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We consider price competition among multiple sellers over a selling horizon of T periods. In each period,

sellers simultaneously offer their prices and subsequently observe their respective demand that is unob-

servable to competitors. The realized demand of each seller depends on the prices of all sellers following a

private unknown linear model. We propose a least-squares estimation then gradient optimization (LEGO)

policy, which does not require sellers to communicate demand information or coordinate price experiments

throughout the selling horizon. We show that our policy, when employed by all sellers, leads at a fast con-

vergence rate O(1/
√
T ) to the Nash equilibrium prices that sellers would reach if they were fully informed.

Meanwhile, each seller achieves an optimal order-of-
√
T regret relative to a dynamic benchmark policy. Our

analysis further shows that the unknown individual price sensitivity contributes to the major difficulty of

dynamic pricing in sequential competition and forces regret to the order of
√
T in the worst case. If each

seller knows their individual price sensitivity coefficient, then a gradient optimization policy can achieve an

optimal order-of- 1
T

convergence rate to Nash equilibrium as well as an optimal order-of-logT regret.

Key words : sequential competition, dynamic pricing, demand learning, Nash equilibrium, regret analysis.

1. Introduction

Competition permeates various sectors, spanning from food retail to advanced manufacturing. In

the bubble tea business, companies such as Fong Fu Tea, Gong Cha, and Möge Tee compete

for market share (Qin 2023). The global fast-fashion industry, which was estimated worth $1.7

trillion in 2023, also witnesses intense competition among famous brands such as Zara, H&M,

and Uniqlo (McKinsey 2023). Meanwhile, emerging and disruptive entrants like Shein and TikTok

Shop have gained leverage over their more established counterparts by offering less expensive

products. In the personal computer (PC) market, notable manufacturers include Dell, HP, and

Apple, whose price competition recently expanded to mini desktop PCs (Gershgorn 2024). Likewise,

the electronic vehicles (EV) sector, comprising giant automotive manufacturers such as Tesla,

BYD, and Volkswagen, showcases substantial competition within a global market worth $57 trillion

(Scott et al. 2023). Recently, new players including Huawei and Xiaomi launched new EV models,

intensifying the “price wars” in China, the world’s largest EV market (Ren 2023). These examples

demonstrate that competition is a ubiquitous force shaping market dynamics across diverse sectors.

Meanwhile, there is an increasing trend for companies to adopt data-driven tools to determine

prices in response to the evolving demand. Through sophisticated automated pricing algorithms
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or algorithmic recommendations, prices are sometimes adjusted on a daily or hourly basis. This

fast-moving nature of pricing strategies, once primarily associated with airlines and hotels, has now

permeated various sectors of commerce, including mobility service, sporting event tickets, and even

fast-food restaurants. For instance, Uber has implemented a surge-pricing strategy, considering var-

ious factors such as the availability of drivers, geographical locations, and even the customer’s phone

battery level (which correlates with their patience) (Martin 2019). Wendy’s recently announced

plans to implement “Uber-like surge pricing” on its menu, leading to price fluctuations of items

like the Frosty throughout the day (Valinsky 2024). The ascendancy of algorithms over human

decision-makers in setting prices reflects a paradigm shift in contemporary commerce.

While the Internet has transformed the dissemination of price information, enhancing trans-

parency and enabling real-time monitoring and rapid responses, there remains a notable gap in

understanding how to incorporate competition into data-driven pricing algorithms within literature

and business practices. Despite some companies strategically considering competitors, many pric-

ing algorithms do not model competition at a day-to-day operational level. For example, Phillips

(2021) remarks that “there does not appear to be a single pricing and revenue optimization sys-

tem that explicitly attempts to forecast competitive response using game theory as part of its

ongoing operation”. Even in scenarios where competitors are acknowledged, individual sellers may

still choose to employ a monopolistic model, hoping that individual demand data may somehow

implicitly incorporate competition effects. Given the widespread use of monopoly models, it is

unsurprising that much of the operations literature neglects competitors.

Indeed, several challenges are associated with designing a pricing algorithm that incorporates

competition. Firstly, competitor information is often incomplete: it is typically impractical to imple-

ment real-time monitoring of competitor demand. Secondly, it is hard to impose centralized price

experiments on sellers when estimating the demand model. For example, it is often impractical to

request competitors to fix their prices to allow a certain seller to test their price sensitivity via

individual price experiments. Thirdly, sellers lack access to competitor strategies before the com-

petition begins, making it challenging to formulate optimal responses to the full contingent prices

of competitors or ascertain how competitors would react to different strategies. Addressing the

aforementioned challenges and designing a pricing algorithm that effectively utilizes (incomplete)

competitor information constitutes the primary focus of this work.

1.1. Overview of Model

We consider N sellers, each selling a single type of product with unlimited inventories over a selling

horizon of T periods. At the beginning of each period, each seller simultaneously posts their price

and subsequently observes their private demand, which depends on the prices of all sellers following
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a noisy and unknown linear model. Sellers can observe the historical prices of competitors but

do not know the demand of competitors. The demand of different sellers within a period can be

correlated. When examining pricing policies, we focus on determining whether the revenue of each

seller is maximized and whether seller prices converge to the Nash equilibrium that sellers would

have reached if fully informed. Our performance measure for a seller is the cumulative regret over

the selling horizon, defined as the worst-case difference in the seller’s average revenue between our

proposed policy (without knowledge of model parameters or competitor demand information) and

an optimal policy in hindsight (where the competitor prices are fixed for all periods and the seller

retrospectively optimizes individual prices for each period with access to model parameters).

Our work focuses on a linear demand model, which is robust against model misspecification in

appropriate contexts of dynamic pricing with demand learning. For example, Besbes and Zeevi

(2015) demonstrated that learning based on a simple parametric linear model, even if it deviates

considerably from the true underlying model, does not necessarily result in significant revenue

loss or deviation from the true optimal price, provided that the price adjustments toward the

perceived “optimal” price align with the direction of the gradient of the true underlying revenue

function. Indeed, the revenue function under linear demand is quadratic. If (each segment of) the

true underlying revenue function can be approximated by a quadratic function, we expect that the

fitted linear demand model can provide gradient feedback aligning with the true revenue gradient.

1.2. Key Results and Contribution

A novel decentralized phased pricing policy. We propose a decentralized online learning

algorithm, entitled “least-squares estimation then gradient optimization (LEGO)” policy, for the

dynamic pricing problem in a sequential competition under unknown linear demand; see Algorithm

1 and illustration in Figure 1. In our policy, each seller partitions the entire selling horizon into two

phases: an exploration phase focused on estimating private parameters, and a gradient optimization

phase focused on adjusting prices based on estimated gradient feedback. Sellers are allowed to have

private exploration phase lengths. In contrast to batched bandit algorithms (such as explore-then-

commit algorithms) derived from single-agent stationary settings, which ultimately commit to a

fixed action (price) until the end of the problem horizon after some exploration, our algorithm

allows sellers to continue adjusting prices after exploration (price experiments). This is particularly

relevant within the competition context as it addresses the need for “optimal” decisions that

dynamically adapt prices in response to evolving competitor prices. (For example, after one seller

adjusts their price, other sellers may subsequently adjust prices to improve revenue, which forms

a loop of response; as a result, an eventually fixed price can hardly guarantee maximal revenues.)
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Optimal dynamic regret and fast convergence to equilibrium. We demonstrate that, if

each seller privately employs an order-of-
√
T policy (that is, their LEGO policy’s exploration phase

length is of the same order as
√
T ), each seller achieves a worst-case regret of O

(
N
√
T (N +logT )

)
(Theorem 1). Furthermore, the joint prices of sellers at the end of the selling horizon will converge to

Nash equilibrium prices at a rate of O(N2
√
T
). The joint prices are also a vector of ϵ-Nash equilibrium

prices with probability 1− O
(

N2

ϵ
√
T

)
for ϵ > 0. Our worst-case regret matches the problem lower

bound regarding the order of problem horizon length T ; see Remark 1 for a detailed discussion.

We investigate how different obstacles (unknown model parameters, uncertain competitor future

prices, unobservable competitor demand, etc.) contribute to the difficulty of dynamic pricing in

sequential competition and which obstacle forces the order-of-
√
T regret. We show that if each

seller knows their individual price sensitivity coefficient, a gradient optimization policy achieves an

improved regret of O(N logT ) while leading sellers to Nash equilibrium at a rate of O(N
T
) (Theorem

2). This indicates that the unknown individual price sensitivity contributes to the major difficulty

of dynamic pricing in sequential competition and forces an order-of-
√
T regret in the worst case.

Novel analysis techniques for sequential competition. We propose a “Multi-Agent GradI-

ent desCent” (MAGIC) framework for analyzing sequential competition problems. Our framework

leverages the key observation that the played actions of agents (i.e., estimators in the explo-

ration phase or offered prices in the gradient optimization phase) constitute an embedded (time-

inhomogeneous) Markovian process. We directly investigate the variation of played actions, dis-

tinguishing from the classical convex analysis, which typically centers on the variation of cost

function values at played actions. Specifically, we respectively examine (i) how individual estima-

tors progress closer (or further away) to the true parameters after each exploration period and (ii)

how the offered prices of sellers progress toward Nash equilibrium in each gradient optimization

period after all sellers complete exploration. We establish recursive inequalities describing how the

estimators and prices vary each time a new period of observation is collected. Using these recursive

inequalities, we can quantify the estimation error after the exploration phase and the deviation of

the limiting prices of sellers from the Nash equilibrium. It is noteworthy that our techniques can

be applied to analyzing other single- or multi-agent settings.

We assume that sellers apply the same class of pricing policies due to our goal of exploiting

the problem’s lower bounds, i.e., to balance the price experiments and optimization to achieve the

minimal worst-case regret. By demonstrating the optimal order-of-
√
T regret in the general case

and the optimal order-of-logT regret in the case of known price sensitivity, we convey the main

message of this paper: unknown individual price sensitivity contributes to the major difficulty of

dynamic pricing in sequential competition, forcing regret to at least the order of
√
T . From the
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perspective of individual sellers, our policy belongs to the popular class of phased pricing policies.

Phased exploration and exploitation algorithms are widely used in both practice and theory of

revenue management (Besbes and Zeevi 2012, Sauré and Zeevi 2013, Chen et al. 2021, Li et al. 2022,

Chen and Shi 2023). Our policy does not require sellers to communicate throughout the selling

horizon, making it relatively easy to implement. If sellers apply various classes of pricing policies,

the system becomes challenging to track. As one of the earliest attempts to explore optimal pricing

policies in sequential competition, we leave this investigation to future research.

1.3. Related Literature

Price competition under known demand. Cournot (1838) and Bertrand (1883) introduced

the classic static models for competition in production output and market price, respectively. A

static price competition entails a single decision epoch involving multiple sellers without collabo-

ration. Here we summarize recent advancements in the operations literature. Gallego et al. (2006)

examined static price competition under an attraction demand model, including the significant case

of the multinomial logit (MNL) model. Their results demonstrate that, under suitable assumptions,

a unique pure-strategy Nash equilibrium exists and is globally stable. Aksoy-Pierson et al. (2013)

and Gallego and Wang (2014) respectively established conditions for the existence and unique-

ness of Nash equilibrium in static price competition under mixed MNL and nested logit demand.

Alptekinoğlu and Semple (2016) delved into an exponomial choice model and explored strategies

to guide sellers toward Nash equilibrium. Federgruen and Hu (2015, 2021) examined joint price

and assortment competition under linear demand and established conditions for the existence and

global robust stability of Nash equilibrium. Besbes and Sauré (2016) investigated joint price and

assortment competition under MNL demand, analyzing the existence of Nash equilibrium and its

Pareto dominance. Wang et al. (2022) introduced an integrated framework to study joint deci-

sions of price, product quality, and service duration in competitive environments. Morrow and

Skerlos (2011) proposed numerical methods based on fixed-point equations to efficiently compute

Bertrand-Nash equilibrium prices under mixed-logit demand. Allon and Gurvich (2010) proposed

a framework that merged heavy-traffic analysis with Nash equilibrium analysis. Dynamic price

competition across multiple decision epochs has also gained considerable attention. For instance,

Gallego and Hu (2014), Federgruen and Hu (2016), Chen and Chen (2021) examined competition

models with sellers possessing full information.

Sequential price competition with demand learning. A growing body of operations liter-

ature delves into the study of demand learning in competitive environments. Kirman (1975, 1983)

conducted the earliest works in this area, examining a symmetric two-seller repeated price competi-

tion under unknown linear demand. Cooper et al. (2015) expanded upon findings of Kirman (1975)
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to include two asymmetric sellers and noisy linear demand. In their model, each seller estimates

demand by neglecting the presence of competitors from both the model and data (i.e., learning

as if they were a monopolist). Such a “decoupling” learning process led sellers to Nash equilib-

rium under the condition that sellers knew individual price sensitivity coefficients. However, price

sensitivity coefficients are typically unknown in practice; particularly, our Section 5 demonstrates

that unknown individual price sensitivity contributes to the major difficulty of dynamic pricing in

sequential competition. Convergence rate, policy regret, and applicability to an arbitrary number

of sellers are not addressed in Cooper et al. (2015). In contrast, we propose a dynamic pricing policy

that achieves a fast convergence rate and optimal regret relative to a dynamic benchmark policy

in our sequential price competition with an arbitrary number of sellers. Kachani et al. (2007) also

considered competition under linear demand and proposed a centralized joint pricing and learning

algorithm, where sellers need to share demand information to accomplish the estimation step. Their

policy has no theoretical guarantees for limiting prices or associated regret. Yang et al. (2024)

introduced a centralized demand learning algorithm designed to lead multiple sellers to equilibrium

under unknown demand. Their algorithm involves a virtual central planner coordinating the price

experiments of all sellers. Within each stage, comprised of multiple periods, the central planer

assigns a fixed reference price vector to all sellers, who sequentially offer their reference price or a

higher experimental price; sellers are not allowed to offer experimental prices simultaneously. At

the end of each stage, the central planner determines a Nash equilibrium price vector based on

the current estimates, which are assigned to sellers as reference prices in the subsequent stage. In

general, it is considerably challenging to enforce centralized price experiments across all sellers and

request them to share sale information for determining Nash equilibrium prices after each stage.

