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Given data on the choices made by consumers for different offer sets, a key challenge is to develop parsimonious

models that describe and predict consumer choice behavior while being amenable to prescriptive tasks

such as pricing and assortment optimization. The marginal distribution model (MDM) is one such model,

which requires only the specification of marginal distributions of the random utilities. This paper aims to

establish necessary and sufficient conditions for given choice data to be consistent with the MDM hypothesis,

inspired by the utility of similar characterizations for the random utility model (RUM). This endeavor leads

to an exact characterization of the set of choice probabilities that the MDM can represent. Verifying the

consistency of choice data with this characterization is equivalent to solving a polynomial-sized linear program.

Since the analogous verification task for RUM is computationally intractable and neither of these models

subsumes the other, MDM is helpful in striking a balance between tractability and representational power.

The characterization is convenient to be used with robust optimization for making data-driven sales and

revenue predictions for new unseen assortments. When the choice data lacks consistency with the MDM

hypothesis, finding the best-fitting MDM choice probabilities reduces to solving a mixed integer convex

program. The results extend naturally to the case where the alternatives can be grouped based on the

similarity of the marginal distributions of the utilities. Numerical experiments show that MDM provides

better representational power and prediction accuracy than multinominal logit and significantly better

computational performance than RUM.
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1. Introduction
Discrete choice models have been used extensively in economics (Allenby and Ginter 1995), marketing

(McFadden 1986), healthcare (de Bekker-Grob et al. 2018), transportation (Ben-Akiva and Lerman

1985), and operations management (Talluri and Van Ryzin 2004). Such models describe the observable

distribution of demand from the behavior of one or more consumers who choose their most preferred

alternative from a discrete collection of alternatives.

As choice models specify the conditional probability distribution over any offer set, they are

inherently high dimensional. Given data on the choices made by consumers over a limited collection

of offer sets (also referred as assortments), the specification of a choice model hypothesis is essential

in linking data from the observed offer sets to predictions for new offer sets for which no data is

available. The classical multinomial logit choice model (MNL) derived by Luce (1959) and Plackett

(1975) is among the simplest and most widely used choice model. It stipulates that the ratio of
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choice probabilities for any two alternatives i and j does not depend on any alternatives other than

i and j. A popular model at the expressive end of the spectrum is the random utility model (RUM)

which hypothesizes that the utilities of the alternatives are random variables and the consumers are

utility maximizers. In settings with finite alternatives, MNL is subsumed by RUM and a generic

RUM is describable by a distribution over the rankings (or preference lists) of the alternatives

(Mas-Colell et al. 1995). Such a description of RUM over n alternatives requires about n! parameters,

and even the task of verifying whether given choice data is consistent with the RUM hypothesis is

computationally intractable (see Jagabathula and Rusmevichientong 2019,Chierichetti et al. 2023).

There has been a recent surge of interest in developing choice models with good representational

power using machine learning techniques. Examples of such models include those proposed by Wang

et al. (2020), Sifringer et al. (2020) and Aouad and Désir (2022), who utilize neural networks to fit

expressive utilities within the context of MNL and RUM hypotheses. Additionally, the decision forest

choice model (Chen and Mišić 2022, Chen et al. 2019) has been shown to be capable of approximating

any choice data with increasing forest depth. The expressiveness of these models however comes

at the cost of requiring significant amounts of data and computation to learn. Furthermore, it has

been observed that the reliability of economic information obtained from deep neural network based

models is compromised when the data size is small (see Wang et al. 2020). Therefore, a natural

question is to examine the representational power of other choice models and to identify choice

model hypotheses that offer a balance between richer representational power and tractability while

allowing for robust procedures for estimation and prediction from limited data.

1.1. The choice model and the research questions

An alternative to RUM in offering a substantial generalization to MNL is the marginal distribution

model (MDM) proposed by Natarajan et al. (2009). It subsumes MNL (see Mishra et al. 2014) and

the well-known additive perturbed utility (APU) model treated in Fudenberg et al. (2015). Specifying

an MDM choice model requires only the specification of the marginal distributions of the random

utilities of the alternatives. Then the MDM choice probabilities are computed with the extremal

distribution maximizing the expected consumer utility over all joint distributions with the given

collection of marginals. A precise description of MDM is provided in Section 2. A key advantage

of this model is that it allows choice probabilities to be readily computed from tractable convex

optimization formulations. Besides tractability, MDM has been shown to exhibit good empirical

performance in various applications using real-world datasets (see Natarajan et al. 2009, Mishra

et al. 2014, Ahipasaoglu et al. 2019, 2020, Yan et al. 2022, Liu et al. 2022). More recently, price

optimization has been shown to be computationally tractable with MDM (see Yan et al. 2022)

and a half approximation guarantee has been developed for profit-nested heuristic in assortment
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optimization (see Ahipasaoglu et al. 2020). The formulation of MDM has also become useful in

deriving prophet inequalities for Bayesian online selection problems (see Feldman et al. 2021) and

solving smoothed optimal transport formulations (see Taşkesen et al. 2022).

Although a general specification of MDM does not impose restrictions on the marginal distributions

of the random utilities, the estimation of MDM from data in practice typically requires first

committing to an appropriate parametric family for the marginal distributions of the utilities (an

exception in Yan et al. 2022 which uses piece-wise linear marginal cumulative distribution functions).

Upon fixing suitable parametric families for the marginal distributions, the respective parameters

are estimated from data using a procedure like maximum-likelihood and the corresponding choice

probability predictions are made using convex optimization (see, e.g., Mishra et al. 2014). Fixing the

“right” parametric families can however be a tricky exercise and is prone to suffering from underfitting

and overfitting issues. Just as how parametric restrictions to RUM are deemed to be restrictive

(see, e.g., Farias et al. 2013), a workflow requiring prior commitment to fixed parametric families of

distributions does not allow one to leverage the full modeling power offered by MDM to extract as

much structural information as possible from the data.

Though one may wish to perform data-driven estimation and prediction under the MDM hypothesis,

it is currently unknown how to do so given choice data across different offer sets without imposing

additional parametric restrictions on the marginal distributions of utilities. Similar to RUM, does

working with the entirety of MDM lead to intractable formulations? To begin with, is verifying the

consistency of given choice data with MDM computationally tractable?

In order to address these questions and gain an understanding of the representational power of

MDM, this paper seeks to answer the following fundamental question: What is the structure of the

observable sales data that is necessary and sufficient for consistency with the MDM hypothesis? More

formally, suppose that N = {1, . . . , n} is the universe of products, and we have choice data for a

collection S of subsets of N . For each subset S ∈ S, let pi,S ∈ [0,1] denote the fraction of customers

who purchased product i when the assortment S was offered. Our goal is to identify necessary and

sufficient conditions for the choice probability data pS = (pi,S : i∈ S,S ∈ S) to be representable by

an MDM instance. If our investigation leads to a tractable characterization, then we aim to utilize it

to develop data-driven procedures that can leverage the full modeling power of the MDM hypothesis

to make revenue and sales predictions, without restricting one to make parametric distributional

assumptions.

1.2. Contributions

An effort towards addressing these goals leads us to the following contributions in this paper.
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An exact characterization of the choice probabilities represented by MDM and its

tractability. We show that the choice data pS = (pi,S : i ∈ S,S ∈ S) given for a collection of

assortments S is representable by MDM if and only if there exists a utility function U : S → R

representing the preferences expressed across assortments in the choice data; in particular, the utility

U should exhibit a strict preference for an assortment T over another assortment S containing a

common product i if pi,S < pi,T , and exhibit indifference between S and T if pi,S = pi,T ̸= 0 (see

Theorem 1 for a precise statement). The existence of a utility function implies a rational preference

relation (or a ranking) over assortments, and it allows us to make the following deductions regarding

the tractability and representational power of MDM:

• The characterization in Theorem 1, in terms of the existence of a ranking over assortments, lends

itself to be verified with a linear program whose size is polynomial in the number of products and

assortments. This is in contrast to RUM which requires the existence of a distribution over the n!

rankings possible for n products. Thus, unlike RUM, verifying the consistency of given choice

data with the MDM hypothesis can be accomplished in polynomial time.

• The collection of MDM representable choice probabilities possesses a non-zero measure when con-

sidered relative to the collection of all possible choice probabilities. Contrast this with parametric

family alternatives with a fixed number of parameters such as multinomial logit or nested logit

which have zero measure. Additionally, the characterization in Theorem 1 reveals that MDM and

RUM do not subsume each other in terms of the choice probabilities they can represent.

A nonparametric data-driven approach to prediction and estimation. As the sales data

available in practice is often inadequate to entirely specify the probabilistic behavior of the utilities,

we utilize the nonparametric MDM characterization in Theorem 1 together with robust optimization

as the basis for making sales and revenue predictions for any new assortment with no prior sales data.

Specifically, we develop a data-driven approach which builds upon the exact MDM characterization

to produce worst-case estimates of sales and revenues computed over all MDM instances that are

consistent with the given choice data. This robust approach mitigates the risk of misspecification

and renders end-to-end learning feasible for MDM. The characterization can also be used to develop

optimistic best-case estimates, which, along with the worst-case estimates, yield prediction intervals

for sales and revenues over all MDM instances consistent with the given choice data. The procedure

yields narrower intervals for sales and revenue predictions when data for more assortments become

available, as is desirable for any data-driven method.

When the choice data is not fully consistent with the MDM hypothesis, we develop a “limit of

MDM” formulation to quantify the degree of inconsistency. Inspired by the “limits of rationality”

measure proposed in Jagabathula and Rusmevichientong (2019), we define the limit of MDM as
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the smallest loss that can be obtained by fitting MDM to the given choice data. A model which

attains the minimum loss can be interpreted as offering the best fit, within the MDM family, to

any given choice data. This best fitting MDM can be subsequently used to produce robust revenue

and sales predictions as described above. Utilizing the exact MDM characterization in Theorem

1, we reduce the computation of the limit of MDM to the rank aggregation problem (Dwork et al.

2001) and show that it is NP-hard. We develop a mixed integer convex program that is applicable

generally for computing the limit (see Proposition 5). We also propose algorithms whose running

time are polynomial in both the number of alternatives and the size of the assortment collection if

the assortment collection possesses suitable structure (see Corollary 2).

An extension to include product groupings. As an extension of the above study, we consider

the case where the products can be grouped suitably based on the similarity of the marginal

distribution of their utilities. Depending on the grouping of products considered, the resulting

grouped MDM (G-MDM) spans the spectrum of models interpolating between the general MDM

considered above and the APU model. While a general MDM does not require any product grouping,

the APU model corresponds to stipulating that all products are grouped together to have the same

marginal distributions for their utilities. Thus, APU is subsumed by MDM. By flexibly allowing

products to be grouped based on the similarities of their utility distributions, G-MDM imparts

domain knowledge to improve model estimation. We show that the G-MDM also offers a tractable

characterization of the choice probabilities they represent. In turn, this characterization allows the

development of data-driven prediction and estimation methods analogous to those described in

Section 1.2. We supplement these with a procedure based on K-means clustering to identify the

grouping information and validate its effectiveness with synthetic data experiments in Section EC.8.

Numerical insights. We present numerical results based on both synthetic and real data,

which reveal MDM’s utility as a computationally tractable alternative with good representational

power when the assumptions underlying parametric models such as MNL are violated. Experiments

employing real-world data reveal that MDM outperforms MNL in predicting revenue-based assortment

rankings by an average of 27.2% and up to 50% and improves the revenue of the predicted best

assortment by 9.2% on average, with a potential improvement of 22.2% over all the instances

compared to MNL. Together with the experiments using synthetic data, the numerical results reveal

that fixing the marginal distribution family beforehand often leads to inconsistent sales and revenue

predictions that do not lie within the nonparametric prediction intervals. These results underscore

the ability of our proposed data-driven methods to mitigate misspecification risks.

The rest of this paper is organized as follows. We begin with a brief review of related literature

and provide a precise description of MDM in Section 2. We derive the exact characterization of
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MDM representable choice probabilities in Section 3 and discuss its implications for tractability

and representational power. In Sections 4 and 5, we develop data-driven methods for prediction

and estimation as applications of the characterization. We discuss the case where the products can

be grouped based on the similarity of the marginal distribution of their utilities in Section 6. We

conclude with a discussion after presenting the results of numerical experiments in Section 7. Proofs,

illustrative examples, results of additional experiments, and useful additional information on the

experiments are provided in the electronic companion (EC).

2. Related literature and a description of the MDM choice model

We begin with a concise overview of studies that aim to characterize and relate choice probabilities

obtainable under prominent choice model hypotheses. Additionally, we note related results on their

tractability and methods for estimation when equipped with sales data.

2.1. On the characterizations available for choice models

RUM is perhaps the most popular class of models in choice modeling. RUM assumes that the

utility of each alternative i in the collection of products N = {1, . . . , n} takes the form ũi = νi + ϵ̃i,

where ν = (ν1, ..., νn) and ϵ̃= (ϵ̃1, ..., ϵ̃n) denote the deterministic and stochastic parts of the utilities,

respectively. Assuming a joint distribution θ on the random part ϵ̃, the probability of choosing

product i in an assortment S ⊆ N is given by pi,S = Pϵ̃∼θ(i = argmaxj∈S{νj + ϵ̃j}), where the

probability of ties is assumed to be 0. Here note that we do not explicitly model the outside option;

instead, we treat the outside option as one of the products in N . Modeling the joint probability

distribution of the random utilities with specific parametric distribution families leads to parametric

subclasses of RUM such as MNL (see, e.g., McFadden 1973), generalized extreme value model (see,

e.g., McFadden 1978), nested logit model (see, e.g., McFadden 1980), multinomial probit model

(see, e.g., Thurstone 1927, Daganzo 1979), mixed logit model (see, e.g., McFadden and Train 2000),

and the exponomial choice model (see, e.g., Alptekinoğlu and Semple 2016). Several nonparametric

choice models, such as the rank list model (see, e.g., Block and Marschak 1960, Farias et al. 2013)

and the Markov chain choice model (Blanchet et al. 2016), have also proved to be useful in practice.

The Markov chain choice model is a special case of the rank-list model (Berbeglia 2016).

Beginning with Marschak (1960) and Block and Marschak (1960), considerable effort has been

devoted in econometrics towards understanding the restrictions imposed on choice data by the RUM

hypothesis. The class of RUM and the class of rank list models are shown to be equivalent in Block

and Marschak (1960). Falmagne (1978) has shown that a RUM can represent a system of choice

probabilities over all possible assortments if and only if the Block-Marschak conditions are met, see

also Barberá and Pattanaik (1986). McFadden and Richter (1990) has shown that under certain

conditions, the axiom of revealed stochastic preference provides necessary and sufficient conditions
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for the choice probabilities under different assortments that can be recreated by a RUM. McFadden

and Train (2000) has demonstrated that any RUM can be approximated closely by a mixed logit

model. McFadden (2006) adds more conditions that relate to the findings in Falmagne (1978) and

McFadden and Richter (1990). However, verifying these conditions is computationally intractable

when there are a large number of products. Jagabathula and Rusmevichientong (2019) has been

the first to relate the hardness of the stochastically rationalizable property stipulated by RUM to

the notion of choice depth. They provide examples of structured assortment collections for which

verification of consistency with RUM is computationally tractable.

Using a representative agent model (RAM) constitutes another popular optimization based

approach to model choice. In RAM, a single agent makes a choice on behalf of the entire population.

To make her choice, the agent takes into account the expected utility while preferring some degree

of diversification. More precisely, given an assortment S, the representative agent solves

max
{
νTx−C(x) | x∈∆n−1, xi = 0 ∀i /∈ S

}
, (1)

where ∆n−1 = {x ∈ Rn
+|

∑
i∈N xi = 1} is the unit simplex and C(x) : ∆n−1 7→ R is a convex per-

turbation function that rewards diversification. The optimal xi value provides the fraction of the

population that chooses alternative i in assortment S. Hofbauer and Sandholm (2002) has shown

that all RUM can be expressed using a representative agent model under appropriate conditions on

the perturbation functions C(x) (see also Feng et al. 2017).

The APU model in Fudenberg et al. (2015) can be obtained as a special case of RAM in (1) by

taking the additive and separable perturbation C(x) =
∑

i c(xi), where c(x) : [0,1] 7→R is a strictly

convex function. Fudenberg et al. (2015) demonstrates acyclicity and ordinal IIA property, which is

a relaxation of Luce’s IIA condition, as two alternative conditions that characterize the richness of

APU representable choice probabilities. Equipped with these results, Fudenberg et al. (2015) argues

for APU as a considerably simpler and expressive model alternative which helps go beyond RUM

while requiring only the specification of the univariate convex perturbation function c(·).

2.2. The marginal distribution model and related literature

The marginal distribution model (MDM) is a semiparametric choice model that yields choice

probabilities from limited information on the joint distribution of the random utilities. As in RUM,

the starting point of MDM is that the utility of each alternative i in the collection of products

N = {1, . . . , n} takes the form ũi = νi + ϵ̃i, where ν = (ν1, ..., νn) and ϵ̃ = (ϵ̃1, ..., ϵ̃n) denote the

deterministic and stochastic parts of the utilities. MDM only requires the specification of the marginal

distributions F1, . . . ,Fn of the random variables ϵ̃1, . . . , ϵ̃n, and does not impose any independence

assumption among ϵ̃1, . . . , ϵ̃n. To describe the model, let Θ denote the collection of joint distributions
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for ϵ̃ with the given marginal distributions F1, . . . ,Fn. For any assortment S ⊆N , the MDM considers

maximization of expected consumer utility over all distributions in Θ:

sup
θ∈Θ

Eϵ̃∼θ

[
max
i∈S
{νi + ϵ̃i}

]
. (2)

The probability of choosing a product i from the assortment S, given by pi,S = Pϵ̃∼θ∗(i =

argmaxj∈S{νj + ϵ̃j}), is evaluated with the distribution θ∗ which attains the maximum in (2). A

key advantage of this model is that the choice probabilities are readily computable via convex

optimization, as described in Lemma 1 below.

Assumption 1. Each random term ϵ̃i, where i∈N , is an absolutely continuous random variable

with a strictly increasing marginal distribution Fi(·) on its support and E|ϵ̃i|<∞.

Lemma 1. (Natarajan et al. 2009, Mishra et al. 2014, Chen et al. 2022) Under Assumption 1,

the choice probabilities for a distribution which attains the maximum in (2) is unique and is given by

the optimal solution of the following strictly concave maximization problem over the simplex:

max

{∑
i∈S

νixi +
∑
i∈S

∫ 1

1−xi

F−1
i (t)dt

∣∣∣∣∣ ∑
i∈S

xi = 1, xi ≥ 0 ∀i∈ S

}
, (3)

with the convention that F−1
i (0) = limt↓0F

−1
i (t) and F−1

i (1) = limt↑1F
−1
i (t).

The reformulation of MDM in (3) shows that it is a special case of the representative agent

model (1), in which the perturbation function is strictly convex and separable of the form C(x) =

−
∑

i

∫ 1

1−xi
F−1

i (t)dt. If the marginal distributions are identical, MDM reduces to the additive

perturbed utility (APU) model described in Section 2.1. Thus by subsuming the APU model, MDM

provides a probabilistic utility interpretation for APU. Given any assortment S ⊆ N , a vector

(x∗
i : i∈ S)∈R|S| maximizes (3) and yields the MDM choice probabilities pi,S = x∗

i if and only if it

satisfies the following optimality conditions for (3):

νi +F−1
i (1−x∗

i )−λ+λi = 0, ∀i∈ S,

λix
∗
i = 0, ∀i∈ S, (4)∑

i∈S

x∗
i = 1,

x∗
i ≥ 0, λi ≥ 0, ∀i∈ S,

where λ and λi are the Lagrange multipliers associated with the constraints defining the simplex. An

additional assumption that F−1
i (1) =+∞ is often made (see, e.g., Mishra et al. 2014) to guarantee

strictly positive choice probabilities. However, in real datasets, one or more alternatives offered in

an assortment might never be chosen by consumers. In this paper, we allow for this possibility by

permitting the right end point of the support, F−1
i (1), to be possibly finite or infinite.
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2.3. Related estimation approaches

Maximum likelihood estimation is the widely used method for parameter estimation when working

with parametric subclasses of RUM and MDM. One may refer Manski and McFadden (1981), Manski

and Lerman (1977), Cosslett (1981) and Mishra et al. (2014) for illustrations on how one may use

maximum likelihood to estimate parametric models including the MNL model, the multinomial probit

model, and the generalized extreme value model from choice data, after making specific distributional

assumptions under the RUM and MDM modeling paradigms. Farias et al. (2013) offers a major

departure by developing a nonparametric approach which makes revenue predictions under the RUM

hypothesis without imposing restrictive parametric distributional assumptions. In particular, Farias

et al. (2013) showcases the efficacy of using the worst-case expected revenue over the collection of

RUM models that are consistent with the available sales data. Sturt (2021) presents an account of

when these robust RUM revenue predictions can serve as a suitable basis for assortment optimization.

Given an opportunity to collect data by performing pricing experiments, Yan et al. (2022) and Liu

et al. (2022) use a nonparametric approach to identify the MDM objective in (3), upto a constant

shift, by performing sufficient pricing experiments. Our approach for revenue predictions, which is

described in Section 1.2, follows the same philosophy as Farias et al. (2013), but with the novelty of

using the MDM characterization to make predictions that are consistent with the MDM hypothesis.

