} of historical demand samples available. For a general

two-stage problem, Bertsimas et al. (2022b) recently propose a sample robust model with a specific

linear decision rule called multi-policy approximation. In particular, for the vehicle pre-allocation

problem, the corresponding sample robust model can be cast as follows:

minimize
xxx, yyy

∑
i∈[I]

∑
j∈[J ]

(cij − rj)xij +
1

S

∑
s∈[S]

as

subject to as ≥
∑
j∈[J ]

rjysj(ddd) ∀ddd ∈ Zs, s ∈ [S]

ysj(ddd) ≥
∑
i∈[I]

xij − dj ∀ddd ∈ Zs, j ∈ [J ], s ∈ [S]

ysj(ddd) ≥ 0 ∀ddd ∈ Zs, j ∈ [J ], s ∈ [S]

ysj ∈ L([J ]) ∀j ∈ [J ], s ∈ [S]∑
j∈[J ]

xij ≤ qi ∀i ∈ [I]

xij ≥ 0 ∀i ∈ [I], j ∈ [J ].

(2)

Here, a ∈ RS is a vector of intermediate variables for the worst-case costs in each scenario and

an uncertainty set Zs = {d ∈ [d, d̄] | ∥d − d̂s∥ ≤ ε}—an ε-neighbourhood defined by a general

norm ∥ · ∥—is constructed around each demand sample d̂s. The multiple-policy approximation

then allows different affine dependencies around different samples, leading to the two-dimensional

decision rules (ysj(d))s∈[S],j∈[J ]. Such a sample robust model (assuming the parameter ε = 0.25) is

implemented as shown in the following code segment.

3



1 from rsome import ro # import the ro module

2 from rsome import norm # import the norm function

3 from rsome import grb_solver as grb # import the Gurobi interface

4

5 dhat = demand.values # sample demand as an array

6 S = dhat.shape[0] # sample size of the dataset

7 epsilon = 0.25 # parameter of robustness

8

9 model = ro.Model() # create an RO model

10

11 d = model.rvar(J) # random variable d

12 a = model.dvar(S) # variable as the recourse cost

13 x = model.dvar((I, J)) # here-and-now decision x

14 y = model.ldr((S, J)) # linear decision rule y

15 y.adapt(d) # y affinely adapts to d

16

17 model.min(((c-r)*x).sum() + (1/S)*a.sum()) # minimize the objective

18 for s in range(S):

19 zset = (d <= d_ub, d >= d_lb,

20 norm(d - dhat[s]) <= epsilon) # sample-wise uncertainty set

21 model.st((a[s] >= r@y[s]).forall(zset)) # constraints for the sth sample

22 model.st((y[s] >= x.sum(axis=0) - d).forall(zset)) # constraints for the sth sample

23 model.st((y[s] >= 0).forall(zset)) # constraints for the sth sample

24 model.st(x.sum(axis=1) <= q, x >= 0) # constraints

25

26 model.solve(grb) # solve the model by Gruobi

We would like to highlight that the ro module enables users to specify different uncertainty sets

for the objective function and each of the constraints: in the above sample robust model, different

uncertainty sets are defined around samples and these sets for constraints can be easily specified

by calling the forall() method. Such a feature makes the robust optimization framework more

flexible than that in the MATLAB version and can be used to address a rich range of robust models,

including the distributional interpretation of robust formulation (Xu et al. 2012), as well as the

notion of Pareto robustly optimal solution (de Ruiter et al. 2016).