Other literature in this area includes Goyal et al. (2023) and Li and Mehrotra (2024), which ana-

lyzed price competition under MNL demand with known price sensitivity coefficients. They estab-

lished a weaker order-of-T
2
3 regret bound. In contrast, our Section 4 proves an optimal order-of-

√
T

regret under analogous settings for linear demand competition but with unknown price sensitivity

coefficients. Golrezaei et al. (2020), Guo et al. (2023) investigated two-seller price competition with

reference effects under noise-free linear and MNL demand, respectively, which demonstrated that

adjusting prices using revenue gradient leads sellers to equilibrium. However, the gradient of rev-

enue function is typically unavailable when model parameters are unknown. Additionally, sellers

do not directly observe noise-free demand at specific prices in practice; instead, they only observe

a random variable whose mean value is the average demand. (Li and Mehrotra (2024) show that

noisy observation can significantly slow down convergence in a competition.) Birge et al. (2024)

examined a platform interacting with multiple sellers and studied how to improve the platform

revenue by revealing information and providing price-setting incentives to sellers.
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Algorithmic collusion in competition. Our work centers on exploring whether an appropri-

ate revenue-maximizing policy can lead sellers to Nash equilibrium prices. A distinct and intriguing

direction is to investigate whether particular learning policies steer sellers toward collusion or coop-

eration prices instead of equilibrium prices; e.g., a misapplied policy that overlooks the presence

of competitors may inadvertently encourage collusion among sellers. Here we summarize recent

findings in the literature. Through simulation studies, Tesauro and Kephart (2002), Waltman and

Kaymak (2008), Klein (2018), Calvano et al. (2020), Klein (2021), Hettich (2021), Asker et al.

(2022), Eschenbaum et al. (2022), Abada and Lambin (2023), Epivent and Lambin (2024) demon-

strated that certain algorithms can lead sellers to collusion, although without providing theoretical

guarantees. Hansen et al. (2021) studied a duopoly where both players neglected the competitor.

They used simulation to demonstrate the correlation between the limiting prices and the demand

noise. They also provided theoretical results for a particular prisoner’s dilemma-type model under

noiseless demand. Cartea et al. (2022a,b,c) studied algorithmic collusion in a market-making game,

a repeated prisoner’s dilemma game, and a repeated potential game with bounded rationality,

respectively. Banchio and Mantegazza (2023) revealed that, driven by “endogenous statistical link-

ages” in estimation, certain algorithms periodically synchronize on collusive actions. Cont and

Xiong (2024) investigated algorithmic collusion in a dealer market, wherein a decentralized learning

algorithm is used to model how market makers adapt quotes.

Cooper et al. (2015) studied collusion in a two-seller price competition under linear demand. In

their first collusion case (their Section 4.2), they showed that if sellers are symmetric and know

their intercept parameter (i.e., parameter αi in our model (1)), they can converge to cooperative

prices. However, this cooperation result hinges on seller symmetry. It is also hard for sellers to know

the demand intercept parameter a priori. In their second collusion case (their Section 4.3), they

showed that when all parameters are unknown, if each seller “pretends” they were a monopolist and

uses a myopic pricing policy, then the limiting prices of sellers will depend on initial conditions. The

limiting revenues can be Pareto superior, Pareto inferior, or unilateral superior to Nash equilibrium.

However, Meylahn and V. den Boer (2022) remarked that “it is questionable whether this algorithm

(of Cooper et al. 2015) is implemented in practice”. den Boer and Zwart (2014) proved that

the myopic pricing policy used by Cooper et al. (2015) fails to converge to optimal prices in a

monopolistic setting; thus, it is not likely to be used by rational sellers who operate as monopolists.

Additional literature that investigates algorithmic collusion in a duopoly setting includes Aouad

and den Boer (2021), Loots and den Boer (2021), den Boer et al. (2022), Meylahn and V. den

Boer (2022), den Boer (2023), Meylahn (2023a,b). From the standpoint of regulators with concerns

regarding algorithmic collusion, our study establishes that, through proper oversight of information

exchange among competitors, the realization of a Nash equilibrium remains an achievable objective.
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Non-parametric online learning of multiple agents. There are also intersections between

our work and the machine learning literature concerning online learning in games; for instance,

Bravo et al. (2018), Mertikopoulos and Zhou (2019), Golowich et al. (2020), Lin et al. (2020),

Hsieh et al. (2021), Lin et al. (2021), Jordan et al. (2023). These studies investigate a common

non-parametric modeling framework involving N agents, with each agent aiming to maximize

individual cumulative payoff over a finite problem horizon. Typically, it is assumed that agents

cannot observe the actions or payoffs of competitors. However, this assumption does not fully reflect

the reality of our price competition, where competitor prices are often observable. Particularly,

this paper demonstrates that by leveraging public price information, sellers can achieve optimal

regret and fast convergence. The literature on multi-agent online learning conventionally evaluates

learning policies against a static benchmark policy. In contrast, we employ a stronger dynamic

benchmark policy; Li and Mehrotra (2024) show that, in the context of sequential competition, a

static optimal policy can result in linear regret relative to a dynamic optimal policy. We illustrate

that our learning policy achieves optimal regret relative to a dynamic benchmark policy in our

sequential price competition. While the literature on multi-agent online learning typically assumes

competition properties such as monotonicity or variational stability, our work does not make such

assumptions. Li and Mehrotra (2024) study a general sequential competition model and show that

a passive learning policy can lead learners to Nash equilibrium with order-of-T
2
3 regret relative to

a dynamic benchmark policy, provided that the learner’s data is informative regarding their best

response to competitor actions. However, their informative feedback condition does not hold for our

sequential price competition problem with unknown parameters. Furthermore, our work establishes

stronger optimal regret and faster convergence for our proposed dynamic pricing policies.

1.4. Organization and Notation

The remainder of this paper is organized as follows. Section 2 introduces our sequential price

competition model under linear demand. Section 3 proposes the decentralized phased LEGO policy

for pricing in the sequential competition. Section 4 demonstrates that the LEGO policy can achieve

fast convergence to Nash equilibrium as well as optimal regret relative to a dynamic benchmark

policy. Section 5 analyzes the origin of regret and shows that unknown individual price sensitivity

contributes to the major difficulty of dynamic pricing in sequential competition. Section 6 conducts

comparative numerical experiments with benchmark results. Section 7 presents concluding remarks.

Appendix A summarizes major notation. ∥ ·∥1, ∥ ·∥2, and ∥ ·∥∞ denote the Manhattan norm, the

Euclidean norm, and the maximum norm. Hardy’s notation “≍” stands for that function f ≍ g is

of the same order as g; i.e., f is asymptotically bounded by g both above and below (with constant

factors). The notation Õ(·) omits any logarithmic factors in O(·). A function f(x) : Rn 7→ R is
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a-strongly convex for some a> 0 if f(x′)⩾ f(x)+∇f(x)⊤(x′−x)+ a
2
· ∥x′−x∥22 for all x,x′ in the

domain. f(x) is a-smooth for a> 0 if f(x′)⩽ f(x)+∇f(x)⊤(x′ −x)+ a
2
· ∥x′ −x∥22 for all x,x′.

2. Model and Problem Formulation

2.1. Sequential Price Competition under Linear Demand

We consider N sellers, each selling a single type of product with unlimited inventories and aim-

ing to maximize individual cumulative revenue over a selling horizon of T periods. We use t ∈
T := {1,2, . . . , T} to index time periods and i ∈ N := {1,2, . . . ,N} to index sellers. At the begin-

ning of each period, each seller simultaneously selects their price. For seller i, p
(t)
i ∈ Pi := [p

i
, p̄i]

denotes the price that seller i offers in period t, where price bounds p
i
, p̄i ∈ [0,+∞). Let p

(t)
−i :=

(p
(t)
j )j∈N\{i} denote the competitor prices in period t, p(t) := (p

(t)
j )j∈N denote the joint prices, and

P :=
∏

i∈N [p
i
, p̄i] denote the support of joint prices. The demand y

(t)
i of seller i in period t depends

on the offered prices of all sellers following a linear model:

y
(t)
i = αi −βip

(t)
i +γγγ⊤

i p
(t)
−i + ε

(t)
i = αi −βip

(t)
i +

∑
j∈N\{i}

γijp
(t)
j + ε

(t)
i , t∈ T . (1)

Here {αi, βi,γγγi} are unknown model parameters and {ε(t)i }t∈T are demand noises following inde-

pendent and identical distributions. Particularly, E[ε(t)i ] = 0 and E[(ε(t)i )2]⩽U0. ε
(t)
i and ε

(t)
j can be

correlated with i ̸= j. Parameter vector γγγi ∈ RN−1 measures how seller i’s demand is affected by

competitor prices. The parameter space of seller i is defined by

αi ⩽ αi ⩽ ᾱi, β
i
⩽ βi ⩽ β̄i, ∥γγγi∥1 ⩽ γ̄i, (2)

where αi, ᾱi, βi
, β̄i, γ̄i ∈ (0,+∞) are known constants. Let y(t) := (y

(t)
i )i∈N denote the joint demand

vector and εεε(t) := (ε
(t)
i )i∈N denote the joint noise vector. We also use superscript-less notations p,

p−i, y, and εεε to represent generic vectors of joint prices, competitor prices, joint demand, and joint

noise, respectively. We assume that the parameter space is appropriate so that the average demand

E[y(t)
i ] is non-negative among all values of {αi, βi,γγγi,p

(t)} (i ∈ N , t ∈ T ); a similar assumption is

found in Birge et al. (2024).

Seller i∈N aims to maximize the individual (cumulative) revenue, which can be expressed as

Ri(T ) :=E
T∑

t=1

[p
(t)
i y

(t)
i ] =E

T∑
t=1

[
p
(t)
i · (αi −βip

(t)
i +γγγ⊤

i p
(t)
−i)

]
.

Each seller’s offered prices are public but their demand history is private; that is, when seller i∈N
decides price p

(t)
i in period t∈ T , they can utilize the information of joint price history {p(u)}u<t and

individual demand history {y(u)
i }u<t. We let F (t)

i := σ((p(u), y
(u)
i )1⩽u⩽t) = σ((p(u), ε

(u)
i )1⩽u⩽t), t ∈ T

be the filtration associated with the joint pricing and individual demand process up to period t, and

F (0)
i := ∅. Let F (t) := σ((p(u),y(u))1⩽u⩽t) = σ((p(u),εεε(u))1⩽u⩽t), t ∈ T be the filtration associated

with the joint pricing and demand process up to period t, and F (0) :=∅. Then F (t)
i ⊆F (t).
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2.2. Policy Performance Measures

Maximizing a seller’s revenue can be reframed as minimizing their regret. Each seller competes

with a dynamic optimal sequence of prices in hindsight while assuming that the other sellers would

not have responded differently if this sequence of prices had been offered. Under such a dynamic

benchmark, the objective of each learner is to minimize the following regret metric in hindsight:

Regi(T ) : =E
T∑

t=1

sup
p
′(t)
i ∈Pi

E[p′(t)i y
′(t)
i |p′(t)i ,p

(t)
−i]−Ri(T )

=E
T∑

t=1

[
sup

p
′(t)
i ∈Pi

p
′(t)
i (αi −βip

′(t)
i +γγγ⊤

i p
(t)
−i)− p

(t)
i (αi −βip

(t)
i +γγγ⊤

i p
(t)
−i)

]
. (3)

Here E[p′(t)i y
′(t)
i |p′(t)i ,p

(t)
−i] denotes the “counterfactual” revenue for seller i if seller i had offered

price p
′(t)
i in period t. We note that in a sequential competition framework, a dynamic benchmark

policy is stronger than a static benchmark policy: Li and Mehrotra (2024) demonstrates that the

static optimal policy can result in linear regret relative to the dynamic optimal policy. We do not

assume that sellers possess a prior model of their competitors. As a result, a seller cannot define a

priori optimal strategies or determine how competitors would have reacted to different strategies.

Instead, as the competition progresses, a seller can retrospectively assess whether they could have

performed better. Without a strategic representation of competitors, when we define the dynamic

benchmark policy, competitors were assumed to be unresponsive if the posterior optimal sequence

of prices had been offered.

In addition to individual revenue maximization (already reframed as regret minimization), we

also investigate whether sellers converge to equilibrium if each of them employs a regret-minimizing

policy. Our equilibrium prices are defined based on the static (one-shot) price competition. Consider

a single period (T = 1), wherein superscript t is omitted. The Nash equilibrium prices p∗ = (p∗i )i∈N ∈
P are defined as a price vector under which unilateral deviation is not profitable for any seller.

Specifically, p∗ is a solution to the following balance equations:

p∗i = argmax
pi∈Pi

E[piyi] = argmax
pi∈Pi

pi · (αi −βipi +γγγ⊤
i p

∗
−i), i∈N , (4)

where p∗
−i := (p∗j )j∈N\{i}. We note that, given any p∗

−i, the maximization problem in (4) has a

unique solution p∗i because βi > 0. Lemma 1 shows that there exists a unique Nash equilibrium p∗

under appropriate assumptions.