3. An exact characterization for MDM and its implications

In this section, we first develop necessary and sufficient conditions for the choice probabilities given

by a collection of assortments that are representable by MDM. We follow this up with a discussion

of its implications for tractability and representational power.

3.1. A tractable characterization for MDM

We begin by recalling that N = {1, . . . , n} denotes the universe of the products (or alternatives) and S

denotes the collection of subsets of N for which choice data is available. Each S ∈ S is an assortment

of the products presented to the consumers. For each assortment S ∈ S, let pi,S be the fraction of

population who choose product i∈ S. For any assortment collection S, let IS denote the collection

of all product-assortment pairs (i,S) with i ∈ S and S ∈ S. Then the observed choice probability

collection pS = (pi,S : i ∈ S,S ∈ S) is a non-negative vector in R|IS | and satisfies
∑

i∈S pi,S = 1 for

every S ∈ S. We are interested in identifying necessary and sufficient conditions on the observable

sales data pS which make it consistent with the MDM hypothesis. A natural follow-up question is:

Can these conditions be verified in polynomial time? The following theorem provides an affirmative

answer to these questions.
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Theorem 1 (A tractable characterization for MDM). Under Assumption 1, a choice prob-

ability collection pS is representable by an MDM if and only if there exists a function λ : S →R such

that for any two assortments S,T ∈ S containing a common product i∈N ,

λ(S)>λ(T ) if pi,S < pi,T ,

λ(S) = λ(T ) if pi,S = pi,T ̸= 0.
(5)

As a result, checking whether the given choice data pS satisfies the MDM hypothesis can be accom-

plished by solving a linear program with O(|S|) continuous variables and O(n|S|) constraints.

A proof for Theorem 1 is given immediately following this discussion. Letting U(S) = −λ(S)
for S ∈ S, one may understand the characterization in Theorem 1 as follows: The choice data

pS = (pi,S : i ∈ S,S ∈ S) given for a collection of assortments S is representable by MDM if and

only if there exists a utility function U : S → R satisfying the following two conditions: (i) By

assigning U(S)<U(T ), the utility U should exhibit a strict preference for an assortment T over

another assortment S containing a common product i whenever pi,S < pi,T ; and (ii) by assigning

U(S) =U(T ), it should exhibit indifference between S and T whenever pi,S = pi,T ̸= 0.

Since utility functions represent rational preference relationships (or rankings), one may equivalently

understand the conditions in Theorem 1 as stipulating the existence of a preference relation over the

assortment collection S which is consistent with the partial preferences observed in the choice data.

This characterization for MDM, in terms of the existence of a consistent ranking over assortments, is

in contrast to RUM which requires the existence of a probability distribution over the n! rankings

possible for n products. This is the key reason, why unlike RUM, verifying the consistency of given

choice data with the MDM hypothesis can be done in polynomial time.

Proof. Necessity of (5): Suppose pS is MDM-representable. Then there exist marginal distributions

{Fi : i ∈N} and deterministic utilities {νi : i ∈N} such that for any assortment S ∈ S, the given

choice probability vector (pi,S : i∈ S) and the respective Lagrange multipliers λS,{λi,S : i∈ S} are

obtainable by solving the optimality conditions (4). That is, there exist {λS, λi,S : i∈ S,S ∈ S} for

some fixed choice of {Fi : i∈N} and {νi : i∈N} such that

νi +F−1
i (1− pi,S)−λS +λi,S = 0 ∀(i,S)∈ IS , (6)

λi,S pi,S = 0 ∀(i,S)∈ IS . (7)

For each product i∈N and any two assortments S,T ∈ S containing i as a common product,

λS − νi = λi,S +F−1
i (1− pi,S) and λT − νi = λi,T +F−1

i (1− pi,T ).

If pi,S < pi,T , then λi,S ≥ 0 and λi,T = 0 because of the complementary slackness condition (7). Since

F−1
i (1− p) is a strictly decreasing function over p∈ [0,1], by (6), we obtain:

λS − νi ≥ F−1
i (1− pi,S) > F−1

i (1− pi,T ) = λT − νi.
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Adding νi on both sides, we obtain that the Lagrange multipliers should satisfy λS >λT . If on the

other hand pi,S = pi,T ̸= 0, we have λi,S = λi,T = 0 from the optimality conditions. Then λS − νi =

F−1
i (1− pi,S) = F−1

i (1− pi,T ) = λT − νi. Again, subtracting νi on both sides, we obtain that the

Lagrange multipliers should satisfy λS = λT . Thus, setting λ(S) = λS for all S ∈ S, we see that there

exists a function λ : S →R satisfying (5).

Sufficiency of (5): Given pS and λ : S →R such that (5) holds for all (i,S), (i, T )∈ IS , we next

exhibit a construction of marginal distributions (Fi : i∈N ) and utilities (νi : i∈N ) for MDM. This

construction will be such that it yields the given (pi,S : i∈ S) as the corresponding choice probabilities

from the optimality conditions in (4), for any assortment S ∈ S.

For any product i ∈ N , let Si = {S ∈ S : i ∈ S} denote the subcollection of assortments S ∈ S

which contain the product i and let mi = |Si|. Further, let li denote the number of assortments

containing product i for which pi,S > 0. Here li =mi when the choice probabilities {pi,S : S ∈ Si}

are all non-zero. Equipped with this notation, we construct the marginal distribution Fi(·) for any

product i∈N as follows:

(a) Consider any ordering (S1, S2 . . . , Sli , Sli+1, . . . , Smi
) over the assortments in Si for which λ(S1)≤

λ(S2) ≤ . . . ≤ λ(Sli) < λ(Sli+1) ≤ λ(Sli+2) ≤ . . . ≤ λ(Smi
). With li defined as the number of

assortments in Si for which pi,S > 0, note that it is necessary to have λ(Sli)<λ(Sli+1) whenever

li <mi. This follows from the observations that λ(·) satisfies (5) and pi,Sli
> 0 = pi,Sli+1

. Further,

due to the conditions in (5), the choice probabilities (pi,S : S ∈ Si) must necessarily satisfy the

ordering pi,S1
≥ pi,S2

≥ . . .≥ pi,Sli
> 0 and pi,Sli+1

= pi,Sli+2
= . . . , pi,Smi

= 0.

(b) Construct the cumulative distribution function Fi(·) by first setting Fi(λ(Sk)) = 1− pi,Sk
for

k = 1, · · · , li. With this assignment, we complete the construction of the distribution Fi in

between these points by connecting them with line segments as follows: For any two consecutive

assortments Sk and Sk+1 in the ordering satisfying λ(Sk)< λ(Sk+1), connect the respective

points (λ(Sk),1− pi,Sk
) and (λ(Sk+1),1− pi,Sk+1

) with a line segment (see Figure 1). For k≤ li,

note that if the consecutive assortments Sk and Sk+1 are such that λ(Sk) = λ(Sk+1), then the

corresponding points (λ(Sk),1− pi,Sk
) and (λ(Sk+1),1− pi,Sk+1

) coincide and there is no need

to connect them. Further note that pi,Sk
> pi,Sk+1

when λ(Sk)<λ(Sk+1), because of (5), and

hence the cumulative distribution function Fi is strictly increasing in the interval [λ(S1), λ(Sli)].

(c) Lastly we construct the tails of the distribution Fi as follows: For the right tail, connect

the points (λ(Sli),1− pi,Sli
) and (λ(Sli+1), 1) with a line segment if li <mi. We then have

Fi(x) = 1 for every x≥ λ(Sli+1) and therefore F−1
i (1) = λ(Sli+1). If li =mi, connect the points

(λ(Sli),1− pi,Sli
) and (λ(Sli)+ δ, 1) by choosing any arbitrary δ > 0 (see Figure 1). In this case,

we will have Fi(x) = 1 for every x≥ λ(Sli)+δ. For the left tail, if pi,S1
= 1, then we have Fi(x) = 0

for every x≤ λ(S1). Both the cumulative distribution functions drawn in Figure 1 illustrate



12

this case. On the other hand, if pi,S1
< 1, we use a line segment to connect (λ(S1),1− pi,S1

) and

(λ(S1)− δ, 0) by choosing an arbitrary δ > 0. In this case, Fi(x) = 0 for every x≤ λ(S1)− δ.

x
1− pi,S1

= 0

1
Fi(x)

λ(S1)

1− pi,Sk

λ(Sk)

1− pi,Sk+1

λ(Sk+1)

1− pi,Sli

λ(Sli) λ(Sli+1) x
1− pi,S1

= 0

1
Fi(x)

λ(S1)

1− pi,Sk

λ(Sk)

1− pi,Sk+1

λ(Sk+1)

1− pi,Sli

λ(Sli) λ(Sli)+ δ

(a) (b)
Figure 1 An illustration of the construction of the marginal distribution Fi when: (a) there is an assortment S for

which pi,S = 0 (the case where li <mi) and (b) pi,S > 0 for all assortments with product i (the case where li =mi).

The above construction gives marginal distribution functions (Fi : i ∈N ) which are absolutely

continuous and strictly increasing within its support. We next show that the constructed marginal

distributions yield the given choice probabilities (pi,S : i∈ S), for any assortment S ∈ S, when they

are used in the optimality conditions (4) together with the assignment νi = 0, for i ∈N . In other

words, given pS , we next verify that

F−1
i (1− pi,S)−λ(S)+λi,S = 0, λi,S pi,S = 0, and λi,S ≥ 0, ∀(i,S)∈ IS .

For any (i,S)∈ IS with pi,S > 0, we have from the construction of Fi that Fi(λ(S)) = 1− pi,S. Then

for such pi,S, we see that the optimality condition F−1
i (1− pi,S)−λ(S)+λi,S = 0 readily holds since

the optimality conditions also stipulate that λi,S = 0 when pi,S > 0.

For any (i,S)∈ IS such that pi,S = 0, we have from Steps (a) and (c) of the above construction that

λ(S)≥ λ(Sli+1) = F−1
i (1) = F−1

i (1− pi,S). Then if we take λi,S = λ(S)−λ(Sli+1), we again readily

have F−1
i (1− pi,S)− λ(S) + λi,S = 0. This completes the verification that for any choice data pS

satisfying (5), there exists marginal distributions {Fi : i∈N} and deterministic utilities {νi : i∈N}
which yield pS as the MDM choice probabilities.

Lastly, checking whether the conditions in (5) are satisfied for given choice data pS is equivalent

to testing if there exists an assignment for variables (λS : S ∈ S) and ϵ > 0 such that,

λS ≥ λT + ϵ if pi,S < pi,T ,

λS = λT if pi,S = pi,T ̸= 0,

for all (i,S), (i, T )∈ IS . This is possible in polynomial time by solving a linear program where the

above conditions are formulated as constraints and maximizing ϵ. This linear program involves |S|
variables for (λS : S ∈ S) and one variable for ϵ, and at most n|S| constraints. ■



13

3.2. On the representational power of MDM

For any assortment collection S, let Pmdm(S) denote the collection of choice probabilities for the

assortments in S which are representable by any MDM choice model. We use the notation λ(S) and

λS interchangeably here onwards. Due to the characterization in Theorem 1, we have the following

succinct description for MDM: Pmdm(S) =Projx(ΠS) := {x : (x,λ)∈ΠS} , where ΠS is defined as

ΠS =
{
(x,λ)∈R|IS |×R|S| :xi,S ≥ 0,∀(i,S)∈ IS ,

∑
i∈S

xi,S = 1,∀S ∈ S, (8)

λS >λT if xi,S <xi,T , λS = λT if xi,S = xi,T ̸= 0,∀(i,S), (i, T )∈ IS
}
,

for any assortment collection S. One may understand the set ΠS as the collection of MDM choice

probabilities augmented with the disutilities λ(·) over the assortments. In Theorems 2 and 3 below,

we seek to use the characterization in Theorem 1 to understand the representation power of MDM.

Theorem 2. For any assortment collection S, the collection of choice probabilities represented

by MDM has a positive measure. Specifically, µ
(
Pmdm(S)

)
> 0, where µ is the Lebesgue measure on∏

S∈S ∆S and ∆S denotes the probability simplex ∆S = {(xi,S : i∈ S) : xi,S ≥ 0,∀i∈ S,
∑

i∈S xi,S = 1}.

Theorem 2 brings out the contrast with the representation power of parametric choice models

such as MNL and nested logit. The choice probabilities represented by these parametric alternatives

possess zero Lebesgue measure due to the restrictions imposed by the IIA property overall or within

the nests. In Lemma 2 below, we observe that the choice probabilities modeled by MDM are regular

in the sense that the probability of choosing a specific product i∈ S cannot increase if S is enlarged.

Lemma 2. Suppose that the choice probability collection pS ∈Pmdm(S). Then for any two assort-

ments S,T ∈ S, we have

a) pS satisfies the regularity property, that is, pi,S ≥ pi,T if i∈ S and S ⊆ T ; and

b) pi,S ≤ pi,T if pj,S < pj,T and i, j ∈ S ∩T.

Utilizing the MDM characterization in Theorem 1, Theorem 3 below shows that MDM and RUM do

not subsume each other generally. It also reveals that RUM and MDM have equivalent representational

power as the class of regular choice models, when the assortments collection S has a special

structure, like nested or laminar collections that are frequently encountered in inventory and revenue

management applications. To state Theorem 3, we require the following definitions.

An assortment collection S = {S1, S2, . . . , Sm} is said to be nested if S1 ⊂ S2 ⊂ . . .⊂ Sm for some

indexing of the assortments. In other words, the smaller sets are always contained in the larger sets.

An assortment collection S is said to be laminar if for any two distinct sets S,T ∈ S, either S ⊂ T ,

or T ⊂ S, or S ∩T = ∅. Equivalently, any two sets are either disjoint or related by containment. For

any assortment collection S, let Prum(S) and Preg(S) denote the collection of choice probabilities
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over the assortments in S which are representable by RUM and the class of regular choice models,

respectively. Here regular choice models denote the broad collection of all choice models which satisfy

the aforementioned regularity property in Part (a) of Lemma 2. For any assortment collection S, it

is well-known that Prum(S)⊆Preg(S) (see, e.g., Berbeglia and Joret 2017) and we have from Lemma

2 that Pmdm(S)⊆Preg(S). From the first condition in (5), we observe that the collection Pmdm(S) is

not necessarily a closed set. We use closure
(
Pmdm(S)

)
to denote the closure of Pmdm(S).

Theorem 3 (Relationship between MDM and RUM). Suppose that S is a collection of

assortments formed over n products. Then the following hold:

a) When n= 2, the choice probabilities represented by RUM and MDM coincide; when n= 3, the

collection of choice probabilities represented by MDM is subsumed by that of RUM; and when

n≥ 4, there exist choice probabilities over S that can be represented by both RUM and MDM

and neither models subsume the other: specifically, there exist assortment collections S such that

Pmdm(S) ̸⊂ Prum(S) and Prum(S) ̸⊂ Pmdm(S).
b) If the assortment collection S is either nested or laminar, then the corresponding choice proba-

bilities over S represented by MDM, RUM, and the class of regular models enjoy the following

equivalence regardless of n : Prum(S) = closure
(
Pmdm(S)

)
=Preg(S).

4. A nonparametric approach towards prediction for new assortments
As an application of the exact characterization derived in Theorem 1, we first develop a nonparametric

data-driven approach for making revenue or sales predictions for new assortments with no prior

sales data. The key idea behind the proposed nonparametric approach is as follows. To predict the

revenue or sales for a new assortment, we consider the collection of all MDM choice models which are

consistent with the observed sales data and offer the worst-case expected revenue over this collection

as an estimate for the revenue or sales. Thus, robust optimization serves as the basis in our approach

for allowing data to select a suitable model based on the prediction task at hand.

4.1. A robust optimization formulation for sales and revenue predictions

As in the previous sections, let N = {1, . . . , n} denote the universe of products, S denote the collection

of assortments for which historical choice data, denoted by pS , is available. Suppose that we wish to

make sales or revenue predictions for a new assortment A /∈ S. Utilizing MDM hypothesis to make

predictions is most sensible when the given choice data exhibits the MDM demand characteristics

identified in Theorem 1. Therefore, we begin with the assumption that the choice data pS is MDM-

representable. For i ∈ N , let ri ∈ (0,∞) denote the revenue obtained by selling one unit of the

product i. The collection of all MDM choice probability vectors xA = (xi,A : i ∈ A) for the new

assortment A which are consistent with the observed choice data pS is given by,

UA := {xA : (pS ,xA)∈Pmdm(S ′)} ,
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where S ′ = S ∪{A}. Here, as before, Pmdm(S ′) denotes the collection of all MDM representable choice

probabilities over the assortment collection S ′. The worst-case expected revenue over the consistent

collection UA is then defined as

r(A) := inf
xA∈UA

∑
i∈A

rixi,A. (9)

Due to the exact characterization in Theorem 1, we obtain the following reformulation for r(A).

Proposition 1. Suppose that the given choice data collection pS ∈ Pmdm(S) and A⊆N is an

assortment not in S. Then the worst-case expected revenue r(A) equals,

min
xA,λ∈R|S′|

∑
i∈A

rixi,A

s.t. xi,A ≤ pi,S if λA ≥ λS, ∀i∈A, (i,S)∈ IS , (10a)

xi,A ≥ pi,S if λA ≤ λS, ∀i∈A, (i,S)∈ IS , (10b)∑
i∈A

xi,A = 1,

xi,A ≥ 0, ∀i∈A,

λS > λT if pi,S < pi,T , ∀ (i,S), (i, T )∈ IS ,

λS = λT if pi,S = pi,T ̸= 0, ∀ (i,S), (i, T )∈ IS .

One may also obtain worst-case sales predictions for a product i, when offered within assortment A,

by letting ri = 1 and rj = 0 for j ̸= i in the objective in the reformulation in Proposition 1. Similarly,

replacing the minimization in this reformulation with a maximization yields an best-case (optimistic)

revenue estimate r̄(A).

Observe when choice data is available for a richer assortment collection, it leads to less-conservative

estimate for r(A) and a narrower interval [r̄(A), r(A)] as plausible values for revenue estimates

which are consistent with the given data and the MDM hypothesis. This is because the number of

constraints in the constraint collections (10a)-(10b) is larger when the assortment collection S for

which choice data is available is made richer. In other words, IS1
⊆IS2

when S1 ⊆S2 and therefore

the resulting Pmdm(S2 ∪{A}) is nested within Pmdm(S1 ∪{A}).

4.2. A mixed integer linear formulation for the worst case expected revenue

As a generally applicable approach for evaluating the worst-case revenue r(A), one may model

the “if” conditions in (10a) - (10b) via additional binary variables (δA,S, δS,A : S ∈ S) to obtain the

mixed-integer linear reformulation with O(n|S|) binary variables, O(n+ |S|) continuous variables,

and O(n|S|) constraints as follows.
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Proposition 2. Suppose that the assumptions in Proposition 1 are satisfied. Then for any

0< ϵ< 1/(2|S|), the worst-case expected revenue r(A) equals the value of the following mixed integer

linear program:

min
xA,λ,δ

∑
i∈A

rixi,A

s.t. −δA,S ≤ λA−λS ≤ 1− (1+ ϵ)δA,S, ∀ i∈A, (i,S)∈ IS , (11a)

−δS,A ≤ λS −λA ≤ 1− (1+ ϵ)δS,A, ∀ i∈A, (i,S)∈ IS , (11b)

δA,S − 1 ≤ xi,A− pi,S ≤ 1− δS,A, ∀ i∈A, (i,S)∈ IS , (11c)

−(δA,S + δS,A) ≤ xi,A− pi,S ≤ δA,S + δS,A, ∀ i∈A, (i,S)∈ IS , (11d)

λS −λT ≥ ϵ, ∀ (i,S), (i, T )∈ IS s.t. pi,S < pi,T ,

λS −λT = 0, ∀ (i,S), (i, T )∈ IS s.t. pi,S = pi,T ̸= 0,∑
i∈A

xi,A = 1,

0≤ λA ≤ 1, xi,A ≥ 0, ∀ i∈A, 0 ≤ λS ≤ 1, δA,S, δS,A ∈ {0,1}, ∀S ∈ S.

Likewise, the optimistic expected revenue r̄(A) := supxA∈UA

∑
i∈A rixi,A equals the optimal value

obtained by maximizing over the constraints in the above mixed integer linear program.

4.3. Polynomial-time algorithms for prediction with structured collections

Besides the generally applicable mixed integer linear program in Proposition 2, we develop an

alternative solution approach leveraging special structures, such as nested or laminar structures, in

the assortment collection to evaluate the worst-case revenues r(A) in polynomial time. Corollary 1

and Proposition 3 below show that computing the worst-case expected revenue can be efficient when

the assortment collection S is structured.

Corollary 1. When S ′ is either nested or laminar, evaluating r(A) in (9) is equivalent to solving

the following linear program with O(n) continuous variables and O(n|S|) constraints:

min
xA

∑
i∈A

rixi,A

s.t. xi,A ≤ pi,S, s.t. S ⊂A, ∀i∈A, (i,S)∈ IS ,

xi,A ≥ pi,S, s.t. A⊂ S, ∀i∈A, (i,S)∈ IS ,∑
i∈A

xi,A = 1, xi,A ≥ 0, ∀i∈A.

