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Abstract. When a firm selects an assortment of products to offer to customers, it uses

a choice model to anticipate their probability of purchasing each product. In prac-

tice, the estimation of these models is subject to statistical errors, which may lead to

significantly suboptimal assortment decisions. Recent work has addressed this issue

using robust optimization, where the true parameter values are assumed unknown and

the firm chooses an assortment that maximizes its worst-case expected revenues over

an uncertainty set of likely parameter values, thus mitigating estimation errors. In this

paper, we introduce the concept of randomization into the robust assortment optimiza-

tion literature. We show that the standard approach of deterministically selecting a

single assortment to offer is not always optimal in the robust assortment optimization

problem. Instead, the firm can improve its worst-case expected revenues by select-

ing an assortment randomly according to a prudently designed probability distribu-

tion. We demonstrate this potential benefit of randomization both theoretically in an

abstract problem formulation as well as empirically across three popular choice mod-

els: the multinomial logit model, the Markov chain model, and the preference ranking

model. We show how an optimal randomization strategy can be determined exactly

and heuristically. Besides the superior in-sample performance of randomized assort-

ments, we demonstrate improved out-of-sample performance in a data-driven setting

that combines estimation with optimization. Our results suggest that more general

versions of the assortment optimization problem—incorporating business constraints,

more flexible choice models and/or more general uncertainty sets—tend to be more

receptive to the benefits of randomization.

Key words: Assortment optimization; randomization; robust optimization; choice

model

1. Introduction
Selecting an assortment of products to offer to customers is a central problem across business operations,

with many applications in the travel, hospitality, and retail industries. A firm solving this assortment opti-

mization problem seeks to maximize expected revenues or a related objective by selecting a subset of

possible products to carry, often subject to constraints such as shelf or display space. With the growth of
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novel online marketing and e-commerce settings where firms can quickly and flexibly adjust displayed

assortments, this classic operations problem is attracting increasing research interest.

The difficulty in this problem lies in accounting for customer behavior: If a prospective customer’s pre-

ferred product is not part of the offered assortment, she may either substitute it for another one or leave

with no purchase. In order to capture this demand substitution, the firm must specify and estimate a cus-

tomer choice model, which describes a customer’s probability of choosing each product for any assortment

the firm could offer. Since data on customer behavior in the face of the numerous possible assortments is

invariably sparse, the estimation of such models is difficult, and estimation errors can lead to significantly

suboptimal assortment decisions.

The specification of the choice model involves the familiar bias-variance tradeoff. Most common choice

models, such as the multinomial logit (MNL) model (see, e.g., Talluri and van Ryzin 2004), capture cus-

tomer behavior by imposing strict parametric assumptions. Although this approach results in tractable model

estimation and assortment optimization problems that require relatively small amounts of data, imposing

restrictive assumptions can introduce a significant bias into estimates (i.e., under-fitting) as well as raise

theoretical concerns (such as the independence from irrelevant alternatives, or IIA, property). These pitfalls

can be avoided through richer models, such as parametric generalizations of the MNL model, the Markov

chain (MC) model (Blanchet et al. 2016), or non-parametric models based on customer preference rank-

ings (Honhon et al. 2012, Bertsimas and Mišić 2019). However, as a result of their added flexibility, more

complex models are in turn prone to variance (i.e., over-fitting) unless large amounts of data are available.

The risk of over-fitting the choice model is particularly pernicious when estimates are used to select

the best assortment to offer, due to the well-known error-maximization effect of optimization (Smith and

Winkler 2006). To address this issue, recent assortment optimization papers have embraced the robust opti-

mization paradigm (Rusmevichientong and Topaloglu 2012, Bertsimas and Mišić 2017, Désir et al. 2023).

Robust optimization acknowledges the fact that the parameters of the choice model are not known exactly,

which is particularly important for complex models with many parameters to be estimated. Instead of point

estimates, a decision maker adopting the robust approach specifies an uncertainty set that contains the

unknown true parameter values or preferences with a pre-specified confidence. She then chooses an assort-

ment considering the worst parameter setting within this uncertainty set, thus hedging against over-fitting

in model estimation.

In this paper, we study randomized robust assortment optimization. That is, we show that the standard

approach of deterministically selecting a single assortment to offer is not always optimal in the robust assort-

ment optimization problem. Instead, the decision maker can improve her worst-case expected revenues by

selecting an assortment randomly according to a prudently designed probability distribution.