We further define ϵ-Nash equilibrium as a joint price vector pϵ = (pϵi)i∈N ∈P that submits to:

pϵi · (αi −βip
ϵ
i +γγγ⊤

i p
ϵ
−i)⩾ pi · (αi −βipi +γγγ⊤

i p
ϵ
−i)− ϵ, pi ∈Pi, i∈N . (5)

Here ϵ∈R+ and pϵ
−i := (pϵ

j)j∈N\{i}. (5) represents that, when the joint prices of sellers are ϵ-Nash

equilibrium, unilateral deviation of any seller cannot increase individual revenue by more than ϵ.
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3. Decentralized Phased LEGO Pricing Policy

3.1. Challenges and Overview

This section outlines a decentralized online learning algorithm for dynamic pricing in a sequential

price competition under linear demand. We note that algorithms in the monopolist special case

(i.e., N = 1) are provided in Broder and Rusmevichientong (2012), Keskin and Zeevi (2014). For

the sequential price competition problem with multiple sellers, there are several primary challenges.

(i) Competitor demand is not observable. As a result, seller i∈N is not able to estimate competi-

tor parameters {αj, βj,γγγj}j∈N\{i}. It is hard to predict equilibrium prices or how competitors

respond to seller i’s offered prices.

(ii) Lack of unbiased gradient feedback. While applying gradient-based methods is feasible for

some competition models, it is important to note that the sellers in our problem lack unbiased

gradient feedback. Specifically, for seller i, the gradient of their average revenue in period t

with respect to individual price p
(t)
i is as follows, which involves unknown parameters:

∂E[p(t)i y
(t)
i |p(t)i ,p

(t)
−i]

∂p
(t)
i

=
∂
[
p
(t)
i · (αi −βip

(t)
i +γγγ⊤

i p
(t)
−i)

]
∂p

(t)
i

= αi − 2βip
(t)
i +γγγ⊤

i p
(t)
−i. (6)

(iii) Demand curves are not “well-separated”. Due to the coexistence of unknown demand inter-

cept αi and unknown price coefficients {βi,γγγi}, the prices of seller i is “uninformative”.

According to Broder and Rusmevichientong (2012) that focus on monopolistic settings, in the

presence of uninformative prices, a seller cannot effectively learn from demand responses at all

price levels. Consequently, some forced price exploration is needed and the worst-case regret

significantly escalates to the order of
√
T , in contrast to the order-of-logT regret exhibited

by well-separated cases. (One example of well-separated cases is when αi is known.) In our

sequential competition settings, we anticipate a similar magnitude of regret escalation.

(iv) Conflicts between individual price experiments and competitor revenue maximization. One

last, and perhaps the most significant, challenge is the conflict of price experiments among

sellers: a seller’s pursuit of revenue-maximizing prices can hinder the parameter estimation

efforts of other sellers. For example, when a seller i∈N tries to maximize individual revenue

using strategies such as greedy pricing, seller i is essentially trying to offer a best-response

price to competitor prices. As a result, seller i’s price p
(t)
i becomes correlated with competitor

prices p
(t)
−i. In our sequential price competition model under linear demand, seller i’s best-

response price p
′(t)
i =

αi+γγγ⊤
i p

(t)
−i

2βi
, which maximizes seller i’s revenue in period t conditional on

competitor prices p
(t)
−i, is linear in p

(t)
−i. As a result, when seller i tries to maximize individual

revenue, their offered price p
(t)
i should approach a linear combination of competitor prices

p
(t)
−i and the constant intercept. This causes the notorious “collinearity” issue among variables

{p(t)i }i∈N ∪{1} for the parameter estimation task of seller j ∈N\{i}.
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We weave the online learning techniques from monopolistic pricing settings into our sequential

price competition problem. In our pricing policy, each seller partitions the entire selling horizon

into two phases: an exploration phase and a gradient optimization phase. Note that we allow sellers

to have private exploration phase lengths; that is, seller i’s exploration phase may overlap with the

gradient optimization phase of seller j ̸= i. Indeed, in practice, it is challenging for all sellers to

coordinate price experiments and reach a consensus to conclude the exploration phase simultane-

ously. During the exploration phase, the seller conducts price experiments using randomized prices.

By the end of the exploration phase, the seller acquires an estimator of individual parameters

involved in the gradient (6). We establish that this estimator is consistent, leveraging a least square

estimation model and appropriate assumptions. Subsequently, during the gradient optimization

phase, the seller adjusts prices based on the estimated gradient; that is, using (6) with parameters

estimated from the exploration phase. Figure 1 illustrates our learning policy.

seller 1

seller 2

seller 3

seller 4

start of selling horizon

exploration phase

private separation period

gradient optimization phase

end of selling horizon

common exploration periods

Figure 1 Illustration of the decentralized phased LEGO policy (Algorithm 1) with N = 4 sellers in sequential price

competition under linear demand. LEGO means “least-squares estimation then gradient optimization”.

For each seller i ∈ {1,2,3,4}, in their exploration phase (curved line) of a private length τi, they offer

randomized prices following a private distribution Di. Seller i’s price experiment ends in period t= τi

(circle). Subsequently, in their gradient optimization phase (dashed line), seller i adjusts prices using

an online gradient ascent approach till the end of the selling horizon. There is a duration of common

exploration periods (dotted box), during which all sellers offer randomized prices as part of the pricing

experiment.

3.2. Description of the Decentralized Phased LEGO Policy

Inputs and initialization. Given the problem horizon length T , we have two sets of inputs for

each seller i ∈ N before implementing the learning algorithm: (i) a distribution Di supported on

Pi that seller i uses to sample their exploration prices {p(t)i }t=1,2,...,τi , where τi is seller i’s private

length of exploration phase; and (ii) the sequence of step sizes {η(t)
i }t=τi,τi+1,...,T−1 that seller i

applies in the gradient optimization phase.
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Exploration phase. In each period t ∈ {1,2, . . . , τi} of exploration phase, seller i ∈ N samples

and offers an exploration price p
(t)
i following distribution Di. At the end of the separation period

τi, seller i estimates individual parameters (αi, βi,γγγi) based on information of public prices and

individual demand. Estimators are obtained by minimizing the squared loss of demand prediction:

min
αi⩽α̂i⩽ᾱi,

β
i
⩽β̂i⩽β̄i,

∥γ̂γγi∥1⩽γ̄i

τi∑
t=1

(α̂i − β̂ip
(t)
i + γ̂γγ⊤

i p
(t)
−i − y

(t)
i )2. (7)

For tractability, we assume that seller i practically solves the least square problem (7) using a

stochastic gradient descent (SGD) approach. Specifically, seller i computes the following iterations

at the end of separation period τi:

α̂
(t+1)
i := Π[αi,ᾱi]

(
α̂

(t)
i −χ

(t)
i (α̂

(t)
i − β̂

(t)
i p

(t)
i + γ̂γγ(t)⊤

i p
(t)
−i − y

(t)
i )

)
,

β̂
(t+1)
i := Π[β

i
,β̄i]

(
β̂
(t)
i +χ

(t)
i (α̂

(t)
i − β̂

(t)
i p

(t)
i + γ̂γγ(t)⊤

i p
(t)
−i − y

(t)
i )p

(t)
i

)
,

γ̂γγ(t+1)
i := Π{γγγ∈RN−1 | ∥γγγ∥1⩽γ̄i}

(
γ̂γγ(t)
i −χ

(t)
i (α̂

(t)
i − β̂

(t)
i p

(t)
i + γ̂γγ(t)⊤

i p
(t)
−i − y

(t)
i )p

(t)
−i

)
, (8)

where (α̂
(1)
i , β̂

(1)
i , γ̂γγ(1)

i ) is an arbitrary element in [αi, ᾱi] × [β
i
, β̄i] × {γγγ ∈ RN−1 | ∥γγγ∥1 ⩽ γ̄i} and

{χ(t)
i }t=1,2,...,τi ⊆R+ are step sizes in gradient descent computation. Π is a projection function:

ΠS(x) := argmin
x′∈S

∥x′ −x∥2,

for x∈Rn and closed set S ⊆Rn. Seller i’s estimator (α̂i, β̂i, γ̂γγi) is obtained from the last iteration:

(α̂i, β̂i, γ̂γγi) = (α̂
(τi+1)
i , β̂

(τi+1)
i , γ̂γγ(τi+1)

i ). (9)

We note that the computation (8)–(9) is implemented by seller i only at the end of separation

period τi and does not affect seller i’s prices in the exploration phase (from period 1 to period τi).

We allow the exploration price distributions {Di}i∈N to be correlated; i.e., the exploration price

p
(t)
i can be correlated with p

(t)
j with j ̸= i and t⩽min{τi, τj}. We assume that each seller implements

a sufficient price experiment in the exploration phase.

Assumption 1 (Sufficient Price Experiments). Let random variable pi follow distribution Di,

i∈N . The matrix E
[
(1,p)⊤(1,p)

]
has a smallest eigenvalue of λmin > 0 and a maximal eigenvalue

λmax > 0, where row vector (1,p) := (1, p1, p2, . . . , pN) ∈ RN+1. At the end of exploration phase of

seller i, the computation parameters are set as χ
(t)
i = υi

t
where υi >

1
2λmin

.

When the exploration price distributions {Di}i∈N are independent, the smallest eigenvalue condi-

tion λmin > 0 in Assumption 1 is equivalent to that Var(pi) > 0 for all i ∈ N , where Var denotes

the variance. Indeed, if seller i offers constant prices in the exploration phase, the price sensitivity
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coefficient βi is not identifiable. Let τmin := mini∈N τi denote the duration of common exploration

periods. The smallest eigenvalue condition λmin > 0 in Assumption 1 requires that during the

common exploration period t ∈ {1,2, . . . , τmin}, the exploration prices of sellers are not collinear;

i.e., a seller’s price is not a linear combination of prices of other sellers. Therefore, the individ-

ual demand and public price data up to period τmin (i.e., the data subset {(p(t), y
(t)
i )}t=1,2,...,τmin

)

provides sufficient price variation for seller i to estimate individual parameters. Although the data

from seller i’s remaining exploration periods (i.e., the data subset {(p(t), y
(t)
i )}t=τmin+1,τmin+2,...,τi)

is also incorporated into seller i’s estimator computation (9) and such data does not necessarily

possess sufficient price variation as we discussed in (iv) of Subsection 3.1, we show that it does not

significantly reduce the eventual estimator accuracy in Subsection 4.2. Our Theorem 1 and (12)

will demonstrate that λ−1
min and λmax both affect the convergence rate to Nash equilibrium and the

regret of sellers in a polynomial order.

Gradient optimization phase. In each period t∈ {τi+1, τi+2, . . . , T} of gradient optimization

phase, seller i ∈ N updates prices using a projected gradient ascent approach. Specifically, the

estimated gradient in period t is defined as

ϕ
(t)
i := y

(t)
i − β̂ip

(t)
i , t∈ {τi +1, τi +2, . . . , T}, i∈N . (10)

Particularly, ϕ
(τi)
i := 0 for i∈N . Then the price is updated by

p
(t)
i := ΠPi

(p
(t−1)
i + η

(t−1)
i ϕ

(t−1)
i ), t∈ {τi +1, τi +2, . . . , T}, i∈N . (11)

We elaborate on the definition of the estimated gradient in (10). Recall that the exact gradient of

seller i’s average revenue with respect to individual price is
∂E[p(t)i y

(t)
i |p(t)i ,p

(t)
−i ]

∂p
(t)
i

= αi−2βip
(t)
i +γγγ⊤

i p
(t)
−i,

as shown in (6). When estimator β̂i has a small error (i.e., β̂i ≈ βi), we have that E[ϕ(t)
i |p(t)i ,p

(t)
−i]≈

E[y(t)
i |p(t)i ,p

(t)
−i]−βip

(t)
i = αi−βip

(t)
i +γγγ⊤

i p
(t)
−i−βip

(t)
i , which approximately equals the exact gradient

∂E[p(t)i y
(t)
i |p(t)i ,p

(t)
−i ]

∂p
(t)
i

. Thus, (10) can be viewed as a noisy gradient feedback based on average revenue.

The LEGO policy for the sequential pricing competition problem is summarized in Algorithm 1.

4. Regret Analysis of Phased LEGO

Our main results (Theorem 1) consist of two instance-independent upper bounds concerning the

policy regret associated with Algorithm 1 and its convergence rate to Nash equilibrium prices,

respectively. Specifically, we demonstrate that an order-of-
√
T policy (i.e., τi ≍

√
T , i ∈ N ) will

yield a cumulative regret of O
(
N
√
T (N + logT )

)
if this class of policy is employed by all sellers.

Furthermore, the joint prices of sellers will converge to Nash equilibrium prices at a rate of O(N2
√
T
).

To establish our results, we also need Assumption 2–3 defined in Subsection 4.1.
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Algorithm 1 Decentralized Phased LEGO: Least-Squares Estimation then Gradient Optimization

Input: Exploration phase length τi ∈N, exploration price distribution Di supported on Pi, and

step sizes {η(t)
i }t=τi,τi+1,...,T−1 ⊆R+ for seller i∈N .

Output: Price p
(t)
i that seller i∈N offers in period t∈ T .

for t∈ T do

Each seller i∈N samples a price p̃
(t)
i following distribution Di.

Each seller i∈N offers a price based on

p
(t)
i :=

{
p̃
(t)
i , when t⩽ τi (seller i’s exploration phase);

ΠPi
(p

(t−1)
i + η

(t−1)
i ϕ

(t−1)
i ), when t > τi (seller i’s gradient optimization phase).