(12)

The result in Corollary 1 follows from the conclusion in Theorem 3 that closure
(
Pmdm(S ′)

)
=Preg(S ′)

when S ′ is either nested or laminar. Next, we focus on the nested structure and relax the structure

assumption on A. Without loss of generality, when S is nested, let S = {S1, S2, · · · , Sm} such that

S1 ⊂ S2 ⊂ · · · ⊂ Sm. For ease of notation, let S0 and Sm+1 be imaginary sets and set pi,S0
= 1 and

pi,Sm+1
= 0 for any i∈A.
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Proposition 3. Suppose that the assortment collection S is nested. Then for any given A,

r(A) = min
k=0,1,··· ,|S|

Rk

where Rk =min
xA

∑
i∈A

rixi,A

s.t. xi,A ≤ pi,Sk
, ∀i∈A∩Sk,

xi,A ≥ pi,S, ∀i∈A, (i,S)∈ IS , Sk+1 ⊆ S,∑
i∈A

xi,A = 1, xi,A ≥ 0 ∀i∈A.

(13)

Observe that (13) involves |S|+1 linear programs, each with O(n) continuous variables and O(n|S|)

constraints. Thus, both (12) and (13) are tractable.

5. Limit of MDM and the estimation of best-fitting MDM probabilities

Customer preferences captured by choice data need not always satisfy any specific choice model

hypothesis perfectly. Considering choice data instances that are not MDM-representable, we next

seek to quantify the limit or the cost of approximating given choice data with an MDM choice model

and a procedure for identifying MDM-representable choice probabilities offering the best fit.

5.1. A limit of MDM formulation

Given choice data pS and any xS ∈Pmdm(S), suppose that a loss function xS 7→ loss(pS ,xS) measures

the degree of inconsistency in approximating choice data pS with an MDM-consistent choice

probability assignment xS . We take the loss function to be non-negative, strictly convex, and satisfying

the property that loss(pS ,xS) = 0 if and only if xS = pS . Suppose that (wS : S ∈ S) is a vector of

non-negative weights over assortments in S. Then a norm-based loss such as
∑

S∈S wS∥pS −xS∥ or

a Kullback-Liebler divergence based loss such as
∑

S∈S wS

∑
i∈S pi,S log(xi,S/pi,S) serve as prominent

examples among the losses which satisfy these assumptions. For S ∈ S, the weight wS may be taken,

for example, to be the frequency with which the offer set S has been shown to customers in the

choice dataset.

We define the limit of the MDM, denoted by L(pS), as the smallest value of loss(pS ,xS) attainable

by fitting the observed data pS with an MDM choice model:

L(pS) = inf {loss(pS ,xS) : xS ∈Pmdm(S)} . (14)

As is evident from the definition above, evaluating the limit L(pS) can be viewed as identifying a

choice probability assignment x∗
S which is consistent with the MDM hypothesis and is about as close

any MDM model can be to the observed choice data pS . Thus any x∗
S attaining the minimum in

(14) can be seen as offering the best fit, within the MDM family, to the observed choice data. In

particular, suppose we take loss(pS ,xS) =
∑

S∈S wS

∑
i∈S pi,S log(xi,S/pi,S) and the weight wS, for
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S ∈ S, to be equal to the number of observations available for an assortment S in the choice dataset.

Then, as highlighted in Example 2.1 of Jagabathula and Rusmevichientong (2019), x∗
S is a minimizer

in the limit formulation (14) if and only if it maximizes the likelihood. Thus, in this case, a solution

to the limit (14) can be viewed as being obtained from maximum likelihood estimation in the MDM

family without any parametric restrictions.

Besides this use in estimation, one may also use the limit L(pS) as a diagnostic tool for determining

how well MDM is suitable for fitting choice data and comparing it with how effective any parametric

subclass is in accomplishing the same. To see this use at a conceptual level, suppose that x̄S denotes

the choice probabilities obtained by fitting a parametric subclass of MDM, such as MNL (or) marginal

exponential model. Then, as put forward by Jagabathula and Rusmevichientong (2019), one may

view the overall loss captured by loss(pS , x̄S) as below:

loss(pS , x̄S) =L(pS) +
{
loss(pS , x̄S)−L(pS)

}
,

where the second component loss(pS , x̄S)−L(pS) is the incremental cost that comes with employing

a parametric model within the MDM family in order to approximate the choice data. If data suggests

that this incremental parametric cost is higher relative to the limit L(pS), then one should consider

a richer parametric model (or) use the general nonparametric MDM over the chosen parametric

class. If, on the other hand, the loss L(pS) due to MDM itself is large, then MDM should possibly

not be considered as a suitable model for the given choice data.

Recall the characterization Pmdm(S) as the projection {x : (x, λ) ∈ΠS}, where ΠS is defined in

(8). Due to this characterization, we have the following equivalent formulation for the limit L(pS).

Proposition 4. Under Assumption 1, the limit L(pS) equals

min
xS ,λ

∑
S∈S

loss(pS,xS)

s.t. xi,S ≥ xi,T if λS ≤ λT , ∀ (i,S), (i, T )∈ IS ,∑
i∈S

xi,S = 1, ∀S ∈ S,

xi,S ≥ 0, ∀ (i,S)∈ IS .

(15)

The set of MDM-representable choice probabilities Pmdm(S)is non-convex (see, Example EC.3).

The following theorem is based on reducing a specific instance of the formulation (15) to the Kemeny

optimal rank aggregation problem.

Theorem 4. Problem (15) is NP-hard.



19

5.2. A mixed integer convex reformulation for the limit of MDM

Proposition 5 below provides a generally applicable mixed-integer convex reformulation for (15).

Proposition 5. Suppose that Assumption 1 is satisfied. Then for any 0< ϵ< 1/(2|S|), the limit

L(pS) equals the value of the following mixed integer convex program:

min
x,λ,δ

∑
S∈S

loss(pS,xS)

s.t. − δS,T ≤ λS −λT ≤ 1− (1+ ϵ)δS,T , ∀ (i,S), (i, T )∈ IS ,

δS,T − 1≤ xi,S −xi,T ≤ 1− δT,S, ∀ (i,S), (i, T )∈ IS ,

− (δS,T + δT,S)≤ xi,S −xi,T ≤ δS,T + δT,S, ∀ (i,S), (i, T )∈ IS ,∑
i∈S

xi,S = 1, ∀S ∈ S, xi,S ≥ 0, ∀ (i,S)∈ IS ,

0≤ λS ≤ 1, ∀S ∈ S, δS,T ∈ {0,1}, ∀S,T ∈ S.

(16)

Suppose that (x∗
S ,λ

∗) attains the minimum in (15) or equivalently in (16). Then for any new

assortment A /∈ S, one may use the constraints in Proposition 2 to obtain the robust revenue estimate

r(A) consistent with the fitted choice probabilities x∗
S as below:

min
x,λA,δ+,δ−

∑
i∈A

rixi,A

s.t. − δA,S ≤ λA−λ∗
S ≤ 1− (1+ ϵ)δA,S, ∀ i∈A, (i,S)∈ IS ,

− δS,A ≤ λ∗
S −λA ≤ 1− (1+ ϵ)δS,A, ∀ i∈A, (i,S)∈ IS ,

δA,S − 1 ≤ xi,A−x∗
i,S ≤ 1− δS,A, ∀ i∈A, (i,S)∈ IS ,

− (δA,S + δS,A) ≤ xi,A−x∗
i,S ≤ δA,S + δS,A, ∀ i∈A, (i,S)∈ IS ,∑

i∈A

xi,A = 1, 0≤ λA ≤ 1,

xi,A ≥ 0, ∀ i∈A, δA,S, δS,A ∈ {0,1}, ∀S ∈ S.

Since Pmdm(S) is not a closed set and the constraints in (15) allow x∗
i,S = x∗

i,T even when the

counterpart λ∗
S ̸= λ∗

T , observe that the solution x∗
S can only be guaranteed to be arbitrarily close to

the MDM-representable collection Pmdm(S). Therefore if one wishes to obtain a δ-optimal MDM-

representable choice probability assignment, for some δ > 0, they may do so as follows: Equipped

with the optimal value L(pS) = loss(pS ,x
∗
S) and an optimal λ∗, a δ-optimal MDM-representable

choice probability assignment xS can be obtained by solving the following convex program:

max
xS ,ϵ

ϵ (17)

s.t. loss(pS ,xS)≤L(pS)+ δ,

xi,S ≥ xi,T + ϵ if λ∗
S <λ∗

T , ∀(i,S), (i, T )∈ IS ,
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xi,S = xi,T if λ∗
S = λ∗

T , ∀(i,S), (i, T )∈ IS ,∑
i∈S

xi,S = 1, ∀S ∈ S, xi,S ≥ 0, ∀(i,S)∈ IS .

Due to the constraints in (17) and the characterization in Theorem 1, we have that any choice

probability collection xS obtained by solving (17) is MDM-representable. Further, it cannot be

improved to offer a fit which is better by more than δ magnitude, for any arbitrary choice of

δ > 0, due to the constraint loss(pS ,xS)≤L(pS)+ δ. Note that when loss(·, ·) is defined in terms

of the L1-norm, the formulation (17) is a linear program with O(n|S|) continuous variables and

O(n|S|2) constraints and (16) is a mixed-integer linear program with O(|S|2) binary variables,

O(n|S|) continuous variables and O(n|S|2) constraints.

5.3. Polynomial time algorithms for special cases

Besides the mixed integer convex program in Proposition 5, we develop an alternative solution

approach that seeks to evaluate the limit of MDM by searching over admissible rankings over

assortments in S. This algorithm is capable of evaluating the limit in polynomial time either if the

assortment collection S possesses a nested or laminar structure, or, if |S| is fixed. In particular,

Corollary 2 below shows that evaluating L(pS) can be efficient by utilizing the Theorem 3 conclusion

that closure
(
Pmdm(S)

)
=Preg(S) under nested or laminar S. In this case, the constraints of L(pS)

in (15) can be replaced with the regularity conditions for choice probabilities over S.

Corollary 2. When S is nested or laminar, evaluating the limit L(pS) in Proposition 4 reduces

to the following convex program with O(n|S|) continuous variables and O(n|S|2) linear constraints:

min
xS

∑
S∈S

loss(pS,xS)

s.t. xi,S ≥ xi,T if S ⊂ T, ∀ (i,S), (i, T )∈ IS ,∑
i∈S

xi,S = 1, ∀S ∈ S, xi,S ≥ 0, ∀ (i,S)∈ IS .

(18)

Besides the polynomial algorithms for the limit with special collection structures, evaluating the

limit L(pS) in Proposition 4 is polynomial in the number of alternatives n when the size of the

assortment collection |S| is fixed. An algorithm for this case is provided in Section EC.5.

6. Grouped Marginal Distribution Model
In this section, we consider MDM choice models in which the alternatives can be grouped based on

the marginal distributions of the stochastic components of the utilities.

Definition 1 (G-MDM). An MDM specified by the marginal distributions {Fi : i∈N} and

deterministic utilities {νi : i∈N} is called a grouped marginal distribution model (or G-MDM) if

there exists (i) a partition G = {G1, . . . ,GK} of the set of alternatives N , and (ii) a distinct marginal

distribution F̂l for each group Gl such that Fi(·) = F̂l(·) for every i∈Gl and l ∈ {1, . . . ,K}.
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As is evident from Definition 1, G-MDM places additional restrictions on the distributions of the

stochastic noise terms when compared to the general treatment for MDM we have been considering.

Consequently, the set of choice probabilities representable by G-MDM over assortments in S will be

a subset of Pmdm(S), for any assortment collection S. The worst-case sales and revenue estimates one

arrives with G-MDM will be less conservative than a general MDM in the case of strict containment,

and the utility of G-MDM lies therein. G-MDM offers an opportunity for the modeler to translate

domain knowledge, if any, about the distributions of the noise terms into less conservative sales and

revenue estimates for new assortments with no prior sales data.

The concept of grouping in G-MDM can be understood as organizing products based on the

similarity of their marginal distributions of the noise terms. This notion is related to heteroskedasticity,

a concept in economics where different random variables exhibit differing variances. In the realm of

choice modeling, researchers have explicitly incorporated heteroskedasticity through models such as

the heteroscedastic extreme value model (Bhat 1995), the heteroscedastic exponomial choice model

(Alptekinoğlu and Semple 2021), and the marginal exponential model (Mishra et al. 2014).

To illustrate heteroskedasticity, let us consider the example of purchasing a cellphone. Suppose

the choice set consists of iPhones and other phones from lesser-known brands. Since iPhones are

well-known and have consistent features, the utilities associated with them are likely to have less

variability. In contrast, phones from lesser-known brands may have more extreme utility values due

to varying preferences: some individuals might highly value specific features, while others may assign

very low utilities to these phones.

In the context of G-MDM, a modeler can benefit by grouping all iPhones together and placing

phones from lesser-known brands in a separate group. By doing so, G-MDM can strike a better

trade-off compared to general MDM by avoiding overfitting, and compared to APU by avoiding

misspecification. Such grouping allows G-MDM to capture the heteroskedasticity in data, leading to

more accurate and robust results in choice modeling scenarios.

For notational convenience, let g :N 7→G be a function that maps an alternative in N to a group

in G. For example, g(i) = l means i∈Gl. Then one can write the objective function (3) in the convex

formulation which yields the respective G-MDM choice probabilities as,∑
i∈S

νixi +
∑
i∈S

∫ 1

1−xi

F−1
g(i)(t)dt=

∑
i∈S

νixi +
K∑
l=1

∑
i∈S:g(i)=l

∫ 1

1−xi

F̂−1
l (t)dt. (19)

As mentioned in Section 2, a special case of MDM in which the marginal distributions {Fi : i∈N}
are taken to be identical leads to the well-known APU model in Fudenberg et al. (2015). Similar

to the general MDM considered in previous sections, we shall see that the restrictions imposed on

the choice probabilities by the grouping of products can be captured by computationally tractable

necessary and sufficient conditions, and one can leverage such conditions to develop nonparametric

procedures for estimation and prediction.
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6.1. A tractable characterization for G-MDM

Theorem 5 below reveals how the additional restrictions, which are imposed by the identicalness of

marginal distributions within the product groups, manifest in the choice probability observations.

Theorem 5 (A tractable characterization for G-MDM). Under Assumption 1, a choice

probability collection pS is representable by a G-MDM if and only if there exists a function λ : S →R

and ν ∈Rn such that for all (i,S), (j,T )∈ IS with g(i) = g(j):

λ(S)− νi >λ(T )− νj if pi,S < pj,T ,

λ(S)− νi = λ(T )− νj if pi,S = pj,T ̸= 0.
(20)

As a result, checking whether given choice data pS satisfies the G-MDM hypothesis can be accomplished

by solving a linear program with O(n|S|) continuous variables and O(n2|S|2) constraints.

It is instructive to compare the necessary and sufficient conditions in Theorem 5 with that

obtained for the MDM in Theorem 1. The conditions in Theorem 1 do not require comparing choice

probabilities pi,S and pj,T for i ̸= j. With fewer constraints, the collection of choice probabilities

allowed by MDM is strictly larger than any of its G-MDM counterparts in which at least two

products are grouped together. The conditions in Theorem 5 also reveal that a G-MDM with more

groups contains strictly fewer conditions and thus provides strictly more representation power (see

Example EC.4). By setting K =1, we deduce Corollary 3 below for the special case where all the

products are grouped together: that is, grouping G = {G1} and G1 =N .

Corollary 3. (A tractable characterization under identical marginals). When K = 1,

pS is G-MDM-representable if and only if there exists there exists a function λ : S →R and ν ∈Rn

such that the conditions in (20) are satisfied for all (i,S), (j,T )∈ IS .

The conditions in Corollary 3 are equivalent to those derived in Fudenberg et al. (2015) and

describe the probabilities that can be obtained with the APU model. For any grouping G over the

products in an assortment collection S, let PG(S) denote the collection of choice probabilities pS

which satisfy the G-MDM representable conditions in Theorem 5 and Papu(S) denote the collection

of choice probabilities pS which satisfies the APU representable conditions in Corollary 3. Analogous

to Theorem 2, the set of G-MDM representable choice probabilities has a positive Lebesgue measure.

Theorem 6. For any assortment collection S and a grouping G of the products, the collection

of choice probabilities represented by G-MDM has a positive measure: Specifically, µ
(
PG(S)

)
≥

µ
(
Papu(S)

)
> 0, where µ is the Lebesgue measure on the probability simplexes

∏
S∈S ∆S.

In Theorem 6, we demonstrate that the entire APU already possesses a positive measure. This

result implies that by removing the parametric assumption in the marginal distributions of MDM,
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even if we enforce identical marginals in MDM, the choice model exhibits a significantly greater

representation power compared to many other parametric choice models. Similar to Theorem 2,

the proof of Theorem 6 relies on constructing an MNL model, which forms the core around which

perturbations in choice probabilities can still be represented by the APU. However, due to the APU’s

reduced representational capacity, constructing such an MNL model becomes more challenging.

Nevertheless, we succeed in proving Lemma EC.5, which establishes a close connection to number

theory and leads us to the desired property. The proof technique employed for these two theorems

and the associated technical lemma is innovative and may be of independent interest.

6.2. Revenue Prediction with G-MDM

Similar to MDM, suppose that we wish to make sales or revenue predictions for a new assortment

A /∈ S with a G-MDM choice model over a grouping G. Like in Section 4, we begin the assumption

that the choice data pS ∈ PG(S) : that is, pS is representable by a G-MDM. Let the collection

of all G-MDM choice probability vectors xA = (xi,A : i ∈A) for the new assortment A which are

consistent with the observed choice data pS be denoted by UG := {xA : (pS ,xA)∈PG(S ′)} , where

S ′ = S ∪ {A}. The worst-case expected revenue over the consistent collection UG is then defined

as r(A) := infxA∈UG

∑
i∈A rixi,A. Similar to Proposition 2, we have in Proposition 6 below a mixed

integer linear reformulation for evaluating r(A) under the G-MDM assumption. Recall the notations

S ′ = S ∪{A} and IS′ = {(i,S) : i∈ S,S ∈ S ′}.

Proposition 6. For any 0< ϵ< 1/(2n|S|), the worst-case expected revenue r(A) equals the value

of the following mixed integer linear program:

min
x,λ,ν,δ

∑
i∈A

rixi,A

s.t. xi,S = pi,S, ∀ (i,S)∈ IS ,

− δi,j,S,T ≤ λS − νi−λT + νj ≤ 1− (1+ ϵ)δi,j,S,T , ∀ (i,S), (j,T )∈ IS′ : g(i) = g(j),

δi,j,S,T − 1 ≤ xi,S −xj,T ≤ 1− δj,i,T,S, ∀ (i,S), (j,T )∈ IS′ : g(i) = g(j),

− (δi,j,S,T + δj,i,T,S) ≤ xi,S −xi,T ≤ δi,j,S,T + δj,i,T,S, ∀ (i,S), (j,T )∈ IS′ : g(i) = g(j),∑
i∈A

xi,A = 1, xi,A ≥ 0, ∀ i∈A, 0≤ λS − νi ≤ 1, ∀ (i,S)∈ IS′ ,

δi,j,S,T ∈ {0,1}, ∀ (i,S), (j,T )∈ IS′ : g(i) = g(j).

(21)

Likewise, the optimistic expected revenue r̄(A) := supxA∈UG

∑
i∈A rixi,A equals the optimal value

obtained by maximizing over the constraints in the above mixed integer linear program.

6.3. Limit of G-MDM and the estimation of best-fitting G-MDM probabilities

Given choice data pS over assortments in a collection S and a strictly convex non-negative loss

function satisfying the assumptions in Section 5, we define the limit of G-MDM over a grouping G as

LG(pS) = inf {loss(pS ,xS) : xS ∈PG(S)} . (22)
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The limit LG(pS) measures the cost of approximating given choice data pS with a G-MDM equipped

with grouping G. As in Section 5, a key use of the limit LG(pS) is that a near-optimal solution xS to

(22) delivers a fit which is about as good one can get in fitting the given choice data pS within the

PG(S) family. As a result, it can also serve as a diagnostic tool suitable for determining whether a

chosen grouping of products is supported by data. To see this, observe that the cost LG(pS) can be

decomposed as LG(pS) =L(pS)+
{
L(pS)−LG(pS)

}
, where the second component L(pS)−LG(pS)

can be viewed as the incremental cost of the modeling choice made in combining the products into

groups G. If one observes this incremental cost to be large relative to the respective MDM limit

L(pS) in this decomposition, then it is an indication lent by data that the modeler would benefit by

moving beyond the grouping G; one may proceed in this case by either working with the general

MDM family treated in Sections 3 - 5 (or) by refining the grouping to have finer partitions than G.

Theorem 5 allows us reformulate (22) as following in (23), which in turn leads to a mixed integer

convex program in Proposition 7 below.

LG(pS) = inf
xS ,λ,ν

∑
S∈S

loss(pS,xS)

s.t. xi,S <xj,T if λS − νi >λT − νj, ∀ (i,S), (j,T )∈ IS : g(i) = g(j),

xi,S = xj,T > 0 if λS − νi = λT − νj, ∀(i,S), (j,T )∈ IS : g(i) = g(j),∑
i∈S

xi,S = 1, ∀S ∈ S, xi,S ≥ 0, ∀ (i,S)∈ IS ,

(23)

where the decision variables are the choice probabilities xi,S associated with alternative-assortment

pairs, the Lagrange multipliers λS associated with assortments, and the deterministic utilities νi

associated with the alternatives.

