
With the rapid advancement of AI, automated algorithms are increasingly being used to solve

routine problems. Particularly intriguing are the applications of AI in social organizations, which

have the potential to benefit both private and public sectors. These applications include the

organization of markets, allocation of resources, and mechanism design, among others (Agrawal

et al. 2023, Chen et al. 2021, Dai and Jordan 2021, Niazadeh et al. 2023, Zhalechian et al. 2022).

This paper studies a new problem of how to decompose a population of customers or clients into

groups to optimize a generic quantitive criterion.

Consider the following probability measure decomposition problem. Later, we will show how

this problem can arise in applications. Individuals in a population are represented by their feature

vectors x ∈ Rd. Feature vectors are distributed according to a probability distribution π. Let

P2(Rd) be the space of probability measures defined on Rd with finite second moment; that is,

P2(Rd) = {µ :
∫
Rd ∥x∥2dµ(x) < ∞}. When a measure µ ∈ P2(Rd) is absolutely continuous with

respect to the Lebesgue measure, we use the same symbol µ to represent the measure’s associated

probability density function. We define a decomposition of π as follows.

Definition 1 (Probability measure decomposition). Given a probability measure π ∈ P2(Rd),

we say the vector µ
.
= (µ1, µ2, . . . , µK) ∈ P2(Rd)⊗K of probability measures with weight vector

p = (p1, . . . , pK) ∈ R⊗K is a decomposition of π, if (µ,p) ∈ Pπ, where

Pπ
.
=

(µ,p) :
∑
k∈[K]

pk = 1, pk ≥ 0,
∑
k∈[K]

pkµk = π

 (1)

and [K]
.
= {1, 2, . . . ,K}. The equality

∑
k∈[K] pkµk = π holds in duality with the space C∞

c (Rd)

of compactly supported smooth (i.e., has infinitely many derivatives) functions; that is, for all

f ∈ C∞
c (Rd), ∑

k∈[K]

∫
Rd

f(x)dµk(x) =

∫
Rd

f(x)dπ(x).

Intuitively, we decompose the population (distributed according to π) of feature vectors into

K sub-populations (distributed according to µ1, . . . , µK). Within each sub-population k ∈ [K],

individual features are distributed according to probability measure µk. The population weight of

the whole population is normalized to be 1. Each sub-population k ∈ [K] has weight pk.

Among all decompositions of the feature distribution π, we seek one that minimizes (i) a

weighted sum of distribution loss function L : P2(Rd) → R associated with feature distribution

µk of each sub-population, and (ii) a weight loss function R : R → R associated with the popu-

lation weight pk of each sub-population. The purpose of this loss is to penalize a sub-population

with a small weight, which can be impractical for different reasons detailed in the examples below.

Formally, we consider the following optimal decomposition problem.

Problem 1 (Optimal decomposition problem). Let L : P2(Rd) → R be a distribution loss function

and R : R → R a weight loss function. Given a target of K sub-populations in a population with
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distribution π, solve

min
(µ,p)∈Pπ

F (µ,p), F (µ,p)
.
=

∑
k∈[K]

(pkL(µk) +R(pk)), (2)

where the feasible region Pπ is defined in (1).

We consider the following family of distribution loss functions L.

Definition 2 (Coupled loss function). We say L : P2(Rd) → R is a coupled loss function if

L(µ) =

∫
Rd

∫
Rd

ℓ(x,y)dµ(x)dµ(y)

for some continuously differentiable function ℓ : Rd × Rd → R satisfying

|ℓ(z,x)− ℓ(z,y)| ≤ ∥x− y∥

for all x,y, z ∈ Rd. We call ℓ the kernel of L.

Definition 3 (Weight loss function). For some θ, β > 0, define R : (0, 1) → R as

R(p)
.
=

θ

pβ
.

We present two applications of this general setup.

Example 1 (League design with Elo rating system (Elo and Sloan 1978)). In many competition-

based online games, players are grouped into different “leagues” based on their skill levels, and only

players from the same league can compete with each other. League design aims to create competitive

gaming environments where players are not overwhelmed by strong opponents or bored by weaker

ones. One way to quantify the skill level and competitiveness of games is the Elo-type system.1

For simplicity, we focus on one-on-one competitions, similar to chess. In the Elo-type system, each

player is given a skill level x ∈ (0,∞) (sometimes called Elo score). The probability of winning

for a player with skill level x against a player with skill level y is taken to be x/(x+ y).2 A game

is deemed more competitive as each player’s win rate gets closer to 50%. A common practice is

to minimize the difference of each player’s winning probability with 50%. For example, Simonov

et al. (2023) show in their study using data from the game streaming platform Twitch that the

expected game length and viewership can be increased by making the round-win probabilities of

games closer to a balanced distribution of 50%-50%.

Suppose the skill-level distribution of all players has density π, and the goal is to decompose

players into K leagues. Suppose in each league k ∈ [K], players arrive to join a game according to

a Poisson process with arrival rate pk (i.e., the expected waiting time for players in sub-population

k is 1/pk). Our decomposition aims to maximize the competitiveness of games and minimize the

waiting time of each league. This can be achieved by solving (2) with weight loss function R(p) = 1/p

and distribution loss function

L(µ) =

∫
Rd

∫
Rd

(
x

x+ y
− 1

2

)2

dµ(x)dµ(y) (3)

1For descriptions about Elo rating system, please see https://en.wikipedia.org/wiki/Elo_rating_system.
2In other variants of the Elo system, people use log(x)/α to represent skill level for some game specific parameter

α, which is equivalent to our setting by a change-of-variable argument.
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Example 2 (Generalized clustering). In clustering, the goal is to generate sub-populations ac-

cording to specific criteria. As in our base setup, suppose a population’s feature vectors x ∈ Rd

are distributed according to π ∈ P2(Rd). This means that the feature vector X of a randomly

sampled individual in the population is a random variable with law π. Suppose a designer aims

to decompose this population into sub-populations to maximize a sense of similarity in certain

feature dimensions while concurrently maximizing a sense of diversity in other dimensions within

each sub-population. Accordingly, we can define a loss function L as follows. Let W be a diagonal

matrix with nonzero diagonal entries. Define a distribution loss L by

L(µ) =

∫
Rd

∫
Rd

⟨x− y,W (x− y)⟩dµ(x)dµ(y), (4)

where ⟨x,y⟩ denotes the standard inner product in Rd. Note that L is a coupled loss function with

the kernel ℓ(x,y) = ⟨x− y,W (x− y)⟩. We call this distribution loss function L the variance loss.

The matrix W specifies the weights assigned to each dimension. When Wi,i > 0, this minimizes

the dissimilarity of features in dimension i. Conversely, when Wi,i < 0, this maximizes the diversity

of features in dimension i. Notably, ifW is the identity matrix, then L(µ) corresponds to the trace of

the covariance matrix. In this special case, we decompose the distribution π intoK sub-distributions

µk to minimize the variance of each sub-distribution µk.
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