Each seller i∈N observes individual realized demand y
(t)
i .

When t= τi, seller i∈N constructs an estimator (α̂i, β̂i, γ̂γγi) = (α̂
(τi+1)
i , β̂

(τi+1)
i , γ̂γγ(τi+1)

i ) using

iterations (8) and data set {(p(t), y
(t)
i )}t=1,2,...,τi .

If t⩾ τi, seller i∈N constructs a gradient feedback:

ϕ
(t)
i =

{
0, when t= τi;

y
(t)
i − β̂ip

(t)
i , when t > τi, following (10).

end for

Theorem 1 (Optimal Order-Of-
√
T Policy). Suppose Assumptions 1–2 hold and each seller

i∈N implements Algorithm 1:

(A) for each i∈N , the exploration phase length τi ∈ [ι
√
T , ῑ

√
T ], where ῑ⩾ ι > 0; and

(B) for t ∈ {1,2, . . . , T − 1}, the step size η
(t)
i = ζi

t
, where ν :=

maxj∈N ζj
minj∈N ζj

< 4κ − 1 and ζi >

2κ
(4κ−1−ν)minj∈N β

j
. (Here κ⩾ 1 is the constant in Assumption 2.)

Then we have the following results for T > 0:

(i) convergence to Nash equilibrium prices:

E
[
∥p(T ) −p∗∥22

]
⩽

b̃+2ωD

T
+

ῑD+ ρC1√
T

∈O
(N 2

√
T

)
;

(ii) individual sublinear regret:

Regi(T )⩽ 4β̄i(b̃+2ωD) logT +(4β̄iῑD+4β̄iρC1 +4β̄iῑD logT )
√
T ∈O

(
N
√
T (N + logT )

)
for each seller i∈N satisfying Assumption 3; and

(iii) p(T ) is a vector of ϵ-Nash equilibrium prices with (at least) probability 1− b̃+2ωD
µϵT

− ῑD+ρC1

µϵ
√
T

=

1−O
(

N2

ϵ
√
T

)
if each seller i∈N satisfies Assumption 3.



Authors’ names blinded for peer review 16

The associated constants are defined as

di := (ᾱi −αi)
2 +(β̄i −β

i
)2 +4γ̄2

i , U1 :=U0 +max
i∈N

max
{
β̄2
i p̄

2
i , (ᾱi −β

i
p
i
+ γ̄imax

j∈N
p̄j)

2
}
,

Uℓ := (λmaxmax
i∈N

di +U0) ·
(
1+

∑
j∈N

p̄2j
)
, D :=

∑
i∈N

(p̄i − p
i
)2, µ :=

1

4maxi∈N β̄i

,

ω :=
4κ− 1− ν

2κ
·min
i∈N

ζi ·min
i∈N

β
i
, hi :=

υ2
iUℓ

2λminυi − 1
, b̃ :=

U1

∑
i∈N ζ2i

ω− 1
,

C0 :=max
i∈N

hi +(2λminυi +1)di, C1 := ι−1C0N + ι−1Uℓ

∑
i∈N

υ2
i , ρ := ω−1max

i∈N
ζ2i p̄

2
i . (12)

Here D,Uℓ, hi, b̃,C0 ∈O(N) and C1 ∈O(N 2) by definition. When sellers have the same step sizes

(ν = 1), the constraints of ζi in (B) of Theorem 1 can be simplified into ζi >
κ

(2κ−1)minj∈N β
j
, i∈N .

Remark 1 (Policy Optimality). Seller i’s revenue maximization is cast into a regret minimiza-

tion problem in our study. Let us consider N = 1, which is the special case of a monopolistic seller.

The linear demand model in (1) includes an unknown potential market size and an unknown price

sensitivity coefficient. In such a scenario, Broder and Rusmevichientong (2012), Keskin and Zeevi

(2014) have demonstrated that demand curves are not well separated, resulting in a Ω(
√
T ) worst-

case regret bound for any non-anticipating dynamic pricing policy. This lower bound is matched by

our Õ(
√
T ) regret bound as presented in result (ii) of Theorem 1, implying that our LEGO policy

is optimal in the context of sequential price competition. It is also worth noting that we employ

a much stronger dynamic benchmark policy to define the regret metric compared with Broder

and Rusmevichientong (2012), Keskin and Zeevi (2014) using a static benchmark policy. Our work

achieves the optimal regret under a dynamic benchmark policy because of the specific problem

structure, particularly with linear demand functions and the assumption that sellers employ the

same class of online learning policies. Our numerical experiments further show that our order-of-
√
T

policy achieves an optimal balance between exploration and exploitation; see Subsection 6.2.

Remark 2 (Components of Error and Regret). As stated in result (i) of Theorem 1, the

error between eventual joint prices p(T ) and Nash equilibrium prices p∗ has two components:

b̃+2ωD
T

∈O
(
N
T

)
and ῑD+ρC1√

T
∈O

(
N2
√
T

)
. As we shall prove in Section 5, the predominant error compo-

nent ῑD+ρC1√
T

can be attributed to the unknown individual price sensitivity βi for each seller i∈N .

Specifically, if each seller i ∈N has prior knowledge of βi, then the convergence rate of E
[
∥p(T ) −

p∗∥22
]
can be enhanced from b̃+2ωD

T
+ ῑD+ρC1√

T
∈O

(
N2
√
T

)
to b+(2ω+1)D

T
= δ

T
∈O

(
N
T

)
; definitions of con-

stants b and δ are provided in (17) of Section 5. Conversely, only a minor error component b̃+2ωD
T

stems from other factors including uncertainty of competitor future prices, unknown individual

parameters (αi,γγγi), unknown competitor parameters (αj, βj,γγγj) where j ̸= i, and unknown com-

petitor demand. Analogous conclusions apply to the regret metric. When each seller i ∈N knows
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their individual price sensitivity, the regret bound in result (ii) of Theorem 1 will relinquish its

second term and reduce to 4β̄i(b+(2ω+1)D) logT +4β̄iδ ∈O
(
N logT

)
; the order-of-N logT regret

is delineated in Theorem 2 and is proved in Section 5. Consequently, the regret of Õ(
√
T ) in the

general case (Theorem 1) is likewise attributable to the unknown individual price sensitivity βi.

Remark 3 (Step Size Choice and Its Minor Impact). To establish the optimal regret

bound and fast convergence rate in Theorem 1, we presuppose in condition (B) that each seller’s

step size is O( 1
t
) and does not exceed ν times the step size of other sellers. We also assume that the

step size coefficient ζi ∈Ω
(

1
2minj∈N β

j

)
, where 2minj∈N β

j
is the minimal strong concavity param-

eter across the sellers; recall that seller i’s average revenue is 2βi-strongly concave in their price.

Assuming the step size coefficient proportional to the inverse of the strong concavity parameter

is not uncommon for online concave optimization to achieve the optimal convergence rate; see,

e.g., Hazan et al. (2016). In our numerical experiments, Subsection 6.3 illustrates that even when

employing sequences of step sizes that do not adhere to these constraints, sellers still converge to

the Nash equilibrium at a rapid speed. Particularly, Subsection 6.3 shows that using step sizes such

as η
(t)
i = ζi√

t
does not significantly impact the regret or convergence to Nash equilibrium. This is

because it is already fast enough to employ step sizes between O( 1
t
)∼O( 1√

t
) during the gradient

optimization phase. Under these adequate step sizes, the rates of regret growth and convergence to

the Nash equilibrium are predominantly constrained by the order-of- 1√
T
estimation error induced

by the exploration phase. Consequently, compared with the exploration phase length, the step sizes

of sellers have a relatively minor impact on the regret and the convergence to Nash equilibrium.

Remark 4 (Novel Analysis Techniques for Sequential Competition). We propose a

“Multi-Agent GradIent desCent” (MAGIC) framework for analyzing sequential competition prob-

lems. Our framework leverages the key observation that the played actions of agents (i.e., estimators

(α̂
(t)
i , β̂

(t)
i , γ̂γγ(t)

i ) in the exploration phase or prices p(t) in the gradient optimization phase) consti-

tute an embedded time-inhomogeneous Markovian process. We directly investigate the variation

of played actions, distinguishing from the classical convex analysis which typically centers on the

variation of cost function values at played actions. Specifically, we investigate (a) how the indi-

vidual estimators (α̂
(t)
i , β̂

(t)
i , γ̂γγ(t)

i ) progress toward the true parameters (αi, βi,γγγi) in each common

exploration period t∈ {1,2, . . . , τmin}, (b) how the accuracy of individual estimators (α̂
(t)
i , β̂

(t)
i , γ̂γγ(t)

i )

varies in the private exploration period t∈ {τmin+1, τmin+2, . . . , τi}, and (c) how the offered prices

p(t) of sellers progress toward Nash equilibrium p∗ after all sellers complete exploration. For each

investigation of (a)–(c), we first establish a recursive inequality describing how the estimators or

prices vary after one period; see (42), (43), and (15) for investigations (a), (b), and (c), respec-

tively. It is noteworthy that although seller i’s estimators (α̂i, β̂i, γ̂γγi) = (α̂
(τi+1)
i , β̂

(τi+1)
i , γ̂γγ(τi+1)

i ) are
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computed once at the end of the exploration phase rather than being updated in every period,

they are computed in an iterative manner using an SGD approach (8)–(9) based on cumulative

data from period 1 to period τi, which enables us to quantify the estimator variation each time a

new period of observation is collected. By leveraging the recursive inequalities, we can quantify the

estimation error (α̂i−αi, β̂i−βi, γ̂γγi−γγγi) after the exploration phase and the deviation p(T )−p∗ of

the eventual prices from the Nash equilibrium. A flowchart of the proof is given in Figure 2. Our

analysis is applicable to analyzing other single- or multi-agent settings. Particularly, the result in

(14) can be viewed as a sensitivity analysis that quantifies the impact of estimator error β̂i−βi on

the deviation between limiting prices and Nash equilibrium.

Remark 5 (Inapplicability of a Myopic Pricing Approach). Our dynamic pricing policy

adopts a structure that separates price experiments from price optimization. A natural question

arises: is a greedy pricing-while-estimating policy applicable? Can a seller update individual param-

eter estimators in each period and subsequently compute an optimal price to offer based on their

current estimates? Such a policy is also known as passive learning, myopic pricing, or certainty

equivalent pricing, and it does not require sellers to know the selling horizon length T a priori.

Despite the elegance of this policy structure, literature in both statistics and operations research

has demonstrated that a myopic pricing policy does not converge to an optimal solution when the

system involves two or more unknown parameters, as in our problem. For instance, Lai and Robbins

(1982), den Boer and Zwart (2014) investigated a linear model with N = 1 (i.e., the monopoly case)

and proved that such a myopic policy does not necessarily converge to the optimal solution. Cooper

et al. (2015) investigated the linear demand competition model with N = 2 (i.e., the duopoly case)

and demonstrated that a myopic pricing policy does not necessarily lead to Nash equilibrium or

individual optimal prices; refer to their Section 4.3 for details. Since a myopic pricing policy lacks

guarantees for converging to optimal prices, it is not likely to be implemented in practice.

4.1. Assumptions and Preliminaries

We make the following assumption on individual price sensitivity coefficient βi (i∈N ).

Assumption 2 (Appropriate Price Sensitivity). There exists constant κ ⩾ 1 such that βi ⩾

κ
∑

j∈N\{i} |γij| and βi ⩾ κ
∑

j∈N\{i} |γji| for all i∈N .

A market that does not satisfy this assumption can yield impractical outcomes. For instance,

consider the scenario where γγγi ⩾ 0 and βi <
∑

j∈N\{i} |γij|=
∑

j∈N\{i} γij for all i∈N . In this case,

(1) implies that the demand of each seller i will tend toward infinity when all sellers simultaneously

increase their prices to infinity, which is impractical. Consider the scenario where γji ⩾ 0 for all
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Convergence rate
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Figure 2 A flowchart of proving Theorems 1 for the LEGO policy’s regret bounds and convergence rates using

our MAGIC analysis framework. (A dashed arrow between A and B represents A indicating B. Double

boxes highlight the main results. MAGIC means “Multi-Agent GradIent desCent”. LEGO means “least-

squares estimation then gradient optimization”.)

j ∈N\{i} and βi <
∑

j∈N\{i} |γji|=
∑

j∈N\{i} γji. In this case, (1) implies that the total demand of

all sellers will tend toward infinity when seller i increases their price to infinity, which is impractical.

Similar assumptions are found in Kachani et al. (2007). Assumption 2 ensures the existence of

Nash equilibrium as in the following lemma:

Lemma 1 (Unique Nash Equilibrium Prices). Under Assumption 2, there is a unique price

vector p∗ ∈P satisfying the balance equations (4).
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This result is based on the contraction mapping theorem. The proof is relegated to Appendix B.1.

To establish the optimal regret bound in result (ii) of Theorem 1, we assume that, given com-

petitor prices, seller i’s best response price is an interior point in Pi:

Assumption 3 (Sub-Optimal Boundary Prices). A seller i ∈ N satisfies (i) p
i

⩽

max
{
0,

αi−γ̄i maxj∈N\{i} p̄j

2βi

}
and (ii) p̄i ⩾

αi+γ̄i maxj∈N\{i} p̄j

2βi
.

Here a sufficient condition for (i) is p
i
= 0, while a sufficient condition for (ii) is that for all j ∈N ,

p̄j = p̄ with p̄⩾
αj

2βj−γ̄j
and βj >

γ̄j
2
. In a linear demand model, seller i’s best response price is half

of the choke price (also known as the null price, which reduces seller i’s demand to 0). Assumption

3 essentially mandates that each seller can set prices higher than half of the choke price. This

condition is weaker compared to the requirement found in the price competition literature, where

sellers are assumed to be capable of offering choke prices; see, e.g., Gallego and Hu (2014).