Proposition 7. Suppose that Assumption 1 is satisfied. Then for any 0< ϵ< 1/(2n|S|), the limit

LG(pS) in (22) equals the value of the following mixed integer convex program:

min
xS ,λ,ν,δ

∑
S∈S

loss(pS,xS)

s.t. − δi,j,S,T ≤ λS − νi−λT + νj ≤ 1− (1+ ϵ)δi,j,S,T , ∀ (i,S), (j,T )∈ IS : g(i) = g(j),

δi,j,S,T − 1 ≤ xi,S −xj,T ≤ 1− δj,i,T,S, ∀ (i,S), (j,T )∈ IS : g(i) = g(j),

− (δi,j,S,T + δj,i,T,S) ≤ xi,S −xi,T ≤ δi,j,S,T + δj,i,T,S, ∀ (i,S), (j,T )∈ IS : g(i) = g(j),∑
i∈S

xi,S = 1, ∀S ∈ S, xi,S ≥ 0, 0≤ λS − νi ≤ 1, ∀ (i,S)∈ IS ,

δi,j,S,T ∈ {0,1}, ∀ (i,S), (j,T )∈ IS : g(i) = g(j).

(24)

Observe that the formulations in (21) and (24) are mixed integer programs involving O(n2|S|2)

binary variables, O(n|S|) continuous variables, and O(n2|S|2) constraints.
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Additional numerical experiments are provided in Section EC.8 to show that the model incorpo-

rating grouping yields narrower prediction intervals. We supplement these results in EC.8 with (i) a

K-means clustering procedure to identify grouping based on the G-MDM representable conditions in

Theorem 5 and (ii) a validation of the effectiveness of the grouping identification procedure.

7. Numerical Experiments
7.1. Experiment results with Synthetic Data

In Experiments 1 - 2 below, we compare the representational ability of MDM with RUM and MNL

model. Experiment 3 compares the prediction performance offered by the nonparametric approach

proposed in this paper with that offered by models involving parametric assumptions. Experiment

4 compares the limit of approximating choice probabilities with MDM, RUM, and MNL models.

Additional useful details on the precise setup of all the experiments are furnished in EC.7.

The representation power and tractability of MDM compared to RUM and MNL. In

Experiment 1, we investigate the representational power of MDM for a large number of alternatives

(n= 1000) by randomly perturbing choice probabilities obtained from an underlying MNL model. We

test for the fraction of instances that can be represented by MDM where the parameter α controls

the fraction of choice probabilities that are perturbed from the MNL model (a larger value indicates

more entries are modified from the underlying MNL model). While checking the representability

of these models can be done by solving linear programs, RUM quickly becomes intractable as n

increases. In Figure 2, we see that even with small perturbations to the choice probabilities of the

underlying MNL model, none of the MNL models can represent the perturbed choice data. However,

MDM which subsumes the MNL model can capture many of these instances. This shows that MDM

is a much more robust model than MNL model. The runtimes for these large instances were less

than 1 second. The computational requirements for RUM make it impossible to run at this scale.

In Experiment 2, we compare the representational power and computational time for MDM

and RUM for a small number of alternatives. We find that both MDM and RUM show good

representational power: In particular, with the collection size |S| = 20, round 80 percent of the

instances can still be represented by MDM when 25 percent of the choice probability entries are

perturbed; this drops to 60 percent when 100 percent of entries are perturbed, RUM has better

representation power in these examples (see Figure 3). However, this comes at a significant run time

cost even at this scale as seen in Figure 3 as compared to MDM.

Revenue and choice probability prediction with nonparametric MDM. In Experiment 3,

we generate 20 random instances with a product size of 7 and a collection size |S| ranging among

{20, 40, 80}, using nonidentical exponential distributions for the marginal distributions to generate

the underlying choice probabilities. In Figure 4, we compare the predictions offered by the following
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Figure 2 The representational power of MDM
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Notes. m stands for MDM, r stands for RUM, and the numbers stand for the perturbation parameters.

Figure 3 Comparison of the performance of MDM and RUM

two methods: (1) computing the nonparametric MDM lower and upper bounds of revenue and

choice probabilities for each instance by solving r(A) and r̄(A); and (2) restricting the marginal

distributions for MDM to be identical exponential distributions (which leads to the underlying choice

model being MNL), and estimating the preference parameters using maximum likelihood estimation

(MLE); we then using the estimated MNL model to predict revenue for unseen assortments in each

instance. While Figure 4 reveals the proposed nonparametric approach to be correctly predicting

the true revenue or choice probabilities, the MLE of the parametric approach with mis-specified

marginals is often found to lead to inaccurate predictions which are far from the truth and also

far out of the nonparametric MDM prediction intervals. When more assortments are offered, the

prediction under nonparametric MDM becomes more accurate while the prediction results made

under the incorrect parametric model become worse. Thus, besides revealing the benefits of the

proposed nonparametric data-driven approach for prediction based on MDM, Experiment 3 brings

out the risks in stipulating apriori distributional assumptions on the model.

Estimation performance of MDM compared to RUM and MNL. In Experiment 4, we

compare the explanatory ability of MDM, RUM and MNL models by examining the cumulative

absolute deviation loss suffered in fitting them to uniformly generated choice data instances. Figure

5 reveals that nonparametric MDM and RUM models are competitive and have much higher
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Notes. In each figure, the blue dots represent the true revenues or choice probabilities, while the red ranges represent

the predicted revenue intervals or choice probability intervals with the nonparametric MDM, and the green squares

represent the predicted revenues or choice probabilities using the MLE of the MNL model.

Figure 4 Comparison of prediction accuracy between MDM and MNL with randomly generated instances

explanatory ability than MNL with increasing collection sizes. In particular, MDM incurs about 44%

lesser loss, on average, than the best-fitting MNL model for the largest collection size considered.
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Figure 5 The limit loss comparison among MDM, RUM, and MNL

7.2. Experiment Results with Real-World Data

In Experiments 5-7 below, we use the dataset from JD.com (introduced in Shen et al. 2020) in order

to evaluate the feasibility of representing it with an MDM, the efficacy of predictions obtained by the

proposed nonparametric approach, and the explanatory ability captured by the limit formulations.

Data processing. To pre-process the data, we follow the same pre-processing steps as in

Ahipasaoglu et al. (2020). The dataset includes millions of transaction records and over 3000 alterna-

tives. Each transaction records the set of products viewed by a customer (by clicking these products

on the website) and the choice behavior of the customer (either making a purchase or leaving the
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system without buying anything). We assume that the set of products viewed by the customer is the

offered assortment. We select the top 8 purchased products and combine the remaining products and

the non-purchase option as the outside option for customers. We remove any transaction records that

do not align with our model assumptions, such as multiple units of a product purchased in one record.

As a result, the processed dataset contains 1784 customers and 8097 times of purchases in total.

After preprocessing the data, we group the transaction records by product-assortment pairs and

count the frequency of each pair. Dividing this frequency by the number of times the corresponding

assortment is offered results in the empirical choice probabilities, denoted by pS . In the following

discussion, we use OS to denote the number of times an assortment S is offered.

Representational power comparison among several models. Experiment 5 compares the

representation power of MDM with the MNL model and the class of regular choice models. The

tested instances feature assortments which are offered at least OS times, with OS values ranging

from 60 to 100. If we include data on the outside option, none of the models considered are found

to exactly represent the data even when OS = 100. By focusing on the sales data of the products

offered by the firm, Table 1 shows that the nonparametric MDM and regular choice models are able

to represent the choice data obtained from OS = 75 and 100, whereas MNL models fail to represent

any of the instances. We could not report the results for RUM here because of its intractability.

Table 1 The representability of MNL, MDM, and the class of regular choice models

OS # assortments offered at least OS times MNL MDM Regular Model
60 13 0 0 0
75 12 0 1 1
100 11 0 1 1

Notes. 1 denotes an instance that can be represented by the tested model, while 0 denotes the opposite.

Estimation performance comparison between MDM and MNL. In Experiment 6, we

compare the explanatory ability of the MDM and MNL model by computing the limit loss over choice

data obtained by considering assortments that are offered at least OS times, where OS is set to vary

from 1 to 100. Using 1-norm as the loss function, the results in Table 2 show that nonparametric

MDM suffers much lesser cost in approximating the choice data, and hence greater explanatory

ability. We also observe that the run time of solving the limit of MDM grows when the size of the

assortment collection becomes larger. We further assess the accuracy of the nonparametric MDM and

MNL models by comparing the observed (true) and estimated choice probabilities via scatter plots.

Figure 6 shows these scatter plots, where each point represents an observed and estimated choice

probability pair. The horizontal axis shows the observed probability and the vertical axis shows the

estimated probability. The closer the points are to the 45-degree line segment (green segment in

Figure 6), the better the estimation accuracy. The scatter plots reveal the following findings:
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Table 2 Comparison of the estimation performance of MDM and MNL model

OS # assortments offered at least OS times
MDM MNL

log loss run-time log loss run-time
1 134 -1.50 3600 -1.666 0.839
10 42 -3.603 3600 -1.803 0.253
20 29 -3.982 13.654 -1.893 0.193
30 24 -4.063 6.298 -1.918 0.318
40 19 -4.165 2.379 -1.945 0.149
50 15 -4.403 0.237 -2.002 0.146
60 13 -4.544 0.094 -2.028 0.114
75 12 -4.633 0.060 -2.045 0.120
100 11 -4.622 0.046 -2.039 0.112

(i) When OS = {50,60,75,100}, MDM is seen to correctly estimates most data points due to its

proximity to the 45o line while most points from MNL estimation are still away from the 45o line.

(ii) When OS = {10,20,30,40}, although both MDM and MNL model are limited in their abilities

to exactly represent the choice data, MDM shows much better estimation accuracy than MNL

model with most points by MDM being much closer to the 45o line than the MNL model.

(iii) In the noisy environment where many assortments are just shown once (corresponding to OS = 1),

both MDM and MNL fail understandably with most points falling away from the 45o line.

Prediction performance comparison between MDM and MNL. Experiment 7 evaluates the

predictive-cum-prescriptive abilities of the nonparametric MDM and the MNL model by comparing

their accuracies in identifying (i) a ranking over unseen test assortments based on their expected

revenues, and (ii) the average revenue of the assortment identified to offer the largest revenue in the

test set. Considering assortments that are shown at least OS times (with OS taken to vary from

20 to 50), we report the average out-of-sample performance over instances generated by randomly

picking max{2, ⌊0.2|S|⌋} fraction of the assortments to be the test set and the remaining to be the

training set. For MNL, we use the Maximum Likelihood Estimator (MLE) obtained from training

data to estimate choice probabilities for the test assortments and use them subsequently to rank

the test assortments in a decreasing order of expected revenues. For MDM, we compute the robust

revenue r(A) and the optimistic revenue r̄(A) and record the corresponding choice probabilities for

each tested assortment A in the test set if the training data can be represented by MDM. If we find

the training data to be not exactly representable by MDM, we solve the limit of MDM (Problem

(16)) with the training data and use the choice probabilities yielded by solving (17) to proceed as

before with ranking the assortments in a decreasing order of expected revenues.

For comparing the quality of rankings offered by the MDM and the MNL model, we take the

well-known Kendall Tau distance (see Definition EC.2) as a natural metric for evaluating the closeness
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Notes. In each plot, each point corresponds to the coordinate (true choice probability, estimated choice probability) of

each observation of the processed data with OS . The green line is the 45o line. The blue dots represent the estimation

results with the nonparametric MDM and the red squares represent the estimation results with the MNL model.

Figure 6 Scatter plots to compare the estimation accuracy of MDM and MNL

of the predicted ranking with the ground truth hidden from training. For both models, we also

compare the true revenues of the assortments which are predicted to rank at the top. The average of

these out-of-sample performance metrics across randomly generated train-test splits are reported

in Table 3. The results in Table 3 show that the optimistic prediction results of nonparametric

MDM outperform the MNL model, yielding uniformly lower average Kendall tau distances and

higher average revenues for the predicted best assortments across all scenarios. Similarly, the robust

prediction results of nonparametric MDM outperform the MNL models in most scenarios, except for

instances with OS = 30 in terms of average Kendall tau distances and instances with OS = 50 in

terms of average revenue predictions. Figure 7 illustrates that the nonparametric MDM approach

predicts the true revenue more accurately than MNL, as the predicted intervals include the true

revenue or are closer to it.

8. Conclusions
We identify the first-known sufficient and necessary conditions to verify whether a set of given choice

data can be represented by MDM. Besides being verifiable in polynomial time, these representable
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Table 3 The prediction performance of MDM and MNL

OS

resulting
|S|

#test
assortments

Average Kendall Tau Distance
Average Revenue of the

Predicted Best Assortments
MNL MDM_LB MDM_UB MNL MDM_LB MDM_UB

20 29 23 4.9 3.1 3.9 0.385 0.416 0.422
30 24 20 3.0 3.1 2.5 0.389 0.420 0.403
40 19 15 1.8 1.2 1.1 0.225 0.271 0.275
50 15 12 1.2 0.9 0.6 0.257 0.249 0.271

Notes. MDM_LB represents the results by solving r(A) while MDM_UB represents the results by solving r̄(A).
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Notes. In each figure, the blue dots represent the true revenues, while the red ranges represent the predicted revenue

intervals with the nonparametric MDM, & the green squares represent the predicted revenues using the MNL model.

Figure 7 Revenue predictions vs. true revenue and for the nonparametric MDM and the MNL model

conditions lead to a mixed integer linear program to predict the revenue or choice probability of

alternatives for an unseen assortment and a mixed integer convex program that can give the closest

fitting MDM choice probabilities to the given dataset. We extend the representable conditions,

prediction, and limit formulations to the novel grouped-MDM, which allows the flexibility of grouping

the alternatives based on distribution of the random utilities. Our numerical experiments demonstrate

that checking the representability of MDM is computationally efficient compared to RUM, and MDM

provides better representation power, estimation, and prediction performance than MNL.

References
S. Ahipasaoglu, X. Li, Z. Sun, and Y. Yuan. A unified analysis for assortment planning with marginal

distributions. Available at SSRN: https://ssrn.com/abstract=3638783, 2020.

S. D. Ahipasaoglu, U. Arikan, and K. Natarajan. Distributionally robust markovian traffic equilibrium.

Transportation Science, 53(6):1546–1562, 2019.

G. M. Allenby and J. L. Ginter. Using extremes to design products and segment markets. Journal of

Marketing Research, 32(4):392–403, 1995.

A. Alptekinoğlu and J. H. Semple. The exponomial choice model: A new alternative for assortment and price

optimization. Operations Research, 64(1):79–93, 2016.



32

A. Alptekinoğlu and J. H. Semple. Heteroscedastic exponomial choice. Operations Research, 69(3):841–858,

2021.

A. Aouad and A. Désir. Representing random utility choice models with neural networks. arXiv preprint

arXiv:2207.12877, 2022.

S. Barberá and P. K. Pattanaik. Falmagne and the rationalizability of stochastic choices in terms of random

orderings. Econometrica: Journal of the Econometric Society, pages 707–715, 1986.

M. Ben-Akiva and S. R. Lerman. Discrete Choice Analysis: Theory and Application to Travel Demand. The

MIT Press, 1985.

G. Berbeglia. Discrete choice models based on random walks. Operations Research Letters, 44(2):234–237,

2016.

G. Berbeglia and G. Joret. Assortment optimisation under a general discrete choice model: A tight analysis

of revenue-ordered assortments. In Proceedings of the 2017 ACM Conference on Economics and

Computation, EC ’17, page 345–346. ACM, 2017. ISBN 9781450345279.

C. R. Bhat. A heteroscedastic extreme value model of intercity travel mode choice. Transportation Research

Part B: Methodological, 29(6):471–483, 1995.

J. Blanchet, G. Gallego, and V. Goyal. A markov chain approximation to choice modeling. Operations

Research, 64(4):886–905, 2016.

H. D. Block and J. Marschak. Random orderings and stochastic theories of response. In: Economic Information,

Decision, and Prediction. Theory and Decision Library, 7-1, 1960.

L. Chen, W. Ma, K. Natarajan, D. Simchi-Levi, and Z. Yan. Distributionally robust linear and discrete

optimization with marginals. Operations Research, 70(3):1822–1834, 2022.

N. Chen, G. Gallego, and Z. Tang. The use of binary choice forests to model and estimate discrete choices.

arXiv preprint arXiv:1908.01109, 2019.

Y.-C. Chen and V. V. Mišić. Decision forest: A nonparametric approach to modeling irrational choice.

Management Science, 2022.

F. Chierichetti, M. Giacchini, R. Kumar, A. Panconesi, and A. Tomkins. Approximating a rum from

distributions on k-slates. In International Conference on Artificial Intelligence and Statistics, pages

4757–4767. PMLR, 2023.

S. R. Cosslett. Maximum likelihood estimator for choice-based samples. Econometrica: Journal of the

Econometric Society, pages 1289–1316, 1981.

C. Daganzo. Multinomial probit: the theory and its application to demand forecasting. Academic Press, New

York, 1979.

E. W. de Bekker-Grob, J. Veldwijk, M. Jonker, B. Donkers, J. Huisman, S. Buis, J. Swait, E. Lancsar,

C. L. Witteman, G. Bonsel, et al. The impact of vaccination and patient characteristics on influenza

vaccination uptake of elderly people: a discrete choice experiment. Vaccine, 36(11):1467–1476, 2018.



33

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the web. In Proceedings of

the 10th international conference on World Wide Web, pages 613–622, 2001.

J.-C. Falmagne. A representation theorem for finite random scale systems. Journal of Mathematical Psychology,

18(1):52–72, 1978.

V. F. Farias, S. Jagabathula, and D. Shah. A nonparametric approach to modeling choice with limited data.

Management science, 59(2):305–322, 2013.

M. Feldman, O. Svensson, and R. Zenklusen. Online contention resolution schemes with applications to

bayesian selection problems. SIAM Journal on Computing, 50(2):255–300, 2021.

G. Feng, X. Li, and Z. Wang. Technical note—on the relation between several discrete choice models.

Operations Research, 65(6):1429–1731, 2017.

S. Fiorini. A short proof of a theorem of falmagne. Journal of Mathematical Psychology, 48(1):80–82, 2004.

D. Fudenberg, R. Iijima, and T. Strzalecki. Stochastic choice and revealed perturbed utility. Econometrica,

83(6):2371–2409, 2015.

J. Hofbauer and W. H. Sandholm. On the global convergence of stochastic fictitious play. Econometrica, 70

(6):2265–2294, 2002.

S. Jagabathula and P. Rusmevichientong. The limit of rationality in choice modeling: Formulation, computation,

and implications. Management Science, 65(5):2196–2215, 2019.

C. Liu, M. Liu, H. Sun, and C.-P. Teo. Product and ancillary pricing optimization: Market share analytics

via perturbed utility model. Available at SSRN 4095769, 2022.

R. D. Luce. Individual choice behavior. John Wiley, 1959.

C. F. Manski and S. R. Lerman. The estimation of choice probabilities from choice based samples. Econo-

metrica: Journal of the Econometric Society, pages 1977–1988, 1977.

C. F. Manski and D. McFadden. Alternative estimators and sample designs for discrete choice analysis.

Structural analysis of discrete data with econometric applications, 2:2–50, 1981.

J. Marschak. Binary-Choice Constraints and Random Utility Indicators, pages 218–239. Springer Netherlands,

Dordrecht, 1960. ISBN 978-94-010-9276-0. doi: 10.1007/978-94-010-9276-0_9. URL https://doi.org/

10.1007/978-94-010-9276-0_9.

A. Mas-Colell, M. D. Whinston, J. R. Green, et al. Microeconomic theory, volume 1. Oxford university press

New York, 1995.

D. McFadden. Conditional logit analysis of qualitative choice behaviour. In P. Zarembka, editor, Frontiers in

Econometrics, pages 105–142. Academic Press New York, New York, NY, USA, 1973.

D. McFadden. Modelling the choice of residential location. Spatial Interaction Theory and Residential

Location, pages 75–96, 1978.

https://doi.org/10.1007/978-94-010-9276-0_9
https://doi.org/10.1007/978-94-010-9276-0_9


34

D. McFadden. Econometric models for probabilistic choice among products. Journal of Business, pages

S13–S29, 1980.

D. McFadden. The choice theory approach to market research. Marketing science, 5(4):275–297, 1986.

D. McFadden and M. K. Richter. Stochastic rationality and revealed stochastic preference. preferences,

uncertainty, and optimality, essays in honor of leo hurwicz, 1990.

D. McFadden and K. Train. Mixed mnl models for discrete response. Journal of Applied Econometrics, 15(5):

447–470, 2000.

D. L. McFadden. Revealed stochastic preference: a synthesis. In Rationality and Equilibrium, pages 1–20.

Springer, 2006.

V. K. Mishra, K. Natarajan, D. Padmanabhan, C.-P. Teo, and X. Li. On theoretical and empirical aspects of

marginal distribution choice models. Management Science, 60(6):1511–1531, 2014.

K. Natarajan, M. Song, and C.-P. Teo. Persistency model and its applications in choice modeling. Management

Science, 55(3):453–469, 2009.

R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society. Series C (Applied

Statistics), 24(2):193–202, 1975. ISSN 00359254, 14679876. URL http://www.jstor.org/stable/

2346567.

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

M. Shen, C. S. Tang, D. Wu, R. Yuan, and W. Zhou. Jd. com: Transaction-level data for the 2020 msom

data driven research challenge. Manufacturing & Service Operations Management, 2020.

B. Sifringer, V. Lurkin, and A. Alahi. Enhancing discrete choice models with representation learning.

Transportation Research Part B: Methodological, 140:236–261, 2020.