4



2.3 The Sample Robust Model Using the dro Framework

As pointed out by Bertsimas et al. (2022b), the sample robust model can also be cast as the

following distributionally robust optimization problem:

minimize
xxx, yyy

∑
i∈[I]

∑
j∈[J ]

(cij − rj)xij + sup
P∈F

EF

∑
j∈[J ]

rjyj(s̃, d̃dd)


subject to yj(s̃, ddd) ≥

∑
i∈[I]

xij − dj ∀ddd ∈ Zs, s ∈ [S], j ∈ [J ]

yj(s̃, ddd) ≥ 0 ∀ddd ∈ Zs, s ∈ [S], j ∈ [J ]

yj ∈ Ā(C,J ) ∀j ∈ [J ]∑
j∈[J ]

xij ≤ qi ∀i ∈ [I]

xij ≥ 0 ∀i ∈ [I], j ∈ [J ],

(3)

where s̃ is a random scalar corresponds to demand samples. The ambiguity set is given by

F =


P ∈ P0(RJ × [S])

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(d̃, s) ∼ P

P[d̃ ∈ Zs | s̃ = s] = 1 ∀s ∈ [S]

P[s̃ = s] = ws ∀s ∈ [S]


, (4)

where for each scenario s ∈ [S], the weight is ws = 1/S and the corresponding support set

Zs = {d ∈ [d, d̄) | ∥d − d̂s∥ ≤ ε} is an ε-neighbourhood around the demand sample d̂s.
1

The multiple-policy approximation is equivalent to the event-wise recourse adaptation that states

yj ∈ Ā({{1}, · · · , {S}}, [J ]), suggesting that yj affinely depends on the demand realization and

around each sample, the affine adaptation is different. The distributionally robust model can be

implemented by the sample code below.

1 from rsome import dro # import the dro module

2 from rsome import norm # import the norm function

3 from rsome import E # import the expectation notion

1If the uncertainty parameter ε = 0, the sample robust model is equivalent to the SAA approach. Conceptually,

the sample robust model is based on a specific type of Wasserstein metric. We refer to Chen et al. (2020, section 5.5)

for models based on other types of Wasserstein metric and their approximations of the wait-and-see decisions.

5



4 from rsome import grb_solver as grb # import the Gurobi interface

5

6 dhat = demand.values # sample demand as an array

7 S = dhat.shape[0] # sample size of the dataset

8 epsilon = 0.25 # parameter of robustness

9 w = 1/S # weights of scenarios

10

11 model = dro.Model(S) # a DRO model with S scenarios

12

13 d = model.rvar(J) # random variable d

14 fset = model.ambiguity() # create an ambiguity set

15 for s in range(S): # for each scenario

16 fset[s].suppset(d <= d_ub, d >= d_lb,

17 norm(d - dhat[s]) <= epsilon) # define the support set

18 pr = model.p # an array of scenario weights

19 fset.probset(pr == w) # specify scenario weights

20

21 x = model.dvar((I, J)) # here-and-now decision x

22 y = model.dvar(J) # wait-and-see decision y

23 y.adapt(d) # y affinely adapts to d

24 for s in range(S):

25 y.adapt(s) # y adapts to each scenario s

26

27 model.minsup(((c-r)*x).sum() + E(r@y), fset) # the worst-case expectation

28 model.st(y >= x.sum(axis=0) - d, y >= 0) # robust constraints

29 model.st(x.sum(axis=1) <= q, x >= 0) # deterministic constraints

30

31 model.solve(grb) # solve the model by Gruobi

Recall the ro framework in Section 2.2, the decision rules (ysj(d))s∈[S],j∈[J ] therein is defined as

a two-dimensional array. Here, in the the dro framework, y is one-dimensional and the multiple-

policy adaptation is defined by a loop in lines 24 and 25, where event-wise affine adaptation is

automatically created by calling the adapt() method, with s being the sample index.

2.4 Comparison of Models

The robust model (1) with support information, sample robust model (2) with sample information,

and distributionally robust model with side information—problem (2) in the main paper—all admit

a tractable deterministic reformulation as a linear or second-order cone (SOC) program that is

well recognized by the external solver. The reformulations, however, differ largely in terms of the

problem size, auxiliary variables, constraints, as well as coefficients; see a summary in Table 1. This

reminds us the lack of intuition in the tedious and error-prone transition from (distributionally)

robust models to their deterministic mathematical equivalents, and more importantly, shows the

6



need of an accompanying technology to free modelers/practitioners from the transition procedure.