The following lemmata provide useful bounds for proving our theorems.

Lemma 2 (Bound of Feedback Moment). For all t ⩾ τi, t′ < t, and i ∈ N , we have that

E[(ϕ(t)
i )2 |F (t′)]⩽U1. Particularly, E[(ϕ(t)

i )2]⩽U1.

Lemma 3 (Bound of Single-Period Regret). For all t∈ T , if seller i∈N satisfies Assumption

3, then Regi(t)−Regi(t− 1)⩽ 4β̄i ·E
[
∥p(t) −p∗∥22

]
. In other words, the regret of seller i increases

no more than 4β̄i ·E
[
∥p(t) −p∗∥22 in period t.

Lemma 4 (Sufficient Conditions of ϵ-Nash Equilibrium). If each seller i ∈ N satisfies

Assumption 3 and ∥p(t) −p∗∥22 ⩽ µϵ, t∈ T , then p(t) is a vector of ϵ-Nash equilibrium prices.

The proof is relegated to Appendices B.2–B.4. Lemma 3 and 4 both leverage the properties that (i)

the (single-period) average revenue of seller i is 2βi-smooth in individual price, and (ii) when seller

i’s price p(t) is the best response to competitor prices in period t, the gradient of average revenue

is 0 and consequently, adjusting seller i’s price to p′(t) reduces the revenue by O
(
(p′(t) − p(t))2

)
.

4.2. Proof of Main Theorem

We analyze the regret associated with the exploration phase and the gradient optimization phase,

respectively.

Concentration bounds of estimators. Because the exploration phase does not adjust prices

to increase revenue, the associated regret is O(τi) for each seller i∈N . Nevertheless, seller i obtains

an estimator of price coefficient βi at the end of the exploration phase. The following inequality

shows that the error of estimator β̂i is O(τ−1
min), or equivalently O(T− 1

2 ) as sellers apply order-of-
√
T

policies with τi ≍
√
T :

E
[∑
i∈N

|β̂i −βi|2
]
⩽

C0N

τmin

+
Uℓ

∑
i∈N υ2

i

τmin

⩽
C1√
T
. (13)
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The proof is relegated to Appendix B.5. We interpret (13) as follows:

• Using the price and demand data collected up to the period τmin (i.e., the end of

common exploration periods), each seller i ∈ N has already improved their estimator

(α̂
(τmin+1)
i , β̂

(τmin+1)
i , γ̂γγ(τmin+1)

i ) to a good accuracy level with an average squared error less than

C0N
τmin

. This part of error bound is established using the convexity in the least square estimation

and the price variation provided by Assumption 1.

• The remaining data collected from period τmin to period τi (i.e., the end of individual explo-

ration phase) is also incorporated into seller i’s estimation. Such remaining data cannot further

improve seller i’s estimator accuracy due to possible price collinearity as discussed in (iv)

of Subsection 3.1. Nevertheless, their eventual estimator (α̂i, β̂i, γ̂γγi) = (α̂
(τi+1)
i , β̂

(τi+1)
i , γ̂γγ(τi+1)

i )

does not lose a significant amount of accuracy compared with (α̂
(τmin+1)
i , β̂

(τmin+1)
i , γ̂γγ(τmin+1)

i );

specifically, the average squared error increases no more than
Uℓ

∑
i∈N υ2

i

τmin
.

It is worth noting that it is hard for seller i to stop exploration exactly in period τmin or directly

use (α̂
(τmin+1)
i , β̂

(τmin+1)
i , γ̂γγ(τmin+1)

i ) instead of (α̂
(τi+1)
i , β̂

(τi+1)
i , γ̂γγ(τi+1)

i ) as their eventual estimator

(α̂i, β̂i, γ̂γγi) for the gradient optimization phase. This is because exploration phase lengths are private

and τmin is unknown to sellers.

Convergence in the gradient optimization phase. The regret associated with the gradient

optimization phase depends on the error of estimators obtained from the exploration phase. Let us

define random variable ∆ :=
∑

i∈N |β̂i−βi|2. Because all estimators {β̂i}i∈N are already determined

by the end of period τmax := maxi∈N τi, ∆ is F (τmax)-measurable. We next establish the following

inequality to quantify the convergence of prices in the gradient optimization phase:

E
[
∥p(t) −p∗∥22 |F (τmax)

]
⩽

b̃+2ωD+ τmaxD

t
+ ρ∆, t∈ {τmax +1, τmax +2, . . . , T}. (14)

This inequality indicates that given the estimator error ∆, the joint price vector p(t) in the gradient

optimization phase eventually converges to a ball of radius ρ∆ centered at the equilibrium prices

p∗ if the gradient optimization phase is sufficiently long (i.e., t→∞). A longer exploration phase

reduces the error ∆, thereby diminishing the distance between the eventual joint prices p(T ) and

the Nash equilibrium prices p∗.

Our proof of (14) uses the following recursive inequality (15). For notation simplicity, we write

the conditional expectation Ẽ[·] :=E[· |F (τmax)]. For t∈ {τmax +1, τmax +2, . . . , T − 1}, we have

Ẽ
[
∥p(t+1) −p∗∥22 −

b̃

t+1

]
⩽ (1− ω

t
) · Ẽ

[
∥p(t) −p∗∥22 −

b̃

t

]
+

ρ∆

t
. (15)
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The proof of (15) is relegated to Appendix B.6. Define T ∗ := max{⌈ω⌉, τmax + 1} ⩾ 2. Then for

t∈ {T ∗, T ∗ +1, . . . , T − 1}, we have that

Ẽ
[
∥p(t+1) −p∗∥22

]
− b̃

t+1
⩽
{ t∏

u=T∗

(1− ω

u
)
}
· Ẽ

[
∥p(T∗) −p∗∥22 −

b̃

T ∗

]
+

t∑
u=T∗

ρ∆

u

t∏
r=u+1

(1− ω

r
)

(by substituting (15) up to T ∗. Note T ∗ ⩾ ω, 1− ω

u
⩾ 0 for u⩾ T ∗)

⩽
{ t∏

u=T∗

(1− ω

u
)
}
· Ẽ

[
∥p(T∗) −p∗∥22

]
+

t∑
u=T∗

ρ∆

u

t∏
r=u+1

(1− ω

r
)

⩽
{ t∏

u=T∗

(1− 1

u
)
}
·D+

t∑
u=T∗

ρ∆

u

t∏
r=u+1

(1− 1

r
)

(due to ω > 1 and D=
∑
i∈N

(p̄i − p
i
)2)

⩽
T ∗ − 1

t
D+

t∑
u=T∗

ρ∆

u
· u
t
⩽

T ∗D

t+1
+ ρ∆.

This suggests Ẽ
[
∥p(t) − p∗∥22

]
⩽ b̃

t
+ T∗D

t
+ ρ∆ = b̃+T∗D

t
+ ρ∆ for t ∈ {T ∗ + 1, T ∗ + 2, . . . , T}. For

t ⩾ τmax + 1 such that t ⩽ T ∗, we also have Ẽ
[
∥p(t) − p∗∥22

]
⩽D ⩽ T∗D

t
⩽ b̃+T∗D

t
+ ρ∆. Thus, for

t∈ {τmax +1, τmax +2, . . . , T},

Ẽ
[
∥p(t) −p∗∥22

]
⩽

b̃+T ∗D

t
+ ρ∆⩽

b̃+D(2ω+ τmax)

t
+ ρ∆=

b̃+2ωD+ τmaxD

t
+ ρ∆.

The second inequality is due to T ∗ =max{⌈ω⌉, τmax +1}⩽ ω+ τmax +1⩽ 2ω+ τmax. By definition

of Ẽ, E
[
∥p(t) −p∗∥22 |F (τmax)

]
⩽ b̃+2ωD+τmaxD

t
+ ρ∆ for t∈ {τmax +1, τmax +2, . . . , T}, which is (14).

Regret and convergence to equilibrium. Taking expectation E[·] for both sides of (14) with

t > τmax and noticing τmax ⩽ ῑ
√
T , we have that

E[∥p(t) −p∗∥22]⩽
b̃+2ωD+ ῑD

√
T

t
+ ρE[∆] =

b̃+2ωD+ ῑD
√
T

t
+ ρE[

∑
i∈N

|β̂i −βi|2]

⩽
b̃+2ωD+ ῑD

√
T

t
+ ρ

C1√
T
, t > τmax. (16)

The equality is due to definition ∆=
∑

i∈N |β̂i−βi|2 and the last row is due to E
[∑

i∈N |β̂i−βi|2
]
⩽

C1√
T
in (13). If T > τmax, plugging t= T into (16) yields E[∥p(T )−p∗∥22]⩽ b̃+2ωD

T
+ ῑD+ρC1√

T
. Otherwise,

T = τmax ⩽ ῑ
√
T and

√
T ⩽ ῑ, which also yield E[∥p(T )−p∗∥22]⩽D⩽ ῑD√

T
⩽ b̃+2ωD

T
+ ῑD+ρC1√

T
. Because

b̃,D ∈O(N) and C1 ∈O(N 2), we have E[∥p(T ) −p∗∥22]∈O(N2
√
T
). This is (i) of Theorem 1.

With the convergence rate (16), Lemma 3 implies the regret bound in (ii) of Theorem 1:

Regi(T )⩽4β̄i ·
T∑

t=1

E
[
∥p(t) −p∗∥22

]
= 4β̄i ·

τmax∑
t=1

E
[
∥p(t) −p∗∥22

]
+4β̄i ·

T∑
t=τmax+1

E
[
∥p(t) −p∗∥22

]
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⩽4β̄iDτmax +4β̄i ·
T∑

t=τmax+1

( b̃+2ωD+ ῑD
√
T

t
+ ρ

C1√
T

)
(due to (16))

⩽4β̄iDῑ
√
T +4β̄i ·

T∑
t=2

( b̃+2ωD+ ῑD
√
T

t
+ ρ

C1√
T

)
⩽4β̄iDῑ

√
T +4β̄i ·

(
(b̃+2ωD+ ῑD

√
T ) logT + ρC1

√
T
)

=4β̄i(b̃+2ωD) logT +(4β̄iῑD+4β̄iρC1 +4β̄iῑD logT )
√
T ∈O

(
N
√
T (N + logT )

)
.

The order in the last row is due to b̃,D ∈O(N) and C1 ∈O(N 2).

Consider ϵ > 0. By the Markov inequality,

P
[
∥p(T ) −p∗∥22 >µϵ

]
⩽

E[∥p(T ) −p∗∥22]
µϵ

⩽
b̃+2ωD

µϵT
+

ῑD+ ρC1

µϵ
√
T

.

The second inequality is due to (i) of Theorem 1. Thus, with probability 1 − b̃+2ωD
µϵT

− ῑD+ρC1

µϵ
√
T

,

∥p(T ) − p∗∥22 ⩽ µϵ and p(T ) is a vector of ϵ-Nash equilibrium prices by Lemma 4. Because b̃,D ∈

O(N) and C1 ∈O(N 2), we have 1− b̃+2ωD
µϵT

− ῑD+ρC1

µϵ
√
T

= 1−O( N2

ϵ
√
T
). This is (iii) of Theorem 1.

5. Improved Regret of Phased LEGO with Known Individual Price Sensitivity

In the general case studied in Sections 2–4, a seller i’s unknown demand y
(t)
i comprises two

components, as shown in (1): the self-influenced demand −βip
(t)
i and the potential demand size

αi + γγγ⊤
i p

(t)
−i + ε

(t)
i , where the latter component depends on competitor prices when N > 1. These

two demand components also constitute two significant obstacles to dynamic pricing in sequential

competition, which force a policy to have an order-of-
√
T worst-case regret (including the monop-

olist setting N = 1). The first obstacle is that a seller is uncertain regarding how their price affects

the demand: they do not know what price maximizes the revenue even if the potential demand

size αi + γγγ⊤
i p

(t)
−i + ε

(t)
i is known. The second and seemingly more significant obstacle is that a

seller is uncertain regarding competitor price patterns or how competitor prices affect the demand.

This obstacle is compounded by the presence of demand noise: sellers do not directly observe the

average noise-free demand at specific prices; instead, they only observe a random variable whose

mean value corresponds to the average demand. Consequently, these two obstacles render prices

uninformative, as no pricing policy can effectively reduce demand uncertainty.

Given this observation, a natural question arises: how much does each of the two obstacles con-

tribute to the difficulty of dynamic pricing in sequential competition? Which obstacle forces the

order-of-
√
T worst-case regret? The following theorem addresses this issue by considering a condi-

tion in which each seller knows their individual price sensitivity coefficient. Under this assumption,

we demonstrate that a gradient optimization policy achieves an improved regret of O(logT ).
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Theorem 2 (Optimal Policy with Known Individual Price Sensitivity). Under Assump-

tion 2, suppose that each seller i ∈ N knows individual price sensitivity βi and implements a

modified Algorithm 1:

(A) τi = 1, p̃
(1)
i is arbitrary in Pi;

(B) for t ∈ {1,2, . . . , T − 1}, the step size η
(t)
i = ζi

t
, where ν :=

maxj∈N ζj
minj∈N ζj

< 4κ − 1 and ζi >

κ
(4κ−1−ν)minj∈N β

j
; and

(C) the estimation step (7) is replaced by β̂i = βi.

