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Abstract

Robust Satisficing is an emerging robust optimization method. However, it lacks the statistical
guarantees of its widely-studied counterpart, DRO. This paper addresses this gap by deriving
two-sided confidence intervals for optimal loss and finite-sample generalization error bounds under
Wasserstein distance, extending also to distribution shifts. For f-divergence, we establish an asymp-
totic upper bound on generalization error. Numerical experiments show that RS outperforms ERM
in small-sample regimes and under distribution shifts, and shows hyperparameter correspondence
with DRO.

Keywords Robust Satisficing, Distributionally Robust Optimization, Wasserstein distance, f -
divergence, Generalization error

1. Research Problem The Robust Satisficing (RS) model proposed by Long, Sim, and Zhou
addresses the key drawbacks of classical robust method——Distributionally Robust Optimization
(DRO), such as over-conservatism and the challenge of selecting an appropriate radius for the
ambiguity set. The RS model shifts the focus from minimizing the worst-case loss to a satisficing
strategy that balances performance and robustness more effectively.

The RS model is formulated as follows:

kτ =min k (1)

s.t. EP [h(x, ξ)]− τ ≤ kd(P, P̂N ), ∀P ∈ P
x ∈ X , k ≥ 0.

In this formulation, h(x, ξ) is the objective function with decision value x and random variable
ξ, P̂N is the empirical distribution with samples generated from true distribution P ∗, and d(·, ·) is a
measure that characterizes the discrepancy between distributions; here we consider the Wasserstein
distance and f-divergence. RS uses a reference value τ as a hyperparameter, ensuring that any excess
loss over this reference value is controlled by a multiple of the distance between distributions.

This approach avoids DRO’s over-conservatism and potentially provides better generalization
performance on the target distribution. However, the RS model lacks comprehensive statistical
guarantees.

Our work delves into the statistical theory of the RS model, focusing on deriving and analyzing
its statistical properties. We provide two-sided confidence intervals for the optimal loss and non-
asymptotic upper bounds for the generalization error under the Wasserstein distance. We also
extend our analysis to scenarios involving distribution shifts, where we present confidence intervals
and generalization error bounds for the RS model optimizer. Additionally, we explore the case of
f -divergence and provide an asymptotic upper bound on the generalization error. These results fill
a crucial gap in the literature, demonstrating the RS model’s robustness and practical advantages
over DRO, particularly in small-sample regimes and under distribution shifts.

2. Key Methodology and Assumptions One of the key methodologies of this work is the
systematic selection of the hyperparameter τ in the RS model. we choose τϵ := infx EP̂N

[h(x, ξ)]+ϵ,
where ϵ is referred to as “tolerance value” that the RS model allows for excess empirical loss. We
adopt this approach, focusing on characterizing the role of ϵ in the statistical guarantees provided
by the RS model.
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Another key methodology is the dual reformulation of the RS model. Under the Wasserstein
distance, its dual reformulation is as follows:

min k ≥ 0 (2)

s.t. EP̂N
[sup
z∈Ξ

h(x, z)− kc(ξ, z)] ≤ τ.

x ∈ X

Under f-divergence, its dual reformulation is as follows:

min k ≥ 0 (3)

s.t. min
µ

(µ+ kEP̂N
f∗(

h(x, ξ)− µ

k
)) ≤ τ.

x ∈ X

Below are the assumptions required for our results.

Assumption 1 (Exponential tail decay in random variable). There exists an a > 1, such that
EP ∗ [exp(||ξ||a)] < ∞.

Assumption 2 (Lipschitz continuity of loss function). The loss h(x, ξ) is Lipschitz with a uniform
constant L in ξ.