Model Support information Sample information Side information

Number of variables

Continuous/binaries/integers

373 44132 4889

373/0/0 44132/0/0 4889/0/0

Number of linear constraints

Inequalities/equalities

Number of coefficients

232 17789 1930

211/21 16172/1617 502/1428

823 92526 10759

Number of SOC constrains 0 1617 840

Table 1. Summary of deterministic reformulations.

Basic information of the deterministic reformulation (in a standard form) of a (distributionally)

robust model can be retrieved by calling the do math() method the Model object; see below.

1 dc = model.do_math() # deterministic counterpart of the model

2 formula = dc.show() # formula of the deterministic counterpart

Here, the show() method further exports detailed information of the deterministic reformulation

as a Pandas DataFrame, shown in Figure 1. The DataFrame contains coefficients of the objective

function (Obj) and linear constraints (LC), as well as upper/lower bounds (UB/LB) and types (Type)

of decision variables. Such data can be conveniently processed by functions and operations provided

by the Pandas library, and could be useful for debugging or exploring the problem’s structure.

2.5 Alternative Data-Driven Approaches

To incorporate with side information, Bertsimas et al. (2022a) propose to adjust the weights w of

samples in the original sample robust model of Bertsimas et al. (2022b), where the robustness pa-

rameter ε is used to control the distance to (or equivalently, admissible deviation from) the sample

point. Indeed, as pointed out by Bertsimas et al. (2022a), the ambiguity set (4) corresponds to a

variety of data-driven approaches, provided that the robustness parameter epsilon and weights

7



Figure 1. Information of the deterministic reformulation of the robust model (1).

w are properly specified; see a summary in Table 2. With the help of third-party packages (e.g.,

PyTorch, Scikit-Learn and TensorFlow) in Python ecosystem, it is easy to implement various ma-

chine learning methods, such as K-nearest neighbors, kernel regression, classification and regression

tree, and random forest, for determining the weight factors w. For more detail, we refer interested

readers to Bertsimas et al. (2022a) and Bertsimas and Kallus (2020). Equipped with the distri-

butionally robust optimization framework in RSOME, different data-driven approaches in Table 2

can be implemented by using the same sample code as that in Section 2.3.

w = 1/S w from machine learning

epsilon = 0 SAA Bertsimas and Kallus (2020)

epsilon > 0 Bertsimas et al. (2022b) Bertsimas et al. (2022a)

Table 2. Data-driven approaches.

References

Bertsimas, Dimitris, Nathan Kallus. 2020. From predictive to prescriptive analytics. Management Science

66(3) 1025–1044.

Bertsimas, Dimitris, Christopher McCord, Bradley Sturt. 2022a. Dynamic optimization with side informa-

tion. Forthcoming in European Journal of Operational Research.

Bertsimas, Dimitris, Shimrit Shtern, Bradley Sturt. 2022b. Two-stage sample robust optimization. Opera-

tions Research 70(1) 624–640.

8



Chen, Zhi, Melvyn Sim, Peng Xiong. 2020. Robust stochastic optimization made easy with RSOME. Man-

agement Science 66(8) 3329–3339.

de Ruiter, Frans, Ruud Brekelmans, Dick den Hertog. 2016. The impact of the existence of multiple adjustable

robust solutions. Mathematical Programming 160(1) 531–545.

Xu, Huan, Constantine Caramanis, Shie Mannor. 2012. A distributional interpretation of robust optimiza-

tion. Mathematics of Operations Research 37(1) 95–110.

9


	Introduction
	Frameworks of RSOME
	Basics of Modeling in RSOME
	A Demo Application
	Conclusion
	The Robust Optimization Framework
	Vehicle Pre-Allocation Problem Revisit
	The Robust Model
	The Sample Robust Model Using the ro Framework
	The Sample Robust Model Using the dro Framework
	Comparison of Models
	Alternative Data-Driven Approaches