Then we have

(i) convergence to Nash equilibrium prices:

E
[
∥p(t) −p∗∥22

]
⩽

δ

t
∈O

(N
t

)
, t∈ T ;

(ii) individual sublinear regret:

Regi(T )⩽ 4β̄iδ logT +4β̄iδ ∈O
(
N logT

)
for each seller i∈N satisfying Assumption 3 and t∈ T ; and

(iii) p(t) is a vector of ϵ-Nash equilibrium prices with (at least) probability 1− δ
µϵt

= 1−O
(

N
ϵt

)
for

all t∈ T if each seller i∈N satisfies Assumption 3.

The associated constants are defined as

b :=
U1

∑
i∈N ζ2i

2ω− 1
, δ := b+(2ω+1)D. (17)

Because b,D ∈O(N), we have δ ∈O(N).

Comparing the order-of-logT regret in Theorem 2 with the order-of-
√
T regret in Theorem 1

(which matches the problem lower bound as discussed in Remark 1), we can conclude that the

unknown individual price sensitivity βi contributes to the major difficulty of dynamic pricing in

sequential competition and forces regret to the order of
√
T in the worst case.

Remark 6 (Policy Optimality under Known Individual Price Sensitivity). We delve

into policy optimality from two perspectives. Firstly, for each seller i ∈ N , their revenue maxi-

mization problem with known individual price sensitivity βi can be viewed as strongly concave

optimization. Particularly, with βi known, (noisy) gradient feedback becomes available, as we dis-

cussed when defining (10). Then the O( 1
t
) convergence rate in result (i) of Theorem 2 aligns with

the Ω( 1
t
) lower bound established in Nemirovskij and Yudin (1983) for strongly concave optimiza-

tion. Secondly, seller i’s revenue maximization is framed as a regret minimization problem within

this work. For the special case of a single seller with known price sensitivity, Broder and Rus-

mevichientong (2012), Keskin and Zeevi (2014) have established a lower regret bound of Ω(logT ).
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This lower bound is matched by our O(logT ) regret bound in result (ii) of Theorem 2. Here we

adopt a stronger dynamic benchmark to define regret compared with Broder and Rusmevichien-

tong (2012), Keskin and Zeevi (2014) using a static benchmark. Our work achieves the optimal

regret under a dynamic benchmark because of the specific problem structure and the assumption

that sellers employ the same class of online learning policies.

Proof of Theorem 2: For all t∈ {2,3, . . . , T − 1}, we have that

∥p(t+1) −p∗∥22 =
∑
i∈N

(p
(t+1)
i − p∗i )

2 =
∑
i∈N

[
ΠPi

(
p
(t)
i + η

(t)
i ϕ

(t)
i

)
− p∗i

]2
(due to (11))

⩽
∑
i∈N

(
p
(t)
i + η

(t)
i ϕ

(t)
i − p∗i

)2
(due to definition of projection ΠPi

(·))

=
∑
i∈N

[(
p
(t)
i − p∗i

)2
+
(
η
(t)
i ϕ

(t)
i

)2
+2η

(t)
i ϕ

(t)
i · (p(t)i − p∗i )

]
=∥p(t) −p∗∥22 +

∑
i∈N ζ2i (ϕ

(t)
i )2

t2
+

2

t

∑
i∈N

ζiϕ
(t)
i · (p(t)i − p∗i ). (18)

Here the last row is due to η
(t)
i = ζi

t
. Taking expectations for both sides yields that

E
[
∥p(t+1) −p∗∥22

]
⩽E

[
∥p(t) −p∗∥22

]
+

U1

∑
i∈N ζ2i
t2

+
2

t
E
[∑
i∈N

ζiϕ
(t)
i · (p(t)i − p∗i )

]
. (19)

The second term on the right-hand side of (19) is due to Lemma 2. We next show the last term in

(19) satisfies

E
[∑
i∈N

ζiϕ
(t)
i · (p(t)i − p∗i )

]
⩽−ω ·E

[
∥p(t) −p∗∥22

]
. (20)

We recall that p(t) is F (t−1)-measurable. To prove (20), we only need to show that

E
[∑
i∈N

ζiϕ
(t)
i · (p(t)i − p∗i )

∣∣∣F (t−1)
]
⩽−ω · ∥p(t) −p∗∥22. (21)

This is because taking expectation E[·] = E[· |F (0)] for both sides of (21) yields (20). Recall (I)

ϕ
(t)
i = y

(t)
i − β̂ip

(t)
i = y

(t)
i − βip

(t)
i by (10) and (C) of Theorem 2, (II) p(t) is F (t−1)-measurable, and

(III) E[y(t)
i |F (t−1)] = αi −βip

(t)
i +γγγ⊤

i p
(t)
−i due to (1). Because of (I)–(III), (21) is equivalent to∑

i∈N

ζi
(
αi − 2βip

(t)
i +γγγ⊤

i p
(t)
−i

)
(p

(t)
i − p∗i )⩽−ω · ∥p(t) −p∗∥22. (22)

Define the following vector function ΨΨΨ :RN 7→RN with variable p= (pi)i∈N ∈P.

ΨΨΨ(p) =
(
Ψi(p)

)
i∈N :=

(
ζi ·

(
αi − 2βipi +γγγ⊤

i p−i

))
i∈N

.

Then (22) can be written as

ΨΨΨ(p(t))⊤(p(t) −p∗)⩽−ω · ∥p(t) −p∗∥22. (23)
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We also have

Ψi(p
∗) · (p(t)i − p∗i )⩽ 0, i∈N . (24)

This is because Ψi(p
∗)

ζi
= αi − 2βip

∗
i + γγγ⊤

i p
∗
−i is the average revenue gradient of seller i at Nash

equilibrium prices p∗, as shown in (6). This implies (24): (I) if p∗i ∈ (p
i
, p̄i), then Ψi(p

∗) = 0 and

Ψi(p
∗) · (p(t)i − p∗i ) ⩽ 0; (II) if p∗i = p̄i, then Ψi(p

∗) ⩾ 0, p
(t)
i − p∗i ⩽ 0, and Ψi(p

∗) · (p(t)i − p∗i ) ⩽ 0;

and (III) if p∗i = p
i
, then Ψi(p

∗) ⩽ 0, p
(t)
i − p∗i ⩾ 0, and Ψi(p

∗) · (p(t)i − p∗i ) ⩽ 0. Summing (24)

over i ∈N yields ΨΨΨ(p∗)⊤(p(t) − p∗)⩽ 0, which implies that, to show (23), we only need to prove(
ΨΨΨ(p(t))−ΨΨΨ(p∗)

)⊤
(p(t) −p∗)⩽−ω · ∥p(t) −p∗∥22, or equivalently,(

ΨΨΨ(p(t))+ωp(t) −ΨΨΨ(p∗)−ωp∗)⊤(p(t) −p∗)⩽ 0. (25)

Taking the derivative of Ψi in pi yields that ∂Ψi(p)

∂pi
= −2ζiβi. Taking the derivative of Ψi in pj

(j ̸= i) yields that ∂Ψi(p)

∂pj
= ζiγij. Then we have

∣∣∣∂Ψi(p)

∂pi

∣∣∣− ∑
j∈N\{i}

∣∣∣∂Ψi(p)

∂pj

∣∣∣= ζi(2βi −
∑

j∈N\{i}

|γij|)⩾ ζi

(
2βi −

βi

κ

)
⩾ ζiβi

(
2− 1

κ

)
, (26)

where the first inequality is due to βi ⩾ κ
∑

j∈N\{i} |γij| in Assumption 2, and∣∣∣∂Ψi(p)

∂pi

∣∣∣− ∑
j∈N\{i}

∣∣∣∂Ψj(p)

∂pi

∣∣∣= 2ζiβi −
∑

j∈N\{i}

ζj|γji|⩾ 2ζiβi −
νζiβi

κ
⩾ ζiβi

(
2− ν

κ

)
, (27)

where the first inequality is due to ν =
maxi∈N ζi
mini∈N ζi

in (B) of Theorem 2 and βi ⩾ κ
∑

j∈N\{i} |γji| in

Assumption 2. Combining (26) and (27) yields that ∂[ΨΨΨ(p)+ΨΨΨ⊤(p)]

∂p
is diagonal dominant: in row i, the

magnitude of the diagonal entry is larger than the sum of the magnitudes of all the other entries

in that row by ζiβi · 4κ−1−ν
κ

⩾ 2ω > 0, where the inequalities are due to (12) and (B) of Theorem 2.

Thus, we have
∂

[
ΨΨΨ(p)+ΨΨΨ⊤(p)

]
∂p

≼−2ω · I, where I is the identity matrix, and

∂ΨΨΨ(p)+ΨΨΨ⊤(p)

2

∂p
≼−ω · I. (28)

Define f(z) =
(
ΨΨΨ
(
zp(t) +(1− z)p∗

)
+ zωp(t) −ΨΨΨ(p∗)− zωp∗

)⊤
(p(t) −p∗). Then we have

(
ΨΨΨ(p(t))+ωp(t) −ΨΨΨ(p∗)−ωp∗)⊤(p(t) −p∗) = f(1)− f(0) = f ′(z′) (z′ is some element in [0,1])

=(p(t) −p∗)⊤
∂ΨΨΨ(p)

∂p

∣∣∣
p=z′p(t)+(1−z′)p∗

(p(t) −p∗)+ω · (p(t) −p∗)⊤(p(t) −p∗)

=(p(t) −p∗)⊤
∂ΨΨΨ(p)+ΨΨΨ⊤(p)

2

∂p

∣∣∣
p=z′p(t)+(1−z′)p∗

(p(t) −p∗)+ω · (p(t) −p∗)⊤(p(t) −p∗)

⩽− (p(t) −p∗)⊤ω · I(p(t) −p∗)+ω · (p(t) −p∗)⊤(p(t) −p∗) = 0. (due to (28))
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Recall (12) and (B) of Theorem 2, which imply ζi >
κ

(4κ−1−ν)minj∈N β
j
=

minj∈N ζj
2ω

for all i ∈ N .

Thus, 2ω > 1 and b > 0 by definition. Plugging (20) into (19) yields that

E
[
∥p(t+1) −p∗∥22

]
⩽
(
1− 2ω

t

)
E
[
∥p(t) −p∗∥22

]
+

U1

∑
i∈N ζ2i
t2

=
(
1− 2ω

t

)
E
[
∥p(t) −p∗∥22

]
+

b(2ω− 1)

t2

⩽
(
1− 2ω

t

)
E
[
∥p(t) −p∗∥22

]
+

2ωb

t2
− b

t(t+1)

=
(
1− 2ω

t

)
E
[
∥p(t) −p∗∥22

]
+

2ωb

t2
− b

t
+

b

t+1
.

This can be written as E
[
∥p(t+1)−p∗∥22− b

t+1

]
⩽ (1− 2ω

t
) ·E

[
∥p(t)−p∗∥22− b

t

]
for t∈ {2,3, . . . , T −1}.

Therefore, for t∈ {T ∗, T ∗ +1, . . . , T − 1} where T ∗ := ⌈2ω⌉⩾ 2, we have that

E
[
∥p(t+1) −p∗∥22

]
− b

t+1
⩽
{ t∏

u=T∗

(1− 2ω

u
)
}
·E

[
∥p(T∗) −p∗∥22 −

b

T ∗

]
(due to T ∗ = ⌈2ω⌉⩾ 2ω)

⩽
{ t∏

u=T∗

(1− 2ω

u
)
}
·E

[
∥p(T∗) −p∗∥22

]
⩽
{ t∏

u=T∗

(1− 2ω

u
)
}
·D

⩽
{ t∏

u=T∗

(1− 1

u
)
}
·D=

T ∗ − 1

t
D⩽

T ∗D

t+1
. (due to 2ω > 1)

This suggests E
[
∥p(t)−p∗∥22

]
⩽ b

t
+ T∗D

t
= b+T∗D

t
for t∈ {T ∗+1, T ∗+2, . . . , T}. For t⩽ T ∗, we also

have E
[
∥p(t) −p∗∥22

]
⩽D⩽ T∗D

t
⩽ b+T∗D

t
. Thus, for t∈ T , E

[
∥p(t) −p∗∥22

]
⩽ b+T∗D

t
⩽ b+(2ω+1)D

t
= δ

t

(due to T ∗ = ⌈2ω⌉⩽ 2ω+1). Because δ ∈O(N), we have E
[
∥p(t) −p∗∥22

]
∈O(N

t
). This completes

the proof of (i) of Theorem 2.

With the above convergence rate, Lemma 3 implies the regret bound in (ii) of Theorem 2:

Regi(T )⩽ 4β̄i ·
T∑

t=1

E
[
∥p(t) −p∗∥22

]
⩽ 4β̄i ·

T∑
t=1

δ

t
⩽ 4β̄iδ(logT +1)= 4β̄iδ logT +4β̄iδ ∈O(N logT ).

The order in the last step is due to δ ∈O(N).