B. Sturt. The value of robust assortment optimization under ranking-based choice models. arXiv preprint

arXiv:2112.05010, 2021.

K. Talluri and G. Van Ryzin. Revenue management under a general discrete choice model of consumer

behavior. Management Science, 50(1):15–33, 2004.

B. Taşkesen, S. Shafieezadeh-Abadeh, and D. Kuhn. Semi-discrete optimal transport: Hardness, regularization

and numerical solution. Mathematical Programming, pages 1–74, 2022.

L. L. Thurstone. A law of comparative judgment. Psychological review, 34(4):273, 1927.

S. Wang, Q. Wang, and J. Zhao. Deep neural networks for choice analysis: Extracting complete economic

information for interpretation. Transportation Research Part C, 118, 2020.

Z. Yan, K. Natarajan, C.-P. Teo, and C. Cheng. A representative consumer model in data-driven multi-product

pricing optimization. Management Science, 68(8):5798–5827, 2022.

http://www.jstor.org/stable/2346567
http://www.jstor.org/stable/2346567


e-companion to Author: ec1

E-companion
The E-companion is organized as follows. Sections EC.1 to EC.4 present the proofs of the results,

respectively, in Sections 3.2, 4, 5 and 6. Section EC.5 provides an algorithm to evaluate the limit

of MDM in (15). Section EC.6 collects and presents all the illustrative examples mentioned in the

paper. Section EC.7 details the implementation of the experiments. Section EC.8 and Section EC.9

provide additional experiment results and the implementation details of G-MDM.

EC.1. Proofs of the Results in Section 3.2
EC.1.1. Proof of Theorem 2

To prove Theorem 2, we first present a lemma that can construct special cases of choice probabilities

obtained from the MNL model.

Lemma EC.1. For any fixed n, let S,T ⊆N with |S|, |T | ≥ 2. Let i∈ S ∩T. Then there exists a

set of positive integers x1, ..., xn such that

xi∑
k∈S xk

̸= xi∑
k∈T xk

, (EC.1)

as long as S ̸= T .

Proof. We prove Lemma EC.1 holds for a set of positive integers such that xk = 2k when k≥ 1.

When S ≠ T , to show xi∑
k∈S xk

̸= xi∑
k∈T xk

, it’s equivalent to show
∑

k∈S xk ̸=
∑

k∈T xk. Given that

any subset can be viewed as a binary number, the intuitive understanding of its uniqueness becomes

evident. However, for the sake of comprehensiveness and rigor, we shall furnish a formal proof as

follows.

It’s obvious that
∑

k∈S xk ̸=
∑

k∈T xk when S ⊂ T or T ⊂ S. Next, we prove that
∑

k∈S xk ̸=∑
k∈T xk when S ̸⊂ T or T ̸⊂ S. Let k1 = argmaxk∈S\T xk and k2 = argmaxk∈T\S xk. Without loss of

generality, let k1 >k2. Then, we have k1− k2 ≥ 1. We have

∑
k∈S

xk−
∑
k∈T

xk ≥ xk1 −
∑

k∈T\S

xk ≥ xk1 −
k2∑
i=1

xi = 2k1 − 2 ∗ (1− 2k2)

1− 2
= 2k1 − 2k2+1 +2> 0.

The first inequity is due to k1 ∈ S \T, and the second inequity is due to T \S ⊆ {1, · · ·k2}. The first

equality is due to the formula of the sum of geometric series. This completes the proof. ■

Recall that the probability of choosing product i in assortment S under an MNL model is

pi,S = eνi∑
j∈S e

νj . Then, there exists νi = lnxi for all i∈N , such that the instance in Lemma EC.1 is

an MNL instance. Equipped with Lemma EC.1, we prove Theorem 2 as follows:
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Proof. Let pS be an instance following the manners in Lemma EC.1. Since MNL is a special case

of MDM, pS is MDM-representable. We next show that any instance p
′
S that lies in the ball centered

at pS with the radius ϵ > 0 is an MDM instance. Let 0< ϵ<min |pi,S − pi,T |,∀(i,S), (i, T )∈ IS . We

perturb pS to be p
′
S by letting p

′
i,S = pi,S + ϵ and p

′
j,S = pj,S− ϵ by arbitrarily choosing (i,S), (j,S)∈

IS , and keeping other entries of p
′
S the same as pS . Since pS is MDM-representable, we have

λS >λT if pi,S < pi,T ∀(i,S), (i, T )∈ IS , and λT >λS if pj,T < pj,S ∀(j,S), (j,T )∈ IS .

Since ϵ <min |pi,S − pi,T |,∀(i,S), (i, T )∈ IS , we have

λS >λT if pi,S + ϵ < pi,T ∀(i,S), (i, T )∈ IS , and λT >λS if pj,T < pj,S − ϵ ∀(j,S), (j,T )∈ IS .

By the construction of p
′
S , equivalently, we have

λS >λT if p
′

i,S < p
′

i,T ∀(i,S), (i, T )∈ IS , and λT >λS if p
′

j,T < p
′

j,S ∀(j,S), (j,T )∈ IS .

Thus, p
′
S is MDM-representable. ■

EC.1.2. Proof of Lemma 2

Proof. We first prove a) in Lemma 2 by contradiction. From Theorem 1, if there exists some

alternative i such that pi,S > pi,S∩T , then we have λS <λS∩T , which is equivalent to λS <λS∩T for

all j ∈ S ∩ T . This implies λS ≤ λS∩T which gives pj,S ≥ pj,S∩T for all (j,S), (j,S ∩ T ) ∈ IS . Since∑
j∈S pj,S = 1, we get

∑
j∈S∩T pj,S∩T < 1 contradicting the condition

∑
j∈S∩T pj,S∩T = 1. For b), from

Theorem 1, if i, j ∈ S ∩T , we have pj,S < pj,T ⇒ λS >λT ⇒ λS ≥ λT ⇒ pi,S ≤ pi,T . ■

EC.1.3. Proof of Theorem 3

Proof. We prove a) of Theorem 3 first. We use the following notations for the rank list model since

any RUM can be described by a rank list model (see, e.g., Block and Marschak 1960). Let Σn denote

the set of all permutations of n alternatives. Each element σ ∈Σn denotes a ranking of n alternatives.

For instance, σ = {1≻ 2≻ 3} means alternative 1 is more preferred than alternative 2 which is more

preferred than alternative 3. The probability of each ranking is P (σ) and
∑

σ∈Σn
P (σ) = 1. We prove

the result case by case.

1. n= 2: Here Pmdm(S) = Prum(S). This is straightforward since all probabilities that satisfy 0≤
p1,{1,2} ≤ p1,{1} = 1, and 0≤ p2,{1,2} ≤ p2,{2} = 1 where p1,{1,2} + p2,{1,2} = 1, are representable by

both models.

2. n= 3: Lemma 2 implies that Pmdm(S)⊆Preg(S). Prum(S) =Preg(S) since

P ({1≻ 2≻ 3}) = p2,{2,3}− p2,{1,2,3} ≥ 0 and P ({1≻ 3≻ 2}) = p3,{2,3}− p3,{1,2,3} ≥ 0,

P ({2≻ 1≻ 3}) = p1,{1,3}− p1,{1,2,3} ≥ 0 and P ({2≻ 3≻ 1}) = p3,{1,3}− p3,{1,2,3} ≥ 0,

P ({3≻ 1≻ 2}) = p1,{1,2}− p1,{1,2,3} ≥ 0 and P ({3≻ 2≻ 1}) = p2,{1,2}− p2,{1,2,3} ≥ 0,
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where
∑

σ∈Σn
P (σ) = 3− 2 = 1. We next show that Pmdm(S)⊂ Prum(S) for n= 3 by giving an

example of choice probabilities with S = {{1,2,3},{1,2},{1,3},{2,3}} in Table EC.1 that can be

represented by RUM but not by MDM.

Table EC.1 Choice probabilities that cannot be represented by MDM for n= 3.

Alternative A={1,2,3} B={1,2} C={1,3} D={2,3}

1 1/3 5/9 4/9 -
2 1/3 4/9 - 5/9
3 1/3 - 5/9 4/9

This collection of choice probabilities pS cannot be represented by MDM because p1,B > p1,C ,

p2,D > p2,B, p3,C > p3,D implies λB < λC , λD < λB and λC < λD. This gives λD < λB < λC < λD

which is inconsistent. So, pS in Table EC.1 cannot be represented by MDM. On the other

hand, it is straightforward to check that by setting the ranking probabilities for RUM as follows:

P ({1 ≻ 2 ≻ 3}) = 2/9, P ({1 ≻ 3 ≻ 2}) = 1/9, P ({2 ≻ 1 ≻ 3}) = 1/9, P ({2 ≻ 3 ≻ 1}) = 2/9,

P ({3≻ 1≻ 2}) = 2/9, P ({3≻ 2≻ 1}) = 1/9, we obtain the choice probabilities in Table EC.1.

This implies pS in table EC.1 can be represented by RUM but not MDM.

3. n≥ 4: We show Pmdm(S) ̸⊂ Prum(S) and Prum(S) ̸⊂ Pmdm(S) by providing two examples: (1) pS

can be represented by RUM but not MDM and (2) pS can be represented by MDM but not RUM

when S = {{1,2,3,4},{1,2,3},{1,2,4},{1,2}}. The examples are provided for n= 4. For larger

n, we can add the alternatives in the assortments and set the choice probabilities for these added

alternatives to be zero. Firstly, we observe that the multinomial logit choice probabilities can

be obtained from both RUM and MDM. This follows from using independent and identically

distributed Gumbel distributions for RUM (see, e.g., Ben-Akiva and Lerman 1985) and exponential

distributions for MDM (see, e.g., Mishra et al. 2014). Hence the intersection between the two

sets is nonempty for any n. Next consider the choice probabilities in Table EC.2. This can be

Table EC.2 Choice probabilities can be represented by RUM but not by MDM for n= 4.

Alternative A={1,2,3,4} B={1,2,3} C={1,2,4} D={1,2}

1 3/20 7/20 2/8 1/2
2 3/20 2/8 7/20 1/2
3 7/20 2/5 - -
4 7/20 - 2/5 -

recreated by RUM using the distribution over the ranking as follows:
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P ({1≻ 2≻ 3≻ 4}) = 1/40 P ({1≻ 2≻ 4≻ 3}) = 1/40 P ({1≻ 3≻ 2≻ 4}) = 1/40

P ({1≻ 3≻ 4≻ 2}) = 1/40 P ({1≻ 4≻ 2≻ 3}) = 1/40 P ({1≻ 4≻ 3≻ 2}) = 1/40

P ({2≻ 1≻ 3≻ 4}) = 1/40 P ({2≻ 1≻ 4≻ 3}) = 1/40 P ({2≻ 3≻ 1≻ 4}) = 1/40

P ({2≻ 3≻ 4≻ 1}) = 1/40 P ({2≻ 4≻ 1≻ 3}) = 1/40 P ({2≻ 4≻ 3≻ 1}) = 1/40

P ({3≻ 1≻ 2≻ 4}) = 1/20 P ({3≻ 1≻ 4≻ 2}) = 1/20 P ({3≻ 2≻ 1≻ 4}) = 1/10

P ({3≻ 2≻ 4≻ 1}) = 1/10 P ({3≻ 4≻ 1≻ 2}) = 1/40 P ({3≻ 4≻ 2≻ 1}) = 1/40

P ({4≻ 1≻ 3≻ 2}) = 1/10 P ({4≻ 1≻ 3≻ 2}) = 1/10 P ({4≻ 2≻ 1≻ 3}) = 1/20

P ({4≻ 2≻ 3≻ 1}) = 1/20 P ({4≻ 3≻ 1≻ 2}) = 1/40 P ({4≻ 3≻ 2≻ 1}) = 1/40

Now p1,B > p1,C implies λB <λC and p2,B > p2,C implies λB >λC . Hence pS in Table EC.2 is not

representable by MDM. Next consider the choice probabilities in Table EC.3. Here p1,A < p1,B =

Table EC.3 Choice probabilities can be represented by MDM but not by RUM for n= 4.

Alternative A={1,2,3,4} B={1,2,3} C={1,2,4} D={1,2}

1 0.1 0.2 0.2 0.25
2 0.2 0.25 0.25 0.75
3 0.2 0.55 - -
4 0.5 - 0.55 -

p1,C < p1,D implies λA >λB = λC >λD, and p2,A < p2,B = p2,C < p2,D implies λA >λB = λC >λD,

and p3,A < p3,B implies λA >λB, and p4,A < p4,C implies λA >λC . So we have λA >λB = λC >λD

which is easy to enforce and so pS can be represented by MDM. A necessary condition for pS to

be representable by RUM are the Block-Marshak conditions provided in Block and Marschak

(1960) (also see Theorem 1 in Fiorini 2004). If the choice probabilities are representable by RUM,

one of these conditions is given by p1,A + p1,D ≥ p1,B + p1,C . Here p1,A + p1,D = 0.1+0.25 = 0.35<

0.4 = 0.2+0.2 = p1,B + p1,C . So, pS is not representable by RUM.

We then prove b) of Theorem 3. We know that Pmdm(S) = Prum(S) = Preg(S) when n= 2 and

Prum(S)⊆ Preg(S) and closure
(
Pmdm(S)

)
⊆ Preg(S) for any S. To show b), we just need to show

Preg(S)⊆Prum(S) and Preg(S)⊆ closure
(
Pmdm(S)

)
when S is nested or laminar. Under a nested

collection S = {S1, S2, . . . , Sm} with S1 ⊂ S2 ⊂ . . .⊂ Sm, we have

Preg(S) =
{
x∈RIS : xi,S ≥ 0,∀(i,S)∈ IS ,

∑
i

xi,S = 1,∀S ∈ S, xi,Sk
≤ xi,Sj

∀j, k ∈ [m], j < k, i∈ Si

}
.

Under a laminar collection, we have

Preg(S) =
{
x∈RIS : xi,S ≥ 0,∀(i,S)∈ IS ,

∑
i

xi,S = 1,∀S ∈ S, xi,S ≤ xi,T ∀T ⊂ S, (i,S), (i, T )∈ IS
}
.
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Next, we show Preg(S)⊆ closure
(
Pmdm(S)

)
with a nested or laminar S by showing that for any

pS ∈Preg(S), we can construct λS such that (pS ,λS)∈Π
′
S , where

Π
′

S :=
{
(x,λ)∈RIS ×RS :xi,S ≥ 0,∀(i,S)∈ IS ,

∑
i

xi,S = 1,∀S ∈ S,

λS ≥ λT if xi,S ≤ xi,T ,∀(i,S), (i, T )∈ IS
}
.

Suppose that S = {S1, S2, · · · , Sm} is a nested collection with S1 ⊂ S2 ⊂ . . .⊂ Sm. Then we take

any λS satisfying λS1
≤ λS2

≤ · · · ≤ λSm . Since pi,Sj
≥ pi,Sk

for any j ≤ k (due to pS ∈Preg(S)), the

resulting (pS ,λS)∈Π
′
S . As a result, pS ∈ closure

(
Pmdm(S)

)
.

If S is laminar, we take any λS such that λS ≤ λT if S,T ∈ S with S ⊂ T. Since pi,S ≥ pi,T

due to the regularity pS ∈Preg(S), the resulting (pS ,λS)∈Π
′
S . Hence pS ∈ closure

(
Pmdm(S)

)
and

Preg(S) = closure
(
Pmdm(S)

)
with a nested or laminar S.

Given a nested or laminar collection S, to show Preg(S)⊆Prum(S), we next show that, for any

pS ∈Preg(S), there exists a probability distribution (P (σ) : σ ∈Σn) such that pS ∈Prum(S).

(1) For a nested collection S, we prove Preg(S) ⊆ Prum(S). Without loss of generality, let S =

{S1, S2, . . . , Sm} be Sk = {1, . . . , k} for k = 1, · · · ,m. Next, for any pS ∈ Preg(S), we prove

the existence of a probability distribution (P (σ) : σ ∈ Σm) such that pS ∈ Prum(S) from the

point of view of polyhedral combinations. To show the existence of a probability distribution

(P (σ) : σ ∈Σm) for pS ∈Prum(S) is equivalent to showing pS lies in the multiple choice polytope

characterized as,

convex hull of {(I[σ, i,S] : i∈ S,S ∈ S)∈ {0,1}
∑

S∈S |S| : σ ∈Σm},

where I[σ, i,S] = 1 if and only if i= argminj∈S σ(j) (see Section 3 in Fiorini 2004 and Lemma

2.5 of Jagabathula and Rusmevichientong 2019).

Now, we show that pS lies in the multiple choice polytope via a graph representation of the

multiple choice polytope following the steps in Section 3 in Fiorini (2004). Let D= (N0,A) be

a simple, acyclic directed graph, and let m+1 be the source node and 0 be the sink node of

D, where N0 = {1, · · · ,m} ∪ {m+1,0}. We encode each m+1− 0 directed path Π of its arc

set A in D by means of the indicator characteristic vector in the set {(I[σ, i,S] : i∈ S,S ∈ S)∈

{0,1}
∑

S∈S|S| : σ ∈ Σm} ∈ RA , which we denote rΠ. The convex hull of the vectors rΠ, for a

m+1− 0 directed path Π in D, is referred to as the m+1− 0 directed path polytope of D. For

a node v of D, let δ−(v) = {(w,v) :w ∈N0, (w,v)∈A} represent the nodes incoming to node v

and δ+(v) = {(v,w) :w ∈N0, (v,w)∈A} represent the nodes outgoing from node v. For B ⊆A,

let r(B) =
∑
{r(v,w) : (w,v)∈B}. Let M be the matrix whose rows are indexed by modes of

D such that the entry corresponding to node v and arc a equals to 1 if a enters v, and −1 if a
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leaves 0, and 0 else. It’s well known that M is totally unimodular (Schrijver 1998). This implies

that the polyhedron {r ∈RA :Mr= d, r≥ 0} has all its vertices integer for every integral vector

d∈RA. Assume that δ(m+1)− = δ(0)+ = ∅.

Lemma EC.2 (Theorem 2 in Fiorini 2004). A point r ∈ RA belongs to the m + 1 − 0

directed path polytope D if and only if

r(δ−(v))− r(δ+(v)) = 0, ∀v ∈N0 \ {m+1,0}, (EC.2)

r(δ−(0)) = 1, (EC.3)

r(v,w)≥ 0, ∀(w,v)∈A. (EC.4)

In network flows, (EC.2)-(EC.4) defines a flow of value 1 in the network D = (N0,A), with

source node m+1 and sink node 0.

By Lemma EC.2, to show pS lies in the multiple choice polytope, we need to show (r(w,v) :

(w,v)∈A) based on pS satisfying (EC.2)− (EC.4) in Lemma EC.2. We demonstrate (r(w,v) :

(w,v)∈A) under pS as follows:

r(m+1, j) =
∑

σ∈Σm:argmini∈Sm σ(i)=j

P (σ) = pj,Sm , ∀ j = 1, · · · ,m,

r(i, j) =
∑

σ∈Σm:argmink∈Si−1
σ(k)=j

P (σ)−
∑

σ∈Σm:argmink∈Si
σ(k)=j

P (σ)

= pj,Si−1
− pj,Si

, ∀ i= 2, · · · ,m, 1≤ j ≤ i− 1,

r(1,0) = 1.

We provide Figure EC.1 to illustrate (r(w,v) : (w,v)∈A) in the graph D.

Figure EC.1 An illustration of D given pS ∈Preg(S) with a nested collection S

Next, we verify such (r(w,v) : (w,v)∈A) satisfies (EC.2)-(EC.4).
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For (EC.2), define pj,Sm+1
= 0 for all j. For a node j ∈ {2, · · · ,m},

r(δ−(j)) =
m+1∑

k=j+1

r(k, j)

=
m∑

k=j

pj,Sk
− pj,Sk+1

= pj,Sj
− pj,Sj+1

+ pj,Sj+1
− pj,Sj+2

+ · · ·+ pj,Sm − pj,Sm+1

= pj,Sj
− pj,Sm+1

= pj,Sj
.

r(δ+(j)) =

j−1∑
k=1

pk,Sj−1− pk,Sj

= p1,Sj−1
− p1,Sj

+ p2,Sj−1
− p2,Sj

+ · · ·+ pj−1,Sj−1
− pj−1,Sj

=

j−1∑
k=1

pk,Sj−1
−

j−1∑
k=1

pk,Sj
= 1−

j−1∑
k=1

pk,Sj
= pj,Sj

.

For the node 1,

r(δ−(1)) =
m+1∑
k=2

r(k,1)

= p1,S1
− p1,S2

+ p1,S2
− p1,S3

+ · · ·+ p1,Sm − p1,Sm+1

= p1,S1
− p1,Sm+1

= 1− 0 = 1= r(δ+(1)).

Therefore, r(δ−(j)) = r(δ+(j)) for j ∈ {1,2, · · · ,m}. (EC.2) is satisfied by (r(w,v) : (w,v)∈A).
For (EC.3), r(δ−(0)) = r(1,0) = 1.

For (EC.4), r(m+ 1, j) = pj,Sm ≥ 0, ∀ j = 1, · · · ,m because of the nonnegativity of choice

probabilities. We have r(i, j) = pj,Si−1
− pj,Si

≥ 0, ∀ i= 2, · · · ,m, 1≤ j ≤ i− 1 since pS satisfies

regularity,i.e., pS ∈Preg(S). Further r(1,0) = 1> 0.