3. Main Results Denote x̂N as the optimizer of RS model. Define optimal loss J∗ = infx∈X EP ∗ [h(x, ξ)]
and generalization error R(P ∗, x̂N ) = EP ∗ [h(x̂N , ξ)] − J∗. Then under the Wasserstein distance,
we have:

Theorem 1 (Confidence intervals of optimal loss). Suppose Assumptions 1 & 2 hold. For any N ,
let βN be the confidence level. We have with probability at least 1− βN :

−L · rN + (τϵ − ϵ) ≤ J∗ ≤ EP ∗ [h(x̂N , ξ)] ≤ L · rN + τϵ, (4)

where rN , denoted as the “remainder”, is solved from the below equation:

βN =

{
c1 exp

(
− c2NrN

max{m,2}) if rN ≤ 1,

c1 exp
(
− c2NraN

)
if rN > 1,

with c1, c2 as positive constants that only depend on exponential decay rate a and the dimension m
of ξ.

Theorem 2 (Finite sample generalization error bound). Suppose Assumptions 1 & 2 hold. With
probability at least 1− βN , we have:

R(P ∗, x̂N ) ≤ ϵ+ 2L · rN , (5)

where rN is the reminder solved as in Theorem 1. Taking expectation with respect to data, we have:

EP ∗ [R(P ∗, x̂N )] ≤ ϵ+O(L ·N−min{ 1
m
, 1
2
}). (6)

In distribution shift scenario, we evaluate the performance when applying x̂N to another distri-
bution P̃ , which may shift from P ∗, resulting in a certain degree of discrepancy. Define the optimal
loss under the new distribution P̃ as J̃ = infx∈X EP̃ [h(x, ξ)]. Then we have:
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Theorem 3 (Distribution Shift). Suppose Assumptions 1 & 2 hold. For any N , let βN be some
nominal confidence level. We have with probability at least 1− βN :

−L · rN − L · dW (P ∗, P̃ ) + (τϵ − ϵ) ≤ J̃ ≤ EP̃h(x̂N , ξ) ≤ kτϵ · rN + kτ · dW (P ∗, P̃ ) + τϵ,

and

R(P̃ , x̂N ) ≤ ϵ+ 2L · dW (P ∗, P̃ ) + 2L · rN ,

where the reminder rN is solved as Theorem 1.
Taking the expectation on data, we have:

EP ∗

[
R(P̃ , x̂N )

]
≤ ϵ+ 2L · dW (P ∗, P̃ ) +O

(
L ·N−min{ 1

m
, 1
2
}
)
.

This result shows that results under distribution shifts merely require adding a multiple of the
shift distance.

Finally, we extend the Robust Satisficing model to the commonly used f -divergences in machine
learning.

Theorem 4 (Generalization error bound). Assuming that P ∗ is a discrete distribution with finite

support Ξ. Choosing ϵN = C

√
M |Ξ| logN

N , For the Hellinger distance dH(P,Q) = 1√
2

(∫ (√
dP −

√
dQ

)2
) 1

2

,

the Le Cam distance dLC(P,Q) = 1
2

∫ (dP−dQ)2

dP+dQ , and the Jensen-Shannon divergence dJS(P,Q) =

dKL(P,
P+Q
2 ) + dKL(Q, P+Q

2 ), when N → ∞, we have:

EP ∗R(P ∗, x̂N ) = O
(√M |Ξ| logN

N

)
. (7)

4. Numerical Experiments The experiment is conducted under the regression loss function
L(y − ⟨x, β⟩), where β is a parameter and the random variable is ξ = (x, y). We conducted
experiments on the RS performance both in small-sample regimes and under distribution shift (ϵ̄
represents ϵ scaled by the empirical loss).

Figure 1: Performances across various sam-
ple sizes. RS outperforms the ERM baseline
in small-sample regimes.

Figure 2: Performances across various degree
of distribution shifts. RS outperforms the
ERM baseline under distribution shifts.

Finally, we establish the correspondence of hyperparameters between RS and DRO under Lip-
schitz continuous loss functions. This determination is encapsulated by an optimization problem:

sup
r>0

inf
x

1
N

∑N
i=1 L(yi − ⟨xi, β⟩) + r · ||β||2 − τ

r
. (8)
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