Consider ϵ > 0. By the Markov inequality, P
[
∥p(t)−p∗∥22 >µϵ

]
⩽ E[∥p(t)−p∗∥22]

µϵ
⩽ δ

µϵt
. With proba-

bility 1− δ
µϵt

, we have ∥p(t)−p∗∥22 ⩽ µϵ and p(t) is a vector of ϵ-Nash equilibrium prices by Lemma

4. Because δ ∈O(N), 1− δ
µϵt

= 1−O
(

N
ϵt

)
. This completes the proof of (iii) of Theorem 2. □

6. Numerical Experiments

We test the performance of our LEGO policy (Algorithm 1) in the sequential price competition

with N ∈ {2,5,10} sellers. For each seller i ∈ N , their price is supported on [0,1]. Their price

sensitivity βi is sampled from [10,12]. The other price coefficient γij (j ̸= i) is sampled from [0,1]

subject to the condition that
∑

j∈N\{i} γij ⩽ 3. Their potential market size parameter αi is sampled

from [13,17]. The demand noise follows a uniform distribution on [−1,1]. When evaluating a policy,

we independently repeat trials 800 times to obtain average performance.
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6.1. Performance of LEGO Policy

Each seller applies our LEGO policy. Seller i ∈N has an exploration phase of private length τi =

ιi
√
T , where ιi is sampled from [1,5], and uses a private step size η

(t)
i = ζi

t
, where ζi is sampled from

[1,10]. Figure 3 presents the policy performance. The joint prices of sellers converge to the Nash

equilibrium prices rapidly. Meanwhile, each seller achieves a sublinear regret. These experiment

results are consistent with our Theorem 1. As the number of sellers increases, it takes the market

more time to reach the Nash equilibrium.
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Figure 3 Performance of LEGO Policy in sequential price competition with N ∈ {2,5,10} sellers. The left sub-

figure presents ∥p(T ) −p∗∥22, i.e, distance between the eventual prices and the Nash equilibrium prices.

The right sub-figure presents
∑

i∈N Regi(T ), i.e., the sum of cumulative regret over all sellers.

6.2. Comparison with Policies of Under-Exploration and Over-Exploration

Our Theorem 1 shows that an optimal order-of-
√
T regret is achieved when each seller has a bal-

anced exploration phase length of O(
√
T ). This subsection further shows that under-exploration

and over-exploration both cause larger regret. Specifically, we let each seller apply the LEGO policy

with exploration phase length τi = ιiT
1
3 for under-exploration, τi = ιiT

1
2 for balanced exploration,

and τi = ιiT
2
3 for over exploration. ιi is sampled from [1,2]. Other settings are the same as those

in Subsection 6.1. Figure 4 presents the policy performance. When sellers employ balanced explo-

ration, their regret increases relatively slowly. Particularly, the log-log plot (b) of Figure 4 indicates

that the regret is Õ(
√
T ) under balanced exploration, which is consistent with Theorem 1. In

contrast, the regret is approximately O(T
2
3 ) (as suggested by the slope in the log-log plot) under

under- or over-exploration. This is consistent with our analysis: under-exploration is associated

with an order-of-T− 1
3 estimation error that causes regret of O(T · T− 1

3 ) = O(T
2
3 ) in the gradient

optimization phase, while over-exploration directly causes regret of O(T
2
3 ) in the exploration phase.
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(a) Sum of cumulative regret over all sellers
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(b) Log–Log plot of the sum of cumulative regret
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Figure 4 Impact of exploration phase length on the performance of LEGO policy in sequential price competition.

Under-exploration, balanced exploration, and over-exploration respectively mean that each seller applies

the LEGO policy with exploration phase length τi = ιiT
1
3 , τi = ιiT

1
2 , and τi = ιiT

2
3 (i∈N ). Performance

is measured by
∑

i∈N Regi(T ), i.e., the sum of cumulative regret over all sellers. Sub-figure (b) is a

log-log plot with base 10 of Sub-figure (a). In Sub-figure (b), the slopes of curves for under-exploration,

balanced exploration, and over-exploration are (0.59,0.49,0.66) when N = 2, (0.65,0.51,0.66) when

N = 5, and (0.65,0.51,0.66) when N = 10.

6.3. Robustness of LEGO Policy in Step Sizes

Our numerical experiments show that seller step sizes have a minor impact on the order-of- 1√
T

convergence rate to Nash equilibrium and the order-of-
√
T regret in Theorem 1. We test our LEGO

policy with sellers applying proposed step sizes η
(t)
i = 1

2t
(as in Theorem 1), square root step sizes

η
(t)
i = 1

2
√
t
, and cube root step sizes η

(t)
i = 1

2 3√t
(i ∈N , t > τi). Other settings are the same as those

in Subsection 6.1. Figure 5 indicates similar policy performance under different step sizes.

7. Concluding Remarks

We consider multiple sellers selling a single type of product with unlimited inventories over a selling

horizon of T periods. In each period, each seller simultaneously posts their price and observes

their private demand, which depends on the prices of all sellers following a noisy and unknown

linear model. Sellers can observe the historical prices of competitors but do not know the demand

of competitors. We propose a decentralized phased LEGO policy. Under our policy, each seller
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(a) Log–Log plot of the distance from eventual prices to Nash equilibrium prices
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(b) Log–Log plot of the sum of cumulative regret over all sellers
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Figure 5 Robustness of LEGO policy in sequential price competition against different step sizes. Proposed, square

root, and cube root step sizes respectively mean that each seller applies the LEGO policy with step

size η
(t)
i = 1

2t
, η

(t)
i = 1

2
√
t
, and η

(t)
i = 1

2 3√t
(i ∈ N , t > τi). In Sub-figure (b), the curve of proposed step

sizes overlaps with the curve of square root step sizes. Sub-figure (a) presents ∥p(T )−p∗∥22, i.e, distance

between the eventual prices and the Nash equilibrium prices. Sub-figure (b) presents
∑

i∈N Regi(T ),

i.e., the sum of cumulative regret over all sellers.

partitions the selling horizon into two phases: an exploration phase focused on estimating private

parameters, and a gradient optimization phase focused on adjusting prices based on estimated

gradient feedback. Sellers may have private exploration phase lengths. We demonstrate that, if each

seller privately employs an order-of-
√
T policy (that is, their exploration phase length is of the same

order as
√
T ), each seller achieves a worst-case regret of Õ

(√
T
)
, which matches the problem lower

bound. Furthermore, the joint prices of sellers at the end of the selling horizon will converge to Nash

equilibrium prices at a rate of O( 1√
T
). The joint prices are also a vector of ϵ-Nash equilibrium prices

with probability 1−O
(

1

ϵ
√
T

)
for ϵ > 0. Our analysis further demonstrates that if each seller knows

their individual price sensitivity coefficient, a gradient optimization policy achieves an improved

regret of O(logT ) while seller prices converge to Nash equilibrium at a rate of O( 1
T
). This indicates

that the unknown individual price sensitivity contributes to the major difficulty of dynamic pricing

in sequential competition and forces regret to the order of
√
T in the worst case.
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Besbes O, Sauré D (2016) Product assortment and price competition under multinomial logit demand. Production and Opera-
tions Management 25(1):114–127.

Besbes O, Zeevi A (2012) Blind network revenue management. Operations research 60(6):1537–1550.

Besbes O, Zeevi A (2015) On the (surprising) sufficiency of linear models for dynamic pricing with demand learning.Management
Science 61(4):723–739.

Birge JR, Chen H, Keskin NB, Ward A (2024) To interfere or not to interfere: Information revelation and price-setting incentives
in a multiagent learning environment. Operations Research .

Bravo M, Leslie D, Mertikopoulos P (2018) Bandit learning in concave n-person games. Advances in Neural Information
Processing Systems 31.

Broder J, Rusmevichientong P (2012) Dynamic pricing under a general parametric choice model. Operations Research 60(4):965–
980.

Calvano E, Calzolari G, Denicolo V, Pastorello S (2020) Artificial intelligence, algorithmic pricing, and collusion. American
Economic Review 110(10):3267–3297.
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Appendix A: Summary of Major Notation

Table 1 summarizes the major mathematical notation used in the manuscript.

Table 1: Major notation and their definitions

Notation Definition

αi, αi, ᾱi linear demand parameter for seller i and bounds

βi, β
i
, β̄i linear demand parameter for seller i and bounds

b̃ constant defined in (12)

b constant defined in (17)

C1,C0 constants in (13), defined in (12)

χ
(t)
i step size of seller i when computing estimators

di constant in (33), defined in (12)

D constant defined in (12)

Di exploration price distribution of seller i

∆ L2-normed error of estimators {β̂i}i∈N

η
(t)
i step size of seller i in period t when updating prices

ε
(t)
i ,εεε(t) demand noise

F(t)/F(t)
i information filtration of all sellers/seller i

γγγi, γ̄i linear demand parameters for seller i and bound

hi constant defined in (12)

ι, ῑ constants in bounds of exploration phase length in Theorem 1

κ constant in Assumption 2

λmin, λmax minimal and maximal eigenvalues in Assumption 1

δ constant defined in (17)

µ constants in Lemma 4, defined in (12)

N,N number of sellers and the set of sellers

ν step size coefficient ratio in Theorems 1 and 2

ω constant defined in (12)

p
(t)
i /p(t)/p

(t)
−i price (vector) of seller i/all sellers/competitors in period t

p∗
i /p

∗/p∗
−i price (vector) of seller i/all sellers/competitors at Nash equilibrium

pϵ
i/p

ϵ/pϵ
−i price (vector) of seller i/all sellers/competitors at ϵ-Nash equilibrium

p
i
, p̄i price bounds of seller i

P/Pi support of joint prices/seller i’s price

Π projection function

ϕ
(t)
i estimated gradient of seller i in period t

Ri cumulative average revenue of seller i

Regi regret of seller i relative to dynamic benchmark

ρ constant in (14), defined in (12)

T,T selling horizon length and the set of periods

τi separation period of seller i

τmin, τmax minimum and maximum of τi over i

U0 bound of demand noise

U1 bound of feedback second moment in Lemma 2, defined in (12)

Uℓ constant in (39), defined in (12)

υi step size coefficient of seller i when updating estimators

y
(t)
i /y(t) demand (vector) of seller i/all sellers

ζi step size coefficient of seller i when updating prices



Authors’ names blinded for peer review 35

Appendix B: Proof of Theorems and Lemmas

B.1. Proof of Lemma 1

We leverage the contraction mapping theorem. For p= (pi,p−i)∈P and i∈N , define

Γi(p) :=
αi +γγγ⊤

i p−i

2βi

, Γ∗
i (p) :=ΠPi

(
Γi(p)

)
=ΠPi

(αi +γγγ⊤
i p−i

2βi

)
. (29)

Given the joint price vector p∈P, the average revenue of seller i is pi · (αi−βipi+γγγ⊤
i p−i), which is

a strongly concave function in pi due to βi > 0. When competitor prices are fixed, pi =Γi(p) would

maximize the average revenue. Mapping this to seller i’s price support yields that, to maximize

individual average revenue, the best-response price of seller i is Γ∗
i (p) = ΠPi

(
Γi(p)

)
. This implies

that the Nash equilibrium prices p∗ defined in (4) are also solutions to p∗i =Γ∗
i (p

∗), i∈N . In other

words, p∗ are a fixed point for the mapping ΓΓΓ∗ := (Γ∗
i )i∈N on the compact space P; i.e., ΓΓΓ∗(p∗) = p∗.

To show that Nash equilibrium prices p∗ exist and are unique, we only need to prove that ΓΓΓ∗

is a contraction mapping. For any p,p′ ∈ P, we have that |Γ∗
i (p) − Γ∗

i (p
′)| ⩽ |Γi(p) − Γi(p

′)| =∣∣∣γγγ⊤
i (p−i−p′

−i)

2βi

∣∣∣⩽ ∥γγγi∥1·∥p−i−p′
−i∥∞

2βi
⩽ ∥γγγi∥1

2βi
· ∥p−p′∥∞ ⩽ 1

2κ
· ∥p−p′∥∞, i∈N , where the last inequality

is due to Assumption 2. This implies

∥ΓΓΓ∗(p)−ΓΓΓ∗(p′)∥∞ ⩽
1

2κ
· ∥p−p′∥∞, p,p′ ∈P. (30)

Since κ⩾ 1, ΓΓΓ∗ is a contraction mapping on the compact space P under the supremum norm.

Because ΓΓΓ∗(p∗) = p∗, (30) indicates

∥ΓΓΓ∗(p)−p∗∥∞ ⩽
1

2κ
· ∥p−p∗∥∞, p∈P. (31)

B.2. Proof of Lemma 2

Consider i ∈ N . When t = τi, we have ϕ
(t)
i = 0 and E[(ϕ(t)

i )2 |F (t′)] = 0 ⩽ U1. Then we only need

to prove for all t > τi. For simplicity of notation, let us write the conditional expectation Ẽ[·] :=
E[· |F (t′)]. By (10), we have

Ẽ[ϕ(t)
i ]2 =Ẽ

[
(y

(t)
i − β̂ip

(t)
i )2

]
= Ẽ

{
E
[
(y

(t)
i − β̂ip

(t)
i )2

∣∣F (t−1),p(t)
]}

=Ẽ
{
Var

[
y
(t)
i − β̂ip

(t)
i

∣∣F (t−1),p(t)
]
+E2

[
y
(t)
i − β̂ip

(t)
i

∣∣F (t−1),p(t)
]}

=Ẽ
{
Var

[
y
(t)
i − β̂ip

(t)
i

∣∣F (t−1),p(t)
]}

+ Ẽ
{
E2

[
y
(t)
i − β̂ip

(t)
i

∣∣F (t−1),p(t)
]}

=Ẽ
{
Var

[
ε
(t)
i

∣∣F (t−1),p(t)
]}

+ Ẽ
{
E2

[
αi −βip

(t)
i +γγγ⊤

i p
(t)
−i − β̂ip

(t)
i

∣∣F (t−1),p(t)
]}

⩽U0 + Ẽ
{
E2

[
max{αi −βip

(t)
i +γγγ⊤

i p
(t)
−i, β̂ip

(t)
i }

∣∣F (t−1),p(t)
]}

(due to E[ε(t)i ] = 0, E[ε(t)i ]2 ⩽U0, αi −βip
(t)
i +γγγ⊤

i p
(t)
−i ⩾ 0, and β̂ip

(t)
i ⩾ 0)

⩽U0 +
(
max{ᾱi −β

i
p
i
+ γ̄imax

j∈N
p̄j, β̄ip̄i}

)2
⩽U0 +max

{
(ᾱi −β

i
p
i
+ γ̄imax

j∈N
p̄j)

2, β̄2
i p̄

2
i

}
⩽U1.