Thus the assignment (r(w,v) : (w,v)∈A) satisfies (EC.2)-(EC.4) in Lemma EC.2. Therefore,

for any pS ∈ Preg(S), there exists a probability distribution (P (σ) : σ ∈ Σm) such that pS ∈
Prum(S). This implies Preg(S)⊆Prum(S) under the nested collection S.

(2) We prove Preg(S) ⊆ Prum(S) under the laminar collection. By the definition of the laminar

collection, we know that for S,T ∈ S, either S ⊂ T , or T ⊂ S, or S ∩T = ∅. Then, it suffices to

construct a distribution P (·) for Ŝ ⊂ S such that Ŝ is a nested collection. Following the proof in

(1), we have Preg(S) =Prum(S) under a laminar collection.

■

EC.2. Proofs of the Results in Section 4
EC.2.1. Proof of Proposition 1

Proof. Due to Theorem 1, we have Pmdm(S ′) =Projx(ΠS′), where the lifted set ΠS′ equals{
(x,λ)∈RIS′ ×RS′

:xi,S ≥ 0,
∑
i

xi,S = 1,∀S ∈ S ′,

λS >λT if xi,S <xi,T , λS = λT if xi,S = xi,T ̸= 0, ∀(i,S), (i, T )∈ IS′

}
,
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following the definition in (8). Since UA := {xA : (xS ,xA,λ) ∈ΠS′ , xS = pS}, the non-numbered

constraints in the formulation in Proposition 1 are obtained by replacing xS = pS in the above

description of the lifted set ΠS′ . For deducing the remaining constraints (10a) - (10b), we proceed

as follows: Consider any (i,S) ∈ IS . From the description of ΠS′ , observe that an assignment for

xi,A, λA, λS in any (x,λ)∈Π′
S satisfying xS = pS necessarily satisfies one of the following four cases:

In Case 1, we have λA > λS and xi,A < pi,S: If λA, λS is such that λA > λS, this informs the

restriction {xi,A : xi,A < pi,S} on the values xi,A can take. The closure of this restricted collection

{xi,A : xi,A < pi,S} equals {xi,A : xi,A ≤ pi,S}.

In Case 2, we have λA < λS and xi,A > pi,S: If λA, λS is such that λA < λS, the closure of the

corresponding restriction {xi,A : xi,A > pi,S} equals {xi,A : xi,A ≥ pi,S}.

In Case 3, we have λA = λS and xi,A = pi,S ̸=0: When λA, λS is such that λA = λS and pi,S ≠ 0,

the corresponding restriction on the values of xi,A is given by the closed set {xi,A : xi,A = pi,S}.

Finally, in Case 4, we have λA, λS unconstrained and xi,A = pi,S = 0: Like in Case 3, the restriction

on the values of xi,A corresponding to this case equals {xi,A : xi,A = 0}. The relationship between

xi,A, pi,S, λA, λS in this case is any one of the following sub-cases: Case (4a) λA >λS and 0 = xi,A ≤

pi,S = 0, or Case (4b) λA <λS and 0 = xi,A ≥ pi,S = 0, or Case (4c) λA = λS and 0 = xi,A = pi,S = 0.

Combining the observations in the cases (1) & (4a), (2) & (4b), and (3) & (4c), we obtain that

the closure of UA equals the collection of probability vectors xA = (xi,A : i∈A) for which there exists

a function λ : S ′→R such that

xi,A ≤ pi,S if λA >λS, ∀i∈A, (i,S)∈ IS ,

xi,A ≥ pi,S if λA <λS, ∀i∈A, (i,S)∈ IS , and

xi,A = pi,S if λA = λS, ∀i∈A, (i,S)∈ IS ,

in addition to satisfying λS >λT if pi,S < pi,T and λS = λT if pi,S = pi,T ̸= 0, for all (i,S), (i, T )∈ IS .

The constraints in the formulation in Proposition 1 exactly specify these conditions describing the

closure of UA. Observe that the objective in inf{
∑

i∈A rixi,A :xA ∈ UA} is continuous as a function

of xA. Therefore, inf{
∑

i∈A rixi,A :xA ∈ UA}=min{
∑

i∈A rixi,A :xA ∈ closure(UA)}. ■

EC.2.2. Proof of Proposition 2

Proof. Recall the notation S ′ = S ∪ {A}. Observe that the variables (λS : S ∈ S ′) influence the

value of the formulation in Proposition 1 only via the sign of λS−λT , for any pair of variables λS, λT

from the collection (λS : S ∈ S ′). Therefore the optimal value of this optimization formulation is not

affected by the presence of the following additional constraints: 0≤ λS ≤ 1 for all S ∈ S ′, and

λS −λT ≥ ϵ if λS >λT , ∀ (i,S), (i, T )∈ IS′ ,
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for some suitably small value of ϵ > 0. Indeed, this is because the signs of the differences {λS −λT :

S,T ∈ S ′} are not affected by these additional constraints. Taking ϵ to be smaller than 1/(2|S|), for

example, ensures that there is a feasible assignment for (λS : S ∈ S ′) within the interval [0,1] even if

all these variables take distinct values.

Let F denote the feasible values for the variables (λS : S ∈ S ′), (xi,A : i ∈ A) satisfying the

constraints introduced in the above paragraph besides those in the formulation in Proposition

1. Equipped with this feasible region F , we have the following deductions from (11a) - (11c) for

(λS : S ∈ S ′), (xi,A : i∈A) in F : For every i∈A and any S ∈ S containing i,

(i) we have λA <λS if and only if δA,S = 1 and δS,A = 0, due to the constraints (11a) and (11b); in

this case, we have from (11c) that pi,S ≤ xi,A ≤ 1;

(ii) likewise, we have λA >λS if and only if δA,S = 0 and δS,A = 1, due to the constraints (11a) and

(11b); in this case, we have from (11c) that 0≤ xi,A ≤ pi,S.

(iii) finally, λA = λS if and only if δA,S = 0 and δS,A = 1; here we have from (11d) that xi,A = pi,S.

Thus the binary variables {δA,S, δS,A : S ∈ S} suitably model the constraints collection (10a) - (10b)

and provide an equivalent reformulation in terms of the constraints (11a) - (11d). Therefore the

optimal value of the formulations in Propositions 1 and 2 are identical. ■

EC.2.3. Proof of Corollary 1

Proof. When S ′ is either nested or laminar, from Theorem 3, we know that Pmdm(S ′) =Preg(S ′).

So, we can solve the worst-case expected revenue in (9) with the representable conditions of the

regular model which are xi,A ≤ pi,S if S ⊂A and xi,A ≥ pi,S if A⊂ S for all i ∈A and (i,S) ∈ IS .

This is a linear program with O(n) continuous variables and O(n|S|) constraints. ■

EC.2.4. Proof of Proposition 3

Proof. Suppose S = {S1, S2, . . . , Sm} is nested as in S1 ⊂ S2 ⊂ · · · ⊂ Sm. We have, from the regular-

ity of MDM in Lemma 2, that pi,S1
≥ pi,S2

≥ · · ·pi,Sm , for all i∈ S1. Recall that closure
(
Pmdm(S)

)
=

Projx(Π
′
S) where Π

′
S is defined as

Π
′

S =
{
(x,λ)∈RIS ×RS :xi,S ≥ 0,∀(i,S)∈ IS ,

∑
i

xi,S = 1,∀S ∈ S,

λS ≥ λT if xi,S ≤ xi,T ,∀(i,S), (i, T )∈ IS
}
.

(EC.5)

Thus, for the given nested S, we have λSm ≥ · · ·λSk
≥ λSk−1

≥ · · · ≥ λS1
for any λ such that (x,λ)∈

Π′
S . For ease of notation, let λS0

=−∞ and λSm+1
=+∞. Then for any given A, the corresponding

λA must satisfy λSk+1
≥ λA ≥ λSk

for some k ∈ {0,1, . . . ,m}.

From the viewpoint of λA ≥ λSk
≥ . . . ≥ λS0

, we deduce the following constraints on xi,A: For

any i ∈A∩Sk, we have the respective MDM feasibility constraints xi,A ≤ pi,Sk
≤ . . .≤ pi,Sj

for all
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j ≤ k such that i∈ Sj. These constraints can be equivalently summarized by xi,A ≤ pi,Sk
, and this

comprises the first set of constraints for evaluating Rk in (13).

From the viewpoint of λSm+1 ≥ · · ·λSk+1
≥ λA, we deduce the following constraints on xi,A : For

any i∈A, (i,S)∈ IS , Sk+1 ⊆ S, we have the respective MDM feasibility constraint xi,A ≥ pi,S, which

comprise the second set of constraints for evaluating Rk in (13). ■

EC.3. Proofs of the Results in Section 5
EC.3.1. Proof of Proposition 4

Proof. Due to Theorem 1, we have Pmdm(S) = Projx(ΠS), following the definition in (8). One

can argue the closure of Pmdm(S) by the similar arguments of the proof of Proposition 1. Consider

any (i,S)∈ IS . From the description of ΠS , observe that an assignment for xi,S, xi,T , λS, λT in any

(x,λ)∈ΠS necessarily satisfies one of the following four cases:

In Case 1, we have λS < λT and xi,S > xi,T : If λS, λT is such that λS < λT , the closure of the

corresponding restriction {xi,S, xi,T : xi,S >xi,T} equals {xi,S, xi,T : xi,S ≥ xi,T}.

In Case 2, we have λS > λT and xi,S < xi,T : If λS, λT is such that λS > λT , the closure of the

corresponding restriction {xi,S, xi,T : xi,S <xi,T} equals {xi,S, xi,T : xi,S ≤ xi,T}.

In Case 3, we have λS = λT and xi,S = xi,T > 0: When λS, λT is such that λS = λT and xi,S =

xi,T > 0, the corresponding restriction on the values of xi,S, xi,T is given by the closed set {xi,S, xi,T :

xi,S = xi,T > 0}.

Finally, in Case 4, we have λS, λT unconstrained and xi,S = xi,T = 0: Like in Case 3, the restriction

on the values of xi,S, xi,T corresponding to this case equals xi,S = xi,T = 0. The relationship between

xi,S, xi,T , λS, λT in this case is any one of the following sub-cases: Case (4a) λS >λT and 0 = xi,S ≤

xi,S = 0, or Case (4b) λS <λT and 0 = xi,S ≥ xi,T = 0, or Case (4c) λS = λT and 0 = xi,S = xi,T = 0.

Combining the observations in the cases (1) & (4a), (2) & (4b), and (3) & (4c), we obtain that

the closure of Pmdm(S) equals the collection of probability vectors x for which there exists a function

λ : S →R such that

xi,S ≤ xi,T if λS >λT , ∀(i,S), (i, T )∈ IS ,

xi,S ≥ xi,T if λS <λT , ∀(i,S), (i, T )∈ IS ,

xi,S = xi,T if λS = λT , ∀(i,S), (i, T )∈ IS .

The constraints in the formulation in Proposition 4 exactly specify these conditions describing

the closure of Pmdm(S). Observe that the objective in inf{loss(pS ,xS) : xS ∈ Pmdm(S)} is contin-

uous as a function of x. Therefore, inf{loss(pS ,xS) : xS ∈ Pmdm(S)} = min{loss(pS ,xS) : xS ∈

closure(Pmdm(S))}. ■
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EC.3.2. Proof of Theorem 4

Before we formally prove Theorem 4, we first show the following preparatory material. Problem (15)

can be solved by the following optimization problem:

inf
λ

loss(x∗
S(λ),pS) (EC.6)

s.t. x∗
S(λ)∈ arg infxS(λ):(xS(λ),λ)∈ΠS

loss(xS(λ),pS |λ), (EC.7)

where xS(λ) can be interpreted as a collection of MDM-representable choice probabilities given S

and λ. Next, we focus on the sub-problem (EC.7). Let [m] = {1,2, · · · ,m} and [k] = {1,2, · · · , k} for

some positive integer m and k.

Assumption EC.1. Consider S = {S1, S2, · · · , Sm} and pS as a n×m matrix with n rows and

m columns, satisfying the following properties:

• n= k+m with k as a positive integer;

• For each l ∈ [k], there are exactly two elements in row l of pS and κ= |pl,Si
− pl,Sj

|< 1
2m

is a

positive constant for i, j ∈ [m] with l ∈ Si ∩Sj;

• For each i∈ [m], there is exactly one element pk+i,Si
in row k+ i and pk+i,Si

= 1−
∑k

j=1 pj,Si
and

pk+i,mSi
> kmκ

2
.

Lemma EC.3. Given pS that satisfies Assumption EC.1, the sub-problem (EC.7) with 1-norm

objective function has a closed-form optimal objective value
k∑

l=1,i,j∈[m]:l∈Si∩Sj

2|pl,Si
− pl,Sj

|I{(pl,Si
−

pl,Sj
)(λSi

−λSj
)≥ 0}.

Intuitively, pS has exactly one product-assortment pair for product l with l ∈ [k] and exactly one

element for product k+ i with i∈ [m] which corresponds to the number of assortments. For product l

with l ∈ [k] the indicator takes value 1 if and only if the choice probabilities of the product-assortment

pair violate the MDM-representable conditions, the minimum loss to make this pair to be MDM-

representable under 1-norm loss is |pl,Si
− pl,Sj

|, which causes the violation of the normalization

constraint of the assortments Si and Sj. To satisfy the normalization conditions of assortment Si

and Sj , the least loss is also |pl,Si
− pl,Sj

|. Next, we formally prove Lemma EC.3 with three steps: (1)

reformulate the sub-problem (EC.7) to a linear program; (2) construct a primal feasible solution

x(λ) such that the desired optimal objective value is achieved, which can be served as an upper

bound to (EC.7); (3) derive the dual for the problem and construct a dual feasible solution such

that the desired optimal objective value is achieved.
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Proof. Step (1): Let f∗
sub denote the optimal value of (EC.7). Then, we reformulate the sub-problem

(EC.7) as the following problem:

f∗
sub = min

xS

k∑
l=1:i,j∈[m],l∈Si∩Sj

(|xl,Si
− pl,Si

|+ |xl,Sj
− pl,Sj

|)+
m∑
i=1

|xk+i,Si
− pk+i,Si

|

s.t. xl,Si
−xl,Sj

≤ 0 if λSi
≥ λSj

∀l ∈ [k], i, j,∈ [m], l ∈ Si ∩Sj,∑
i∈S

xi,S = 1, ∀S ∈ S,

xi,S ≥ 0, ∀(i,S)∈ IS .

(EC.8)

We reformulate Problem (EC.8) as the following linear program by introducing a new variable zS .

min
xS ,zS

k∑
l=1,i,j∈[m],l∈Si∩Sj

(zl,Si
+ zl,Sj

)+
m∑
i=1

zk+i,Si

s.t. zl,Si
−xl,Si

≥−pl,Si
, zl,Sj

−xl,Sj
≥−pl,Sj

, ∀l ∈ [k], i, j ∈ [m], l ∈ Si ∩Sj,

zl,Si
+xl,Si

≥ pl,Si
, zl,Sj

+xl,Sj
≥ pl,Sj

, ∀l ∈ [k], i, j ∈ [m], l ∈ Si ∩Sj,

xl,S −xl,Sj
≥ 0 if λSi

≤ λSj
∀l ∈ [k], i, j ∈ [m], l ∈ Si ∩Sj,

zk+1,Si
−xk+i,Si

≥−pk+i,Si
, ∀i∈ [m],

zk+1,Si
+xk+i,Si

≥ pk+i,Si
, ∀i∈ [m],∑

i∈S

xi,S = 1, ∀S ∈ S,

xi,S, zi,S ≥ 0, ∀(i,S)∈ IS .

(EC.9)

Step (2): Given any λ, construct a solution (xS ,zS) as follows. For l ∈ [k],i, j ∈ [m] such that

l ∈ Si ∩Sj:

(2a) if I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}= 0, let

xl,Si
= pl,Si

, xl,Sj
= pl,Sj

, xk+i,Si
= pk+i,Si

, xk+j,Sj
= pk+j,Sj

, xl,Si
= zl,Sj

= 0;

(2b) if I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}= 1, let

xl,Si
= xl,Sj

=
pl,Si

+ pl,Sj

2
, zl,Si

= zl,Sj
=
|pl,Si

− pl,Sj
|

2
.

For i∈ [m], let

xk+i,Si
= pk+i,Si

+
k∑

l=1,i,j,∈[m],l∈Si∩Sj

I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}
sgn(pl,Si

− pl,Sj
)|pl,Si

− pl,Sj
|

2
,

zk+i,Si
=

k∑
l=1,i,j,∈[m],l∈Si∩Sj

I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}
sgn(pl,Si

− pl,Sj
)|pl,Si

− pl,Sj
|

2
,
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where sgn(x) :=

{
1 if x> 0,

−1 if x≤ 0.
Then, the objective value of Problem (EC.9) under the con-

structed solution (xS ,zS) is
k∑

l=1,i,j∈[m]:l∈Si∩Sj

2|pl,Si
−pl,Sj

|I{(pl,Si
−pl,Sj

)(λSi
−λSj

)≥ 0}. This implies

that f∗
sub ≤

k∑
l=1,i,j∈[m]:l∈Si∩Sj

2|pl,Si
− pl,Sj

|I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}.

Step (3): We derive the dual of (EC.9) as follows. For l ∈ [k],i, j ∈ [m] such that l ∈ Si ∩Sj, we

introduce the following variables: αl,i, βl,i, αl,j, βl,j, ul,i,j ≥ 0. For i∈ [m], we introduce the following

variables: αk+i,i, βk+i,i ≥ 0, ηi. The dual problem of (EC.9) is given as:

max
α,β,u,η

k∑
l=1,i,j∈[m],l∈Si∩Sj

[pl,Si
(βl,i−αl,i)+ pl,Sj

(βl,j −αl,j)]+
m∑
i=1

[pk+i,Si
(βk+i,i−αk+i,i)− ηi]

s.t. αl,i +βl,i ≤ 1, αl,j +βl,j ≤ 1, ∀l ∈ [k], i, j ∈ [m], l ∈ Si ∩Sj,

−αl,i +βl,i +ul,i,j ≤ 0, −αl,j +βl,j −ul,i,j ≤ 0, ∀l ∈ [k], i, j ∈ [m], l ∈ Si ∩Sj,

αk+i,i +βk+i,i ≤ 1, −αk+i,i +βk+i,i ≤ 0, ∀i∈ [m],

αl,i, βl,i, αl,j, βl,j, ul,i,j ≥ 0, ∀l ∈ [k], i, j ∈ [m], l ∈ Si ∩Sj,

αk+i,i, βk+i,i ≥ 0, ∀i∈ [m].

(EC.10)

Construct a dual solution for (EC.10) as follows: For l ∈ [k], i, j ∈ [m], l ∈ Si ∩Sj,

(3a) if I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}= 0, let αl,i = βl,i = αl,j = βl,j = ul,i,j = 0.

(3b) if I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}= 1, let αl,i = 1, βl,i = 0, αl,j = 0, βl,j = 1, ul,i,j = 1.

For i∈ [m], let ηi = 0 and αk+i,i = 0, βk+i,i =
∑k

l=1

∑
j∈[m]:l∈Si∩Sj

|pl,Si
−pl,Sj

|I{(pl,Si
−pl,Sj

)(λSi
−λSj

)≥0}

2pk+i,Si
.

By weak duality, we have f∗
sub ≥

k∑
l=1,i,j∈[m]:l∈Si∩Sj

2|pl,Si
− pl,Sj

|I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}.

Summing up, we have f∗
sub =

k∑
l=1,i,j∈[m]:l∈Si∩Sj

2|pl,Si
− pl,Sj

|I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0}. ■

Before we show the hardness of Problem (15), we provide the following three definitions (see

Dwork et al. (2001)) to describe the Kemeny optimal aggregation problem.

Definition EC.1 (Full lists and partial lists). LetM= {1, . . . ,m} be a finite set of alter-

natives, called universe. A ranking over M is an ordered list. If the ranking τ contains all the

elements inM, then it is called a full list (ranking). If the ranking τ contains a subset of element

from the universeM, then it is called a partial list (ranking).

Definition EC.2 (Kendall-tau distance (K-distance)). The K-distance, denoted as

K(σ, τ), is the number of pairs i, j ∈M such that σ(i)<σ(j) but τ(i)> τ(j) where σ(i) stands for

the position of i in σ and similar explanations are applied for σ(j), τ(i) and τ(j). Note that the pair

(i, j) has contribution to the K-distance only if both i, j appear in both lists σ, τ .
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Definition EC.3 (SK, Kemeny optimal). For a collection of partial lists τ1, . . . , τk and a full

list π, we denote

SK(π, τ1, . . . , τk) =
k∑

i=1

K(π, τi).

We say a permutation σ is a Kemeny optimal aggregation of τ1, . . . , τk if it minimizes SK(π, τ1, . . . , τk)

over all permutations π.

Lemma EC.4 (see Dwork et al. (2001)). Finding Kemeny optimal solution for partial lists of

length 2 is exactly the same problem as finding a minimum feedback arc set, and hence is NP-hard.

Now, we are ready to prove the hardness of Problem (15).

Proof. To show Problem (15) is NP-hard, it suffices to show some instances of this problem is

NP-hard. We show that Kemeny optimal aggregation of length 2 can be reduced to Problem (15).

The decision version of Kemeny optimal aggregation with a collection of partial lists of all length

2 is stated as follows:

INSTANCE: A finite set M with |M|=m, a collection of partial lists τ1, . . . , τk with |τi|= 2 for

i= 1, . . . , k, an upper bound on the loss L.

