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The modeling of consumer choice behaviors, particularly their interactions with product and con-

sumer features, has been a fundamental topic in revenue management, marketing, and economics.

Pioneered by seminal works on the Multinomial Logit (MNL) model [17, 18, 16], discrete choice

models become essential tools for predicting consumer behaviors and forecast demands. These

models inform managerial decisions in various applications, such as pricing, assortment optimiza-

tion, and transportation planning. To address consumer taste heterogeneity and substitution effects,

a variety of choice models have been developed, including but not limited to nested logit [20],

mixed logit [5, 2, 22, 21, 10], ranked-list models [4, 15, 8, 12], Exponomial [1], Markov chain

models [3], and tree-based models [6, 7, 9].

This paper focuses on the mixed logit, which characterizes choice probability as a mixture of

MNLs. Each mixture corresponds to a consumer type associated with a taste vector, represent-

ing the linear coefficient for the features. The mixture distribution of these taste vectors captures

market heterogeneity. The mixed logit can flexibly represent any choice behaviors consistent with

random utility maximization [21] while retaining the interpretability of MNL, which quantifies the

sensitivity of features to utility.

Early literature has observed that the mixed logit model, with linear utility, resembles a one-

hidden-layer neural network [19]. In this study, we revisit the effectiveness of representing the

mixed logit using a one-hidden-layer neural net. Specifically, we study NN-mixed logit, which

utilizes one hidden layer comprising N neurons to approximate the mixture distribution as an

equally weighted distribution on N consumer types. Each neuron corresponding to one consumer

type is linked with a taste vector representing its taste preferences. These neurons compute the

MNL choice probability using Softmax activations. The output layer calculates the average of these

MNL probabilities, serving as the predicted choice probability from the equally weighted mixture

distribution.

From the modeling perspective, it is essential to address two fundamental statistical problems of

the neural network: expressiveness and generalization. The expressiveness depicted as the approx-

imation error measures how well NN-mixed logit can approximate the mixed logit model. Given
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the Universal Approximation Theorem [11], the approximation error would decrease as the num-

ber of parameters N increases. While overparameterization benefits expressiveness, it may risk the

generalization capability that assesses how well NN-mixed logit generalizes to unseen data given

a finite number of training data.

From the learning perspective, we are interested in optimizing the estimation of the taste vec-

tors, which presents significant challenges in the existing literature. Typically estimation methods,

such as maximum likelihood or least squares, result in a non-convex optimization problem, even

when the number of consumer types is fixed. As a result, gradient descent [10] and expectation-

maximization [14] lack global optimality guarantees. Recent work [13] made promising advances

by reformulating the problem as a constrained convex optimization over the class of choice prob-

ability vectors that a mixed logit can represent. This enables the use of the globally convergent

Frank-Wolfe algorithm. Nonetheless, to guarantee such theoretical convergence properties, the

algorithm is required to solve a non-convex subproblem at each iteration that can be computa-

tionally challenging. In our work, the taste vectors contained in the neural network are learned

using a noisy gradient descent algorithm. We hope to address two optimization questions: whether

the algorithm can converge to the global optimal mixture distribution, and if so, how fast it can

converge.

We summarize our main contributions as follows.

(1) From a statistical standpoint, the neural network model offers universal expressiveness with-

out suffering the curse of dimensionality while also demonstrating strong generalization to

unseen data. Specifically, we show that any mixture distribution can be approximated by an

NN-mixed logit with N consumer types, with an O(1/
√
N) error in the predicted choice

probability vector, measured by the expected 2-norm. The constant is universal, indicating

that the model does not suffer from the curse of dimensionality. Moreover, we prove that the

Rademacher complexity of the mixture model class is independent of the width of the hid-

den layer, provided that the expected norm of the taste vector or the entropy of the mixture

distribution is appropriately controlled. Thereby, overparameterization does not undermine

generalization on unseen data.

(2) From an optimization standpoint, using a novel discrete-time mean-field analysis, we demon-

strate that the noisy gradient descent algorithm converges exponentially fast to the global

optimal solution of the norm- and entropy-regularized estimation problem. This convergence

is subject to three error terms: the first proportional to the polynomial of the step size, resulting
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from the randomness in the gradient oracle, the second due to the entropy regularization, and

the third inversely proportional to the number of consumer types, resulting from the approx-

imation error of finitely many consumer types. We bound the gap between the infinite-width

model and the finite-width model, which decays inverse proportionally to the width of the

hidden layer.

(3) We empirically demonstrate our approach’s superior in-sample and out-of-sample perfor-

mance compared to other benchmarks using synthetic and real datasets. The numerical results

also validate our theoretical findings, in terms of expressiveness, width-independent general-

ization capability, and convergence behavior.

To conclude, we revisited the neural network representation for the mixed logit choice model

in this paper. We demonstrated that it can approximate any mixture distribution without suffering

from the curse of dimensionality or overfitting. Moreover, we showed that it can be learned by

noisy gradient descent with guaranteed global convergence. To the best of our knowledge, it is

the first work that theoretically guarantees to recover the global optimal parameters without using

the panel data structure. These findings underscore the potential of even shallow neural network

representations, coupled with efficient training algorithms, to effectively learn complex choice

models with statistical and optimality guarantees.
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