By recalling the definition of Ẽ[·], we have E[(ϕ(t)
i )2 |F (t′)]⩽U1.
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B.3. Proof of Lemma 3

Consider a price vector p(t) ∈ P in period t ∈ T . For seller i ∈ N , fix the competitor prices p
(t)
i

and define function f(p) = p · (αi − βip+γγγ⊤
i p

(t)
−i), which represents the average revenue of seller i

in period t if seller i has offered a price p. The average revenue function f is quadratic, strongly

concave, and 2βi-smooth. f(p) is maximized when p= p̃ :=
αi+γγγ⊤

i p
(t)
−i

2βi
. By definition, we have p̃⩾

max
{αi−γ̄i maxj∈N\{i} p̄j

2βi
,0
}

and p̃ ⩽
αi+γ̄i maxj∈N\{i} p̄j

2βi
. Due to Assumption 3, we have p̃ ⩾ p

i
and

p̃⩽ p̄i. Thus, p̃∈Pi is a valid price of seller i and f ′(p̃) = 0. Then we have

f(p̃)− f(p
(t)
i ) =− f ′(p̃)(p

(t)
i − p̃)− f ′′(p̃)

2
(p

(t)
i − p̃)2 ⩽ βi(p

(t)
i − p̃)2 (due to f ′(p̃) = 0, f ′′(p̃) =−2βi)

=βi ·
(
p
(t)
i −Γ∗

i (p
(t))

)2
(due to definitions of p̃ and Γ∗

i , and p̃∈Pi)

⩽βi · ∥p(t) −ΓΓΓ∗(p(t))∥2∞ ⩽ βi · (∥p(t) −p∗∥∞ + ∥ΓΓΓ∗(p(t))−p∗∥∞)2

⩽βi · (2∥p(t) −p∗∥∞)2 = 4βi · ∥p(t) −p∗∥2∞ (due to (31))

⩽4βi · ∥p(t) −p∗∥22 ⩽ 4β̄i · ∥p(t) −p∗∥22. (32)

By the definition of regret Regi in (3), we have that Regi(t)− Regi(t− 1) = E
[
f(p̃)− f(p

(t)
i )

]
⩽

4β̄i ·E
[
∥p(t) −p∗∥22

]
.

B.4. Proof of Lemma 4

In Lemma 3, (32) has shown that, for seller i, f(p̃)−f(p
(t)
i )⩽ 4β̄i ·∥p(t)−p∗∥22. Because p̃ maximizes

f , we have f(p
(t)
i ) ⩾ f(p′i)− 4β̄i · ∥p(t) − p∗∥22 for all p′i ∈ Pi. Because ∥p(t) − p∗∥22 ⩽ µϵ and µ =

1

4maxi∈N β̄i

, we have f(p
(t)
i )⩾ f(p′i)− 4β̄i · ∥p(t) −p∗∥22 ⩾ f(p′i)− ϵ for all p′i ∈ Pi. By recalling the

definitions of average revenue function f and ϵ-Nash equilibrium prices, this set of inequalities

suggests p(t) is a vector of ϵ-Nash equilibrium prices.

B.5. Proof of Inequality (13)

Consider i∈N . For simplicity of notation, let us write

θθθ∗i := (αi, βi,γγγi)
⊤, θ̂θθ

(t)

i := (α̂
(t)
i , β̂

(t)
i , γ̂γγ(t)

i )⊤, x(t) := (1,−p
(t)
i ,p

(t)
−i)

⊤.

θθθ∗i , θ̂θθ
(t)

i , and x(t) are all column vectors in RN+1. We write the parameter space as

Θi := {(α,β,γγγ) |αi ⩽ α⩽ ᾱi, βi
⩽ β ⩽ β̄i,∥γγγ∥1 ⩽ γ̄i}.

Then we have

∥θθθ′ −θθθ′′∥22 ⩽ di, θθθ′,θθθ′′ ∈Θi. (33)
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Subsubsections B.5.1–B.5.2 will respectively prove the following two inequalities.

E
[
∥θ̂θθ

(τmin+1)

i −θθθ∗i ∥22
]
⩽

C0

τmin

, (34)

E
[
∥θ̂θθ

(τi+1)

i −θθθ∗i ∥22
]
⩽E

[
∥θ̂θθ

(τmin+1)

i −θθθ∗i ∥22
]
+

υ2
iUℓ

τmin

. (35)

Recall that θ̂θθ
(t)

i = (α̂
(t)
i , β̂

(t)
i , γ̂γγ(t)

i )⊤. Therefore, inequalities (34) and (35) respectively have the fol-

lowing interpretations. (i) Seller i’s estimator (α̂
(t)
i , β̂

(t)
i , γ̂γγ(t)

i ) converges at a rate of C0
t

during the

common exploration periods from t= 1 to t= τmin. (ii) After period τmin, although seller i’s esti-

mator (α̂
(t)
i , β̂

(t)
i , γ̂γγ(t)

i ) may not continue to become more accurate, it does not become significantly

less accurate either: from period t= τmin to t= τi, the error of (α̂
(t)
i , β̂

(t)
i , γ̂γγ(t)

i ) increases by O( 1
τmin

).

Combining (34)–(35), we have that

E[|β̂i −βi|2] =E[|β̂(τi+1)
i −βi|2]⩽E

[
∥θ̂θθ

(τi+1)

i −θθθ∗i ∥22
]
⩽

C0

τmin

+
υ2
iUℓ

τmin

, (36)

and E
[∑

i∈N |β̂i − βi|2
]
⩽ C0N

τmin
+

Uℓ
∑

i∈N υ2
i

τmin
⩽ C0N

ι
√
T
+

Uℓ
∑

i∈N υ2
i

ι
√
T

= C1√
T
. This completes the proof of

(13).

Before presenting the proof of (34)–(35), we first define useful functions and constants. For t∈ T ,

define the cost function

ℓ(t)(θθθi) =
1

2
· (θθθ⊤i x(t) − y

(t)
i )2, θθθi ∈Θi.

The gradient and the Hessian of the cost function are respectively

∇ℓ(t)(θθθi) = (θθθ⊤i x
(t) − y

(t)
i ) ·x(t), ∇2ℓ(t)(θθθi) = x(t)x(t)⊤, θθθi ∈Θi. (37)

We note that the update rule (8) can be recast as

θ̂θθ
(t+1)

i =ΠΘi

(
θ̂θθ
(t)

i −χ
(t)
i ∇ℓ(t)(θ̂θθ

(t)

i )
)
, t∈ {1,2, . . . , τi}. (38)

As proved in Subsubsection B.5.3, we have

E
[
∥∇ℓ(t)(θθθi)∥22

]
⩽Uℓ, θθθi ∈Θi, t∈ T . (39)

According to Assumption 1, we have

λminI≼E[x(t)x(t)⊤ |F (t−1)]≼ λmaxI, t∈ {1,2, . . . , τmin}. (40)
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B.5.1. Proof of Inequality (34). For all t∈ {1,2, . . . , τi}, we have that

∥θ̂θθ
(t+1)

i −θθθ∗i ∥22 =∥ΠΘi

(
θ̂θθ
(t)

i −χ
(t)
i ∇ℓ(t)(θ̂θθ

(t)

i )
)
−θθθ∗i ∥22 ⩽ ∥θ̂θθ

(t)

i −χ
(t)
i ∇ℓ(t)(θ̂θθ

(t)

i )−θθθ∗i ∥22

(due to (38) and definition of projection ΠΘi
(·))

=∥θ̂θθ
(t)

i −θθθ∗i ∥22 + ∥χ(t)
i ∇ℓ(t)(θ̂θθ

(t)

i )∥22 − 2χ
(t)
i (θ̂θθ

(t)

i −θθθ∗i )
⊤∇ℓ(t)(θ̂θθ

(t)

i )

=∥θ̂θθ
(t)

i −θθθ∗i ∥22 + ∥χ(t)
i ∇ℓ(t)(θ̂θθ

(t)

i )∥22 − 2χ
(t)
i (θ̂θθ

(t)

i −θθθ∗i )
⊤x(t) · (θ̂θθ

(t)⊤
i x(t) − y

(t)
i ) (by (37))

=∥θ̂θθ
(t)

i −θθθ∗i ∥22 + ∥χ(t)
i ∇ℓ(t)(θ̂θθ

(t)

i )∥22 − 2χ
(t)
i (θ̂θθ

(t)

i −θθθ∗i )
⊤x(t) ·

(
(θ̂θθ

(t)

i −θθθ∗i )
⊤x(t) − ε

(t)
i

)
=∥θ̂θθ

(t)

i −θθθ∗i ∥22 + ∥χ(t)
i ∇ℓ(t)(θ̂θθ

(t)

i )∥22 − 2χ
(t)
i (θ̂θθ

(t)

i −θθθ∗i )
⊤x(t)x(t)⊤(θ̂θθ

(t)

i −θθθ∗i )

+ 2χ
(t)
i ε

(t)
i (θ̂θθ

(t)

i −θθθ∗i )
⊤x(t). (41)

For all t∈ {1,2, . . . , τmin}, taking expectations for both sides of (41) yields that

E
[
∥θ̂θθ

(t+1)

i −θθθ∗i ∥22
]
⩽E

[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
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2
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∥∇ℓ(t)(θ̂θθ
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i )∥22
]
− 2χ

(t)
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[
(θ̂θθ

(t)

i −θθθ∗i )
⊤x(t)x(t)⊤(θ̂θθ

(t)

i −θθθ∗i )
]

(due to independence of ε
(t)
i and E[ε(t)i ] = 0)

⩽E
[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
]
+χ

(t)
i

2
Uℓ − 2χ

(t)
i E

[
E
[
(θ̂θθ

(t)

i −θθθ∗i )
⊤x(t)x(t)⊤(θ̂θθ

(t)

i −θθθ∗i ) |F (t−1)
]]

(due to inequality (39))

=E
[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
]
+χ

(t)
i

2
Uℓ − 2χ

(t)
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[
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(t)

i −θθθ∗i )
⊤E[x(t)x(t)⊤ |F (t−1)](θ̂θθ

(t)

i −θθθ∗i )
]

(due to (θ̂θθ
(t)

i −θθθ∗i ) is F (t−1)-measurable)

⩽E
[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
]
+χ
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i

2
Uℓ − 2χ

(t)
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[
(θ̂θθ
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⊤(λminI)(θ̂θθ

(t)

i −θθθ∗i )
]

(due to inequality (40))

=E
[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
]
+

υ2
iUℓ

t2
− 2λminυi

t
E
[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
]

(due to definition of χ
(t)
i )

=
(
1− 2λminυi

t

)
·E

[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
]
+

υ2
iUℓ

t2
. (42)

Recall the definition of hi =
υ2
i Uℓ

2λminυi−1
in (12). Plugging this into (41) yields that, for all t ∈

{1,2, . . . , τmin},

E
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∥θ̂θθ
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i −θθθ∗i ∥22
]
⩽
(
1− 2λminυi

t
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+
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)
·E
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+
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t

)
·E

[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
]
+

2λminυihi

t2
− hi

t
+

hi
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.

This can be written as(
E
[
∥θ̂θθ

(t+1)

i −θθθ∗i ∥22
]
− hi

t+1

)
⩽
(
1− 2λminυi

t

)
·
(
E
[
∥θ̂θθ

(t)

i −θθθ∗i ∥22
]
− hi

t

)
, t∈ {1,2, . . . , τmin}.
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Therefore, if τmin ⩾ ⌈2λminυi⌉, we have that

E
[
∥θ̂θθ

(τmin+1)

i −θθθ∗i ∥22
]
− hi

τmin +1
⩽
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u=⌈2λminυi⌉
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u
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(
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]
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)
(due to 1− 2λminυi

u
⩾ 0 for u⩾ ⌈2λminυi⌉)

⩽
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u
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u
)
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u
)
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(due to (33) and 2λminυi > 1 as in Assumption 1)
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di ⩽
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.

This suggests E
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]
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⩽ hi+(2λminυi+1)di
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. If τmin < ⌈2λminυi⌉, we

also have E
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. Thus, we have E
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⩽ C0

τmin
, which is (34).

B.5.2. Proof of Inequality (35). For all t∈ {1,2, . . . , τi}, taking expectations for both sides of

(41) yields that
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(due to independence of ε
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]
+

υ2
iUℓ
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. (due to definition of χ

(t)
i ) (43)

Summing the above inequality over t= τmin +1 to τi yields that

E
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.

This completes the proof of (35).

B.5.3. Proof of Inequality (39). We have

E
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This completes the proof of (39).

B.6. Proof of Inequality (15)

Define ϕ̃
(t)
i := y

(t)
i −βip

(t)
i for t∈ {τi +1, τi +2, . . . , T} and i∈N . Then we have

ϕ
(t)
i = ϕ̃

(t)
i +(βi − β̂i)p

(t)
i , t∈ {τi +1, τi +2, . . . , T}. (44)

Similar to (18), for all t∈ {τmax +1, τmax +2, . . . , T − 1}, we have that
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Taking conditional expectations Ẽ[·] for both sides yields that
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(due to the bound of Ẽ[ϕ(t)

i ]2 in Lemma 2, definition of ϕ̃
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i , and Cauchy-

Schwarz inequality)
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