QUESTION:Is there a full list π, such that
∑k

i=1K(π, τi)≤L?

The decision version of the limit problem of MDM in Problem (15) is stated as follows:

INSTANCE: A finite set N with |N |= n, a collection of assortments S with |S|=m and S ⊆N for

all S ∈ S, the observed choice probabilities pS = (pi,S : i∈ S,S ∈ S) with
∑

i∈S pi,S = 1 for all S ∈ S,

an upper bound on the loss L
′
.

QUESTION: Is there a solution (xS ,λ) to Problem (15) such that loss(xS ,pS)≤L
′
?

We then will reduce the Kemeny optimal aggregation problem to Problem (15). Given any instance

of Kemeny optimal aggregation problem with partial lists all of length 2, we can construct an instance

of Problem (15) as follows.

(1) Let the collection of assortments S = {S1, S2, . . . , Sm} with |S|=m and the set of alternatives

(products), N = {1, . . . , k, k+1, . . . , k+m} with |N |= n= k+m. Given the observed choice

data pS , consider pS as a n×m matrix with n rows and m columns.

(2) The values of the entries in pS are set in the following manner. For each l ∈ {1, ..., k}, suppose

τl = {i, j} with τl(i)< τl(j), then we set pl,Si
= 1

3×k
and pl,Sj

= 2
3×k

. It’s easy to see that for each

Si with 1≤ i≤m, 0<
∑k

j=1 pj,Si
< 1.

(3) For each Si with 1≤ i≤m, let pk+i,Si
= 1−

∑k

j=1 pj,Si
.

(4) Set other entries of pS as zero.

(5) Set the loss function in Problem (15) to be 1-norm loss.

We give Example EC.1 and Example EC.2 to illustrate the above instance construction.
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Example EC.1. Given an instance of Kemeny optimal aggregation with M = {1,2,3} and

τ1 = (1≻ 2), τ2 = (1≻ 3), τ3 = (2≻ 3), we construct an instance for Problem (15) with pS as shown

in Table EC.4.

Table EC.4 An example of a representable instance construction

alternative S1 = {1,2,4} S2 = {1,3,5} S3 = {2,3,6}
1 1/9 2/9 -
2 1/9 - 2/9
3 - 1/9 2/9
4 7/9 - -
5 - 6/9 -
6 - - 5/9

Example EC.2. Given an instance of Kemeny optimal aggregation with M = {1,2,3} and

τ1 = (1≻ 2), τ2 = (3≻ 1), τ3 = (2≻ 3), we construct an instance for Problem (15) with pS as shown

in Table EC.5.

Table EC.5 An example of an infeasible instance construction

alternative S1 = {1,2,4} S2 = {1,3,5} S3 = {2,3,6}
1 1/9 2/9 -
2 2/9 - 1/9
3 - 1/9 2/9
4 6/9 - -
5 - 6/9 -
6 - - 6/9

In Example EC.1, both the Kemeny optimal aggregation and the limit of MDM instances are

feasible to their problem respectively. The optimal solution to the Kemeny optimal aggregation

is π = (1≻ 2≻ 3) and one of the optimal solutions to the limit of MDM is xS = pS and λS1
= 3,

λS2
= 2 and λS3

= 1. Both instances obtain 0 loss.

In Example EC.2, both the Kemeny optimal aggregation and the limit of MDM instance are infeasible

to their problem respectively. It’s trivial to see that the optimal solution to the Kemeny optimal

aggregation is one of {(1≻ 2≻ 3), (2≻ 3≻ 1), (3≻ 1≻ 2)}. Each of such solutions obtains SK =1.

Given Lemma EC.3, one may make a guess for one of the optimal solutions to the limit of MDM in

Example EC.2 to be x∗
2,S1

= 1
6
, x∗

2,S3
= 1

6
, x∗

4,S1
= 13

18
, x∗

6,S3
= 11

18
and the optimal loss to be 2

9
. We will

show that this guess is true.

Recall that Problem (15) is equivalent to Problem (EC.6). We next show that for any fixed λ in

Problem (EC.6), then the sub-problem (EC.7) with optimal x∗
S(λ) and f∗

sub(λ) under λ, there exists

π such that λ∗
S
π−1(1)

≥ · · · ≥ λ∗
S
π−1(m)

for the Kemeny optimal aggregation and SK(π) = 3×k
2
f∗

sub(λ).
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By Lemma EC.3, we have

f∗
sub(λ) = loss(x∗

S(λ),pS)

=
k∑

l=1,i,j∈[m]:l∈Si∩Sj

(|x∗
l,Si
− pl,Si

|+ |x∗
l,Sj
− pl,Sj

|)+
m∑
i=1

|x∗
k+i,Si

− pk+i,Si
| (1)

=
k∑

l=1,i,j∈[m]:l∈Si∩Sj

2|pl,Si
− pl,Sj

|I{(pl,Si
− pl,Sj

)(λSi
−λSj

)≥ 0} (2)

=
2

3× k

k∑
l=1,i,j∈[m]:l∈Si∩Sj

I{(π(i)−π(j))(τl(i)− τl(j))< 0} (3)

=
2

3× k

k∑
l=1

K(π, τl)

=
2

3× k
SK(π).

Equation (1) is due to the construction of pS . Equation (2) holds because of |pl,Si
− pl,Sj

|= 1
3×k

and

the closed form objective value in Lemma EC.3. The argument for Equation (3) is as follows: For

l ∈ [k], i, j ∈ [m] : l ∈ Si ∩Sj, by instance construction, we have

pl,Si
< pl,Sj

if τl(i)< τl(j).

From the relation between π and λ, we have λπ−1(1) > . . . > λπ−1(m). Then, we have

π(i)<π(j) if λSi
≥ λSj

.

The above two inequities imply that

I{(λSi
≥ λSj

)(pl,Si
− pl,Sj

)> 0}= I{(π(i)−π(j))(τl(i)− τl(j))< 0}.

Setting L = 3k
2
L

′
. The decision problem of the limit of MDM asks is there (xS ,λ) such that

f∗
limit ≤L

′
is equivalent to the decision problem of Kemeny optimal aggregation is there a full ranking

π such that f∗
kemeny ≤L. ■

EC.3.3. Proof of Proposition 5

Proof. Observe that the variables (λS : S ∈ S) influence the value of the formulation in Proposition

5 only via the sign of λS − λT , for any pair of variables λS, λT from the collection (λS : S ∈ S).

Therefore the optimal value of this optimization formulation is not affected by the presence of the

following additional constraints: 0≤ λS ≤ 1 for all S ∈ S. Indeed, this is because the signs of the

differences {λS − λT : S,T ∈ S} are not affected by these additional constraints. Taking ϵ to be

smaller than 1/(2|S|), for example, ensures that there is a feasible assignment for (λS : S ∈ S) within

the interval [0,1] even if all these variables take distinct values.
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Let F denote the feasible values for the variables (λS : S ∈ S), (xi,S : (i,S) ∈ IS) satisfying the

constraints introduced in the above paragraph besides those in the formulation in Proposition 4.

Equipped with this feasible region F , we have the following deductions for (λS : S ∈ S), (xi,S : (i,S)∈

IS) in F : For any S,T ∈ S containing i,

(i) we have λS <λT if and only if δS,T = 1 and δT,S = 0, due to the first set of constraints of (16); in

this case, we have from the second and fourth set of constraints of (16) that 0≤ xi,T ≤ xi,S ≤ 1;

(ii) likewise, we have λS >λT if and only if δS,T = 0 and δT,S = 1, due to the first set of constraints; in

this case, we have from the second and fourth set of constraints of (16) that 0≤ xi,S ≤ xi,T ≤ 1.

(iii) finally, λS = λT if and only if δS,T = 0 and δT,S = 0; here we have from the third set of constriants

of (16) that xi,S = xi,T .

Thus the binary variables {δS,T : S,T ∈ S} suitably model the first set of constraints of (15) and

provide an equivalent reformulation in terms of the constraints. Therefore the optimal value of the

formulations in Propositions 4 and 5 are identical. ■

EC.4. Proofs of the Results in Section 6
EC.4.1. Proof of Theorem 5

Proof. necessity of (20). Suppose pS is G-MDM-representable. Then there exist marginal distri-

butions {Fi : i∈N} and deterministic utilities {νi : i∈N} such that for any assortment S ∈ S, the

given choice probability vector (pi,S : i∈ S) and the respective Lagrange multipliers {λS, λi,S : i∈ S}

are obtainable by solving (4). That is, there exist {λS, λi,S : i∈ S} for some fixed choice of {Fi : i∈N}

and {νi : i∈N}, such that

νi +F−1
i (1− pi,S)−λS +λi,S = 0 ∀(i,S)∈ IS , (EC.11)

λi,S pi,S = 0 ∀(i,S)∈ IS . (EC.12)

For any group l, alternatives i, j ∈Gl, assortments S,T with i, j ∈ S ∩T ,

λS − νi = λi,S +F−1
l (1− pi,S) and λT − νj = λj,T +F−1

l (1− pj,T ).

If pi,S < pi,T , then λi,S ≥ 0 and λi,T = 0 because of the complementary slackness condition (EC.12).

Since F−1
l (1− p) is a strictly decreasing function over p∈ [0,1], by (EC.11), we obtain:

λS − νi ≥ F−1
l (1− pi,S) > F−1

l (1− pi,T ) = λT − νi.

If on the other hand pi,S = pi,T ̸= 0, we have λi,S = λi,T = 0 from the optimality conditions. Then

λS − νi = F−1
l (1− pi,S) = F−1

l (1− pi,T ) = λT − νi. Thus, setting λ(S) = λS for all S ∈ S, we see that

there exists a function λ : S →R and (νi : i∈N ) satisfying (20).
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sufficiency of (20). Given pS and λ : S →R, {vi : i∈N} such that (20) holds for all (i,S), (j,T )∈

IS with g(i) = g(j) = l, we next exhibit a construction of marginal distributions (Fl : l= {1, · · · ,K})

for G-MDM. This construction will be such that it yields the given (pi,S : i∈ S) as the corresponding

choice probabilities from the optimality conditions in (4), for any assortment S ∈ S.

Towards this, let zi,S = λS−νi for all (i,S)∈ IS . For a given group l, let zl
S = (zli,S : (i,S)∈ I, i∈Gl)

with |zl
S |=ml. Further, let hl denote the number of product and assortment pairs in the group l

for which pi,S > 0 with g(i) = l. See that hl =ml, with the equality holding only when the choice

probabilities pl
S = {pi,S : (i,S) ∈ S, g(i) = l} are all non-zero. Equipped with this notation, we

construct the marginal distribution Fl(·) for any group l as follows:

(a) Consider any ordering (i,S)
l
= ((i1, S1), (i2, S2) · · · , (ihl

, Shl
), (ihl+1, Shl+1), · · · , (iml

, Sml
)) over

the product and assortment pairs in Gl for which zli1,S1
≤ zli2,S2

· · · ≤ zlihl ,Shl
< zlihl+1,Shl+1

≤

· · · ≤ zliml
,Sml

. With hl defined as the number of product and assortment pairs in group l with

pi,S > 0, note that it is necessary to have zlihl ,Shl
< zlihl+1,Shl+1

whenever hl <ml. This follows

from the observations that zl satisfies (20) and plihl ,Shl
> 0 = plihl+1,Shl+1

. Further, due to the

conditions in (20), the choice probabilities (pi,S : (i,S)∈ I, g(i) = l) must necessarily satisfy the

ordering pli1,S1
≥ pli2,S2

≥ · · · ≥ plihl ,Shl
> plihl+1,Shl+1

≥ · · · ≥ pliml
,Sml

.

(b) Construct the cumulative distribution function Fl(·) by first setting Fl(zik,Sk
) = 1 − plik,Sk

for k = 1, · · · , hl. With this assignment, we complete the construction of the distribution

Fl in between these points by connecting them with line segments as follows: For any two

consecutive product and assortment pairs (ik, Sk) and (ik+1, Sk+1) in the ordering satisfying

zlik,Sk
< zlik+1,Sk+1

, connect the respective points (zlik,Sk
,1−plik,Sk

) and (zlik+1,Sk+1
,1−plik+1,Sk+1

)

with a line segment (see Figure EC.2). For k ≤ hl, note that if the product and assortment

pairs (ik, Sk) and (ik+1, Sk+1) are such that zlik,Sk
= zlik+1,Sk+1

, then the corresponding points

(zlik,Sk
,1− plik,Sk

) and (zlik+1,Sk+1
,1− plik+1,Sk+1

) coincide and there is no need to connect them.

Note that plik,Sk
> plik+1,Sk+1

when zlik,Sk
< zlik+1,Sk+1

, because of (20), and hence the cumulative

distribution function Fl is strictly increasing in the interval [zlik,Sk
, zlik+1,Sk+1

].

(c) Lastly we construct the tails of the distribution Fl as follows: For the right tail, connect the

points (zlihl ,Shl
,1− plihl ,Shl

) and (zlihl+1,Shl+1
, 1) with a line segment if hl <ml. We then have

Fl(x) = 1 for every x≥ zlihl ,Shl
and therefore F−1

l (1) = zlihl+1,Shl+1
. If hl =ml, connect the points

(zlihl ,Shl
,1− plihl ,Shl

) and (zlihl ,Shl
+ δ, 1) by choosing any aribtrary δ > 0 (see Figure EC.2). In

this case, we will have Fl(x) = 1 for every x≥ zlihl ,Shl
+ δ. For the left tail, if pi,S1

= 1, then we

have Fl(x) = 0 for every x≤ zli1,S1
. Both the cumulative distribution functions drawn in Figure

EC.2 illustrate this case. On the other hand, if pi,S1
< 1, we use a line segment to connect

(zli1,S1
,1− pi,S1

) and (zli1,S1
− δ, 0) by choosing an arbitrary δ > 0. In this case, Fl(x) = 0 for

every x≤ zli1,S1
− δ.
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x
1− pi1,Sl

1
= 0

1
Fl(x)

zli1,S1

1− plik,Sk

zlik,Sk

1− plik+1,Sk+1

zlik+1,Sk+1

1− plihl ,Shl

zlihl ,Shl

zihl+1,Shl+1
x

1− pi1,Sl
1
= 0

1
Fl(x)

zli1,S1

1− plik,Sk

zlik,Sk

1− plik+1,Sk+1

zlik+1,Sk+1

1− plihl ,Shl

zlihl ,Shl
zlihl ,Shl

+ δ

(a) (b)
Figure EC.2 An illustration of the construction of the marginal distribution Fl when: (a) there is pi,S = 0 for some

(i, S)∈ IS with g(i) = l (the case where li <mi) and (b) pi,S > 0 for all (i, S)∈ IS with g(i) = l (the case where

hl =ml).

The above construction gives marginal distribution functions (Fl : l = {1, · · · ,K}) which are

absolutely continuous and strictly increasing within its support. We next show that the constructed

marginal distributions yield the given choice probabilities (pi,S : i ∈ S), for any assortment S ∈ S,

when they are used in the optimality conditions (4). In other words, given pS and λ : S → R,

{vi : i∈N}, we next verify that

νi +F−1
i (1− pi,S)−λ(S)+λi,S = 0, λi,S pi,S = 0, and λi,S ≥ 0, ∀(i,S)∈ IS .

For any (i,S)∈ S with g(i) = l and pi,S > 0, we have from the construction of Fl that Fl(z
l
i,S) = 1−pi,S.

Then for such pi,S, we have the optimality condition νi+F−1
l (1− pi,S)−λ(S)+λi,S = 0 readily hold

since zli,S = λ(S)− νi and the optimality conditions also stipulate that λi,S = 0 when pi,S > 0.

For any (i,S) ∈ IS with g(i) = l such that pi,S = 0, we have from Steps (a) and (c) of the above

construction that λ(S)− νi = zli,S ≥ zihl+1,Shl+1
= F−1

l (1) = F−1
l (1− pi,S). Then if we take λi,S =

λ(S)− νi − zihl+1,Shl+1
= λ(S)− νi − λ(Shl+1) + νihl+1

, we again readily have νi + F−1
i (1− pi,S)−

λ(S)+ λi,S = 0. This completes the verification that for any choice data pS satisfying (20), there

exists marginal distributions {Fl : l= {1, · · · ,K}} which yield pS as the G-MDM choice probabilities.

Lastly, the condition in (20) is equivalent to testing if there exists (λS : S ∈ S), (νi : i ∈N ) and

ϵ > 0 such that for all groups l= 1, . . . ,K, for all (i,S), (j,T )∈ IS with g(i) = g(j) = l:

λS − νi ≥ λT − νj + ϵ if pi,S < pj,T ,

λS − νi = λT − νj if 0< pi,S = pj,T ,

This is possible in polynomial time using a linear program by letting the above conditions be

formulated constraints and maximizing ϵ. This linear program includes |S| variables for (λS : S ∈ S),

and n variables for (νi : i∈N ), and 1 variable for ϵ, and O(n2|S|2) constraints. ■
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EC.4.2. Proof of Corollary 3

Proof. When K = 1, G =N , we have g(i) = g(j) for all i, j and the result follows. ■

EC.4.3. Proof of Theorem 6

Proof. To prove Theorem 6, we first present a lemma that can construct special cases of choice

probabilities obtained from the MNL model.

Lemma EC.5. For any fixed n, let S,T ⊆N with |S|, |T | ≥ 2. Let i ∈ S and j ∈ T . Then there

exists a set of positive integers x1, ..., xn such that

xi∑
k∈S xk

̸= xj∑
k∈T xk

, (EC.13)

as long as i ̸= j or S ̸= T .

Proof. We prove Lemma EC.5 holds for a set of positive integers such that x1 = 2 and

xn+1 = xn

∑n

i=1 xi when n ≥ 2 by induction. Base Case: when n = 3, the possible subsets are

{1,2},{1,3},{2,3},{1,2,3}. We have x1 = 2, x2 = 4, and x3 = 24. By substituting x1, x2, x3 to

(EC.13) for all i, j,S,T such that i ∈ S, j ∈ T , and i ̸= j or S ̸= T , Lemma EC.5 holds. Induction

Step: Assume that when n= k, Lemma EC.5 holds for the set of positive integers x1, ..., xk that

satisfies x1 =2 and xk+1 = xk

∑k

i=1 xi when k≥ 2. We next prove that the statement is true when

n= k+1. In the rest of the proof, we prove the statement by contradiction.

(1) If xk+1 = xi = xj in (EC.13), we have

xk+1∑
k∈S\{k+1} xk +xk+1

=
xk+1∑

k∈T\{k+1} xk +xk+1

.

We also have x1∑
k∈S\{k+1} xk

= x1∑
k∈T\{k+1} xk

from the induction assumption, which implies that

∑
k∈S\{k+1}

xk ̸=
∑

k∈T\{k+1}

xk.

So, a contradiction exists.

(2) If xk+1 ̸= xi, and xk+1 ̸= xj, and k+1∈ S ∩T , we have

xi∑
k∈S\{k+1} xk +xk+1

=
xj∑

k∈T\{k+1} xk +xk+1

.

We also have xi∑
k∈S\{k+1} xk

̸= xj∑
k∈T\{k+1} xk

from the induction assumption, which implies

xi∑
k∈S\{k+1} xk +xk+1

̸= xj∑
k∈T\{k+1} xk +xk+1

.

So, a contradiction exists.
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(3) If xi = xk+1 and xj ̸= xk+1, we have {k+1} ∈ S, and {k+1} /∈ T ,and xk+1∑
k∈S\{k+1} xk+xk+1

=
xj∑

k∈T xk
.

This implies

xk+1

∑
k∈T

xk = xj(
∑

k∈S\{k+1}

xk +xk+1).

By sorting terms, we have

xk+1 =
xj

∑
k∈S\{k+1} xk∑

k∈T xk−xj

<xj

∑
k∈S\{k+1}

xk <xk

k∑
i=1

xk.

Then, a contradiction exists.

(4) If xi = xk+1, and xj ̸= xk+1, and k+1∈ T , we have xk+1∑
k∈S\{k+1} xk+xk+1

=
xj∑

k∈T\{k+1} xk+xk+1
. This

implies
xk+1−xj∑

k∈S\{k+1} xk +xk+1−xj

=
xj −xj∑

k∈T\{k+1} xk +xk+1−xj

= 0,

if both denominators are not equal to zero. Since xk+1 = xk

∑k

i=1 xk, we have

xk+1−xj >xk

k∑
i=1

xk−xjxk = xk

k∑
i=1,i̸=j

xk > 0,

which implies
xk+1−xj∑

k∈S\{k+1} xk +xk+1−xj

> 0.

We have j ∈ T , which implies the denominator
∑

k∈T\{k+1} xk +xk+1−xj > 0. So,

xk+1−xj∑
k∈S\{k+1} xk +xk+1−xj

> 0 if
xj −xj∑

k∈T\{k+1} xk +xk+1−xj

= 0

when xk+1 = xk

∑k

i=1 xk. Thus, a contradiction exists.

This completes the proof. ■

Recall that the probability of choosing product i in assortment S under an MNL model is

pi,S = eνi∑
j∈S e

νj . Then, there exists νi = lnxi for all i∈N , such that the instance in Lemma EC.5 is

an MNL instance.

To show a G-MDM has a positive measure, it suffices to show that G-MDM with K = 1, which is

APU, has a positive measure. Equipped with Lemma EC.5, we prove Theorem 6 as follows. Let pS

be an instance following the manners in Lemma EC.5. Since MNL is a special case of APU, pS is

APU-representable. We next show that any instance p
′
S that lies in the ball centered at pS with

the radius ϵ > 0 is an APU instance. Let 0< ϵ<min |pi,S − pj,T |,∀(i,S), (j,T )∈ IS . We perturb pS

to be p
′
S by letting p

′
i,S = pi,S + ϵ and p

′
j,S = pj,S − ϵ by arbitrarily choosing (i,S), (j,S) ∈ IS , and

keeping other entries of p
′
S the same as pS . Since pS is APU-representable, we have

λS − νi >λT − νj if pi,S < pj,T ∀(i,S), (j,T )∈ IS .



ec22 e-companion to Author:

We have

λS − νi >λT − νj if pi,S + ϵ < pi,T ∀(i,S), (j,T )∈ IS ,

λT − νi >λS − νj if pi,T < pj,S − ϵ ∀(i, T ), (j,S)∈ IS ,

since ϵ <min |pi,S − pj,T |,∀(i,S), (j,T )∈ IS . From the construction of p
′
S , equivalently, we have

λS − νi >λT − νj if p
′
i,S < p

′
j,T ∀(i,S), (j,T )∈ IS ,

λT − νi >λS − νj if p
′
i,T < p

′
j,S ∀(i, T ), (j,S)∈ IS .

Thus, p
′
S is APU-representable. ■

EC.4.4. Proof of Proposition 6

Proof. Recall the notation S ′ = S ∪ {A}, and the collection of all G-MDM choice probability

vectors xA = (xi,A : i∈A) for the new assortment A which are consistent with the observed choice

data pS be given by UG. The main idea of the proof is that the second, third, and fourth sets of

constraints of (21) model the closure of the G-MDM feasible region of IS′ similar as the limit of MDM

in Proposition 5. The first set of constraints of (21) fix xS = pS , which ensures that (xA,pS)∈PG(S ′)

Next, we prove the constraints of (21) indeed models the closure of UG by adjusting the proof of

Proposition 5.

The optimal value of this optimization formulation is not affected by the presence of the following

additional constraints: 0≤ λS − νi ≤ 1 for all (i,S) ∈ IS′ . Indeed, this is because the signs of the

differences {λS − νi− λT + νj : (i,S), (j,T ) ∈ IS′} are not affected by these additional constraints.

Taking ϵ to be smaller than 1/(2n|S|), for example, ensures that there is a feasible assignment for

(λS − νi : (i,S)∈ IS′) within the interval [0,1] even if all these variables take distinct values.

Let F denote the feasible values for the variables (λS : S ∈ S ′), (νi : i ∈ N ), (xi,S : (i,S) ∈ I ′S)
satisfying the constraints as the closure of PG(S ′). Equipped with this feasible region F , we have the

following deductions for (λS : S ∈ S ′), (νi : i∈N ), (xi,S : (i,S)∈ I ′S) in F : For any (i,S), (j,T )∈ IS′

with g(i) = g(j):

(i) we have λS−νi <λT −νj if and only if δi,j,S,T = 1 and δj,i,T,S = 0, due to the second set of constraints

of (21); in this case, we have from the third set of constraints of (21) that 0≤ xi,T ≤ xi,S ≤ 1;

(ii) likewise, we have λS−νi >λT −νj if and only if δi,j,S,T = 0 and δj,i,T,S = 1, due to the second set of

constraints; in this case, we have from the third set of constraints of (21) that 0≤ xi,S ≤ xi,T ≤ 1.

(iii) finally, λS − νi = λT −µj if and only if δi,j,S,T = 0 and δj,i,T,S = 0; here we have from the fourth set

of constriants of (21) that xi,S = xi,T .

Thus the binary variables {δi,j,S,T : (i,S), (j,T )∈ S ′ with g(i) = g(j)} suitably model the constraints

of PG(S ′). By adding the first set of constraints xS = pS . We have xA ∈ UG. Therefore (21) computes

the worst-case expected revenue r(A). ■
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EC.4.5. Proof of Proposition 7

Proof. The proof of Proposition 7 follows directly from the proof of Proposition 6 by replacing

IS′ to IS . ■

EC.5. An Algorithm for Evaluating the Limit of MDM when |S| is Small

Algorithm 1: An algorithm solves the limit of MDM polynomial in n

Input: Observed choice probabilities pS , collection S, product universe N .

Output: MDM choice probabilities x∗
S , optimal loss f∗, optimal ranking of assortments τ ∗.

1 T ←{all rankings of (S : S ∈ S)};

2 f∗←+∞ keeps tracking of the optimal value of Problem (15);

3 x∗
S← 0 keeps tracking of the optimal solution;

4 for τ ∈ T do
5 Solve min

xS
loss(xS ,pS)

s.t. xi,S −xi,T ≥ 0, if τ(T )< τ(S) ∀(i,S), (i, T )∈ IS ,∑
i∈S

xi,S = 1, ∀S ∈ S,

xi,S ≥ 0, ∀(i,S)∈ IS . (Limit-LP)

f ← the output optimal objective value of (Limit-LP);

6 xS← the output optimal solution of (Limit-LP);

7 if f < f∗ then
8 x∗

S←xS ;

9 f∗← f ;

10 τ ∗← τ ;
11 end
12 end

In Algorithm 1, for a fixed λ, we just need to solve a convex optimization problem with O(n|S|)

continuous variables and O(n|S|2) linear constraints to compute the limit loss. There are m! possible

λ. Thus, Algorithm 1 is polynomial in the alternative size n.

EC.6. Illustrative Examples
EC.6.1. An example to show the non-convexity of MDM feasible region

Example EC.3. xS is MDM-representable because x1,A < x1,B,x2,A < x2,C and x3,B < x3,C

implies λA >λB, λA >λC and λB >λC . The values λA = 12, λB = 10, λC = 8 satify this. yS is MDM-

representable because y1,A > y1,B, y2,A > y2,C and y3,B > y3,C implies λA <λB, λA <λC and λB <λC .

The values λA = 8, λB = 10, λC = 12 satify this. w= 0.4xS +0.6yS is a convex combination of xS
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and yS but it can not be represented by MDM because w1,A >w1,B, w1,A <w2,C and w3,B >w3,C

which implies λA <λB, λA >λC and λB <λC , i.e., λB <λC <λA <λB. This means w can not be

represented by MDM.

xS

Alternative A={1,2} B={1,3} C={2,3}
1 0.3 0.9
2 0.7 0.8
3 0.1 0.2

yS

Alternative A={1,2} B={1,3} C={2,3}
1 0.75 0.1
2 0.25 0.2
3 0.9 0.8

w= 0.4xS +0.6yS

Alternative A={1,2} B={1,3} C={2,3}
1 0.57 0.42
2 0.43 0.44
3 0.58 0.56

EC.6.2. An example to show the grouping effect

If we have two groupings of the products denoted by G1 and G2 where each group in G1 is a subset of

a group in G2, then the set of choice probabilities that G-MDM captured with G2 is a subset of that

captured with G1. We provide an example as follows.

Example EC.4. Consider the choice probabilities in Table EC.6 below with n= 4 products over

two assortments S and T. This can be represented by G-MDM only when the number of groups

K ≥ 2.

Table EC.6 Choice probabilities that cannot be generated with a single group for n= 4,m= 2.

Alternative S = {1,2,3} T = {1,2,4}
1 p1,S = 0.28 p1,T = 0.25

2 p2,S = 0.40 p2,T = 0.20

3 p3,S = 0.32 -
4 - p4,T = 0.55

If all the alternatives are in the same group, using Corollary 3, we have λ(S)− ν2 <λ(S)− ν1 <

λ(T )− ν1 <λ(T )− ν2 since p2,S > p1,S > p1,T > p2,T , which implies ν2 < ν1 and ν2 > ν1. This means

the choice probabilities in Table EC.6 cannot be represented by G-MDM with K = 1. Now consider

K = 2 and G = {{1,3},{2,4}}. Then we have λ(S)−ν3 <λ(S)−ν1 <λ(T )−ν1 since p3,S > p1,S > p1,T

and λ(T ) − ν4 < λ(S) − ν2 < λ(T ) − ν2 since p4,T > p2,S > p2,T . The conditions are satisfied for

λ(S) = 1, λ(T ) = 3, ν1 = 1, ν2 = 1.5, ν3 = 3, ν4 = 4, since we get −2< 0< 2 and −1<−0.5< 1.5. This

means the choice probabilities in Table EC.6 can be represented by G-MDM with K = 2.

EC.6.3. An example to show the nonconvexity of G-MDM feasible region

Example EC.5. We focus on a single group with K =1. Both the choice probabilities pS and

qS are G-MDM-representable but the convex combination of pS and qS can not be represented by

G-MDM with K = 1. One can check pS can be represented by G-MDM where p1,A < p2,A < p1,C <

p1,B < p2,B < p3,A < p3,C implies λA−ν1 >λA−ν2 >λC−ν1 >λB−ν1 >λB−ν2 >λA−ν3 >λC−ν3.
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The values λA = 12, λB = 8, λC = 10 and ν1 = 3, ν2 = 4, ν3 = 10 satisfy this. Similarly, qS can

be represented by G-MDM where q3,A < q3,C < q2,A < q2,B < q1,A < q1,B < q1,C implies λA − ν3 >

λC − ν3 >λA− ν2 >λB − ν2 >λA− ν1 >λB − ν1 >λC − ν1. The values λA = 11, λB = 10, λC = 8 and

ν1 = 10, ν2 = 4, ν3 = 0 satisfy this. However rS can not be represented by G-MDM since we have

r1,A > r2,A which implies ν1 > ν2 and r1,B = r2,B > 0 which implies ν1 = ν2, both of which cannot be

simultaneously satisfied.

pS

Alternative A={1,2,3} B={1,2} C={1,3}

1 0.1 0.4 0.25
2 0.2 0.6 -
3 0.7 - 0.75

qS

Alternative A={1,2,3} B={1,2} C={1,3}

1 0.6 0.65 0.8
2 0.3 0.35 -
3 0.1 - 0.2

rS = 0.6pS +0.4qS

Alternative A={1,2,3} B={1,2} C={1,3}

1 0.3 0.5 0.47
2 0.24 0.5 -
3 0.46 - 0.53

EC.7. Additional Useful Details on the Experiments Presented in the Paper

In this section, we give details on the implementation of the experiments. We used a MacBook Pro

Laptop with a 2 GHz 4 core Intel Core i5 processor for all experiments.

EC.7.1. Implementation Details of Experiment 1

Data Generation of Experiment 1

(1) Collection information.

(a) A size of alternatives n= 1000 where the collection size |S|=m varies from 100 to 1000 in

steps of 100.

(b) In a run, the collection with a smaller size is nested by the one with a larger size.

(c) In each instance, each alternative is chosen into an assortment with the same probability

p= 0.005. This ensures that the average size of the assortments in the data is about 5. The

distinct assortments with at least size 2 are randomly generated with no repeat. Across

different instances, the generation of assortments in the same collection size is independent.

(2) Observed choice probabilities.

(a) Given the colletion information, pS is generated as a MNL instance where the deterministic

utilities in MNL follow a standard normal distribution.

(b) The choice probabilities pS are perturbed by Gaussian noise with mean 0 and standard

deviation 0.01. After the perturbation, regularization of all choice probabilities and normal-

ization of the choice probabilities in an assortment are applied. Let α denote the proportion

of entries of pS being perturbed. We test the instances with α= {0.25,0.5,0.75,1} respec-

tively. Let p̃S denote the perturbed choice probabilities. We have p̃S = pS(1+ ϵδ), where 1

is a all ones matrix, ϵ is the Gaussian noise and δ is a matrix of binary variables to indicate

whether the entries are chosen to be modified. We have P(δi,S = 1)= α, ∀(i,S)∈ IS .
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Checking the representability of MDM For a collection of observed choice probabilities pS ,

according to Theorem 1, we check the representability of MDM with the following linear program:

max
ϵ

ϵ

s.t. λS −λT − ϵ≥ 0, if pi,S < pi,T ∀(i,S), (i, T )∈ IS ,

λS −λT = 0, if pi,S = pi,T > 0 ∀(i,S), (i, T )∈ IS .

(EC.14)

If the optimal value of (EC.14) is strictly positive, then pS can be represented by MDM. Otherwise,

pS cannot be represented by MDM.

Checking the representability of MNL For a collection of observed choice probabilities pS , we

check the representability of MNL with the following linear program:

max
ν

∑
i∈N

νi

s.t. pi,S
∑
j∈νj

−νi = 0, ∀(i,S)∈ IS ,

νi ≥ 0, ∀i∈N .

(EC.15)

If the optimal value of (EC.15) is strictly positive, then pS can be represented by MNL. Otherwise,

pS cannot be represented by MNL.

Checking the representability of RUM For a collection of observed choice probabilities pS , we

check the representability of RUM with the following linear program:

max
λ

0

s.t.
∑
σ∈Σn

λ(σ)I[σ, i,S]− pi,S = 0, ∀(i,S)∈ IS ,∑
σ∈Σn

λ(σ) = 1, λ(σ)≥ 0, ∀σ ∈Σn.

(EC.16)

If (EC.16) is feasible, then pS can be represented by RUM. Otherwise, pS cannot be represented by

RUM.

In Experiment 1, for each α, the representability of a model is tested over 1000 instances of the

same collection size. We report the proportion of the representable instances of the tested model and

an average of computational time over these 1000 instances for each collection size.

EC.7.2. Implementation Details of Experiment 2

Data Generation of Experiment 2. Product size n=7 with a collection size m taking values

in {2,3,5,10,15,20} was setup in the experiment comparing the representational power and the

computational time of MDM and RUM. We stop at the product size 7 because of RUM is intractable

even for a small value of n. All other setups are the same as Experiment 1 except the generation of

random assortments. Since the size of the available alternatives is small, we test on the cases where

collections are randomly chosen from assortments with size 2 or 3.

The implementation details of Experiment 2 are the same as Experiment 1.
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EC.7.3. Implementation Details of Experiment 4

Data Generation of Experiment 4 All steps of generating instances are the same of Experiment

2 but we now use uniformly distributed choice data instead of using the underlying MNL choice

data with gaussian noise.

Limit computations for MDM, RUM and MNL In Experiment 3 of Section 7, we set the loss

function to be minxS

∑
S∈S TS

∑
i∈S pi,S|xi,S−pi,S| and report the average loss and standard error of

the limit of each model over 1000 instances. We use Gurobi solver for the limit computation of MDM

and RUM and CVXPY solver for the Maximum Likelihood Estimation of MNL. For each instance pS ,

the limit of MDM can be computed by solving (16). The limit of RUM can be computed by solving

a convex optimization problem with the constraints in Problem (EC.16) and the 1-norm objective

function. For the computation of the limit of MNL, we first compute the Maximum Likelihood

Estimator (MLE) of the parameter in the MNL model, where the MLE can be obtained by solving

the following loglikelihood function

argmaxν ll(ν|pS) =
∑
S∈S

TS

∑
i∈S

pi,S log(
expvi∑
j∈S expvj

)

=
∑
S∈S

TS(
∑
i∈S

pi,S vi− log
∑
j∈S

expvj).

Then, we compute the loss between the choice probability collection and the probability collection

with the estimated MLE of MNL.

EC.7.4. Implementation Details of Experiment 7

For a given instance pS , checking the representability of MDM, MNL can be done by (EC.14) and

(EC.15). WeWe check of the representability of the regular model by checking if pS satisfies the

following inequities:

pi,S ≤ pi,T if T ⊆ S, ∀(i,S), (i, T )∈ IS .

EC.8. Numerical Experiments with G-MDM

Experiment 8 is devoted to exploring how imparting domain knowledge into the model via grouping

reduces the length of prediction intervals (thereby pointing to lesser data requirements). Experiment

9 validates the effectiveness of the grouping identification procedure.

EC.8.0.1. The grouping effect of G-MDM The results of Experiment 8, reported in Figure

EC.3, show how grouping alternatives leads to significantly narrower prediction intervals for choice

probabilities in unseen assortments. Varying m= the number of assortments for which choice data

are available, we utilize the mixed integer linear programs in Proposition 2 and 6 to construct and

report prediction interval lengths averaged over revenues of unseen assortments. As expected, both
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models lead to tighter intervals when more choice data is made available for training. However, the

predicted intervals of the model using grouping information are 86% - 91% narrower than the model

assuming no groups when m ranging from 10 to 15.

The effectiveness of the grouping procedure The results of Experiment 9 demonstrate

the effectiveness of the group identification procedure. In this experiment, we generate 50 random

underlying G-MDMs instances with a product size of 7 and a collection size ranging among {20, 60, 80,

100} and develop a procedure to identify group information by utilizing the representable conditions

of G-MDM. The procedure begins by assessing the dissimilarity of the stochastic noise distributions

of any pair of alternatives. Given an instance pS , we define D= (D(i, j) : i, j ∈N ) as a matrix with

D(i, j) =D(j, i) where i ̸= j, and D(i, i) = 0, ∀i∈N . For any two alternatives i and j where i ̸= j,

we can explain D(i, j) as the violation of representable conditions if alternative i and j are grouped

together. Taking any MDM-representable choice data pS as the input, D(i, j) is computed as follows.

Let C1 = {(i, j,S,T ) : (i,S), (j,T ) ∈ I, pi,S < pj,T} and C2 = {(i, j,S,T ) : (i,S), (j,T ) ∈ I,0< pi,S =

pj,T}. Let IC1 and IC2 denote the set of indices of the tuples in C1 and C2 respectively. We solve the

following linear program:

min
y,η,y−,z,λ,ν

∑
k∈IC1

y−
k +

∑
l∈IC2

zl

s.t. λS − νi−λT + νj − yk ≥ 0, ∀k ∈ IC1 ,

y−
k ≥ 0, y−

k ≥−yk, ∀k ∈ IC1 ,

λS − νi−λT + νj + ηl = 0, ∀l ∈ IC2 ,

ηl ≤ zl, −ηl ≤ zl, ∀l ∈ IC2 ,

λS −λT − ϵ≥ 0, if ph,S < ph,T , ∀(h,S), (h,T )∈ IS ,

λS −λT = 0 if 0< ph,S = ph,T , ∀(h,S), (h,T )∈ IS ,

(EC.17)

with 0< ϵ< 1/(2|S|). Using D as the input distance matrix and setting different numbers of groups

K, K-Means clustering is performed to find the groups that minimize the aggregated distance. The

elbow method is then used to determine the optimal number of groups under pS . We evaluate the

clustering accuracy using this method over 50 instances for different collection sizes and report

the average accuracy and the standard deviation in Figure EC.4. As more choice data is available

for training, the clustering accuracy improves and the error decreases. Moreover, the identification

procedure is able to achieve high accuracy for all collection sizes with underlying G-MDMs.

EC.9. Additional Useful Details on Experiments Relating to G-MDM
EC.9.1. Implementation Details of Experiment 8

The instances that are feasible for G-MDM with K = 1 in Experiment 2 with perturbation parameter

α=0.5 are used for the prediction experiments. For each instance, a tested unseen assortment of
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Figure EC.4 The grouping accuracy with MDM

instances in Experiment 9

size 2 or 3 is randomly generated. For each instance, we utilize the MILPs in Proposition 2 and 6

to compute both predicted revenue intervals for the alternatives in the unseen assortment under

G-MDM with 1 group and G-MDM without grouping assumption (K=n). We report the average

length of the predicted intervals and standard error of each scenario over the testing instances.

EC.9.2. Implementation Details of Experiment 9

Data generation with underlying MDM choice data

Step 1: Uniformly generate νi, i∈N .

Step 2: Randomly generate a collection of assortments (S : S ∈ S, S ⊆ N , |S| ≥ 2) with a given

collection size.

Step 3: Consider two different ground-truth distribution F1(·) and F2(·) for G1 and G2 respectively.

Step 4: For each assortment, S with S ∈ S, compute the value of dual multiplier λS and the choice

probabilities via bisection search with the following equations are satisfied:

pi,S = 1−Fg(i)(λS − νi), and
∑
i∈S

pi,S = 1.

The size of the collections of assortments varies from 40 to 100 in steps of 20. For each assortment

collection size, we generate 1000 instances. For each instance, define D = (D(i, j) : i, j ∈ N ) to

measure the dissimilarity of the marginals of alternatives. Take the pS as the input and compute the

distance between any pair of alternatives (i, j) with i, j ∈N , i ̸= j via solving Problem (EC.17). Set

the number of clusters as 2 and perform K-Means clustering with D. We measure the clustering

accuracy by V-Measure with the true clusters and the clustering results. We report the average

accuracy under each collection size.

The correctness of (EC.17) is provided as follows. D(i, j) takes the optimal value of Problem

(EC.17). D(i, j) can be interpreted as the distance of the observed choice probabilities of alternative

i and j to a G-MDM with i and j are grouped together and other alternatives are singletons. To see

this, y−
k ’s are the variables taking the negative parts of yk’s. Since the objective minimizes y−

k ’s, y−
k ’s



ec30 e-companion to Author:

are the negative parts of λS − νi−λT + νj when pi,S < pj,T , meaning the violation of the inequality

conditions of (20) if alternative i and j are grouped together. if alternative i and j are grouped

together. zl’s are the variables taking the absolute values of ηl’s. Since the objective minimizes zl’s,

zl’s are the absolute values of λS − νi−λT + νj when pi,S = pj,T > 0, meaning the violation of the

equality conditions of (20) if alternative i and j are grouped together. The last two constraints

ensure that the variables λ satisfy the MDM-representable conditions 5.
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