We first demonstrate the potential benefit of randomization in a general robust assortment optimization

problem whose choice model can represent any (reasonable or unreasonable) customer behavior. We derive
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conditions that the problem must satisfy such that the decision maker benefits from randomizing her choice,

that is, such that the problem becomes randomization-receptive. We then leverage these conditions to show

the benefit of randomization empirically across three popular choice models: the MNL model, the MC

model, and the preference ranking (PR) model.

For the ubiquitous MNL model, we show that its randomization-receptiveness hinges on whether the

assortment choice is constrained. In the absence of constraints, the decision maker never benefits from ran-

domizing her choice, that is, the model is randomization-proof. By contrast, when the problem is subjected

to a cardinality constraint, the MNL model becomes randomization-receptive. We show that not only can

the decision maker benefit from choosing an assortment randomly, but the gain from using a randomized

strategy over a deterministic one can be arbitrarily large.

The MC model can be randomization-receptive even in the absence of cardinality constraints, but this

depends on the characterization of the uncertainty faced by the firm. We show that the MC model is

randomization-proof for uncertainty sets that exhibit a specific rectangularity property, which we call

product-wise substitution sets. We establish this result through a novel interpretation of the associated

assortment optimization problem as a robust Markov decision process (MDP), which allows us to directly

apply results from the robust MDP literature. By contrast, for general uncertainty sets the MC model

becomes randomization-receptive. Here, the benefits of randomization are bounded in the unconstrained

case, but can again become unbounded under a cardinality constraint.

The PR model is also randomization-receptive even in the absence of cardinality constraints. Here

again, the benefits of randomization can be unbounded in the constrained setting, whereas they remain

bounded in the unconstrained case. We also establish the existence of parsimonious randomization strate-

gies in the PR model: Even though there are exponentially many possible assortments, there are always

optimal strategies that randomize between at most K + 1 assortments, where K is the number of

considered preference rankings. This parsimony is absent in the constrained MNL and MC models,

where all optimal randomization strategies can become arbitrarily complex.

For all three choice models, we show how an optimal randomization can be determined exactly (by a

column generation scheme) and heuristically (through a local search algorithm). We illustrate the runtimes

of these solution schemes, as well as the potential benefits of randomization, on synthetic instances of

the cardinality-constrained MNL, MC and PR models. For the MNL model, we also demonstrate how the

superior in-sample (worst-case) performance of randomized assortments can translate into an improved

out-of-sample (expected) performance in a data-driven setting that combines estimation with optimization.

Our synthetic experiments are complemented by a data-driven study on a previously published real-life data

set, where we show that randomized assortments significantly outperform their deterministic counterparts.

A key insight that emerges from our analysis is that more general versions of the assortment optimization
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problem—where the generality can be owed to the presence of business constraints, more flexible choice

models and/or more general uncertainty sets—tend to be more receptive to the benefits of randomization.

It is important to recognize that randomization may not be practical in all settings, such as for a small

brick-and-mortar retailer with a limited number of stores. The natural application for randomized assortment

decisions is in e-commerce and other online settings, where different forms of randomization are already

being applied (e.g., in A/B testing various aspects of the sales experience). In these contexts, it is easy for a

firm to quickly and flexibly vary the assortment displayed to a customer. Even in conventional retail settings,

firms are experimenting with novel strategies adopted from online settings such as A/B testing different

aspects of the store design.1 In a similar vein, a randomized assortment choice could be implemented across

a chain of otherwise homogeneous retail stores. Our results show how, in such settings, a firm may benefit

from choosing an assortment randomly according to a prudently designed probability distribution.

The remainder of the paper proceeds as follows. We review the relevant related literature in Section 2.

We next introduce the nominal, deterministic robust and randomized robust assortment optimization prob-

lems, as well as our notions of randomization-receptiveness/-proofness, in Section 3, where we also study

the randomization-receptiveness of an abstract robust assortment optimization problem. Sections 4–6 study

the benefits of randomization, as well as exact and heuristic schemes to determine randomized assortments,

under the MNL, MC and PR models. Section 7 presents numerical results for the MNL model using syn-

thetic data and for the PR model using real data, respectively. Section 8 concludes the paper. All proofs,

the algorithms to compute randomized assortments, as well as additional numerical experiments on the MC

and the PR models are relegated to the e-companion.

Notation. We refer to the sets of non-negative and strictly positive real numbers by R+ and R++, respec-

tively. We refer to the vector of all ones and the i-th canonical basis vector as e and ei, respectively; in both

cases, the context will dictate the dimension of these objects. For a finite index set X , we let ∆(X ) = {p∈

R|X |
+ :

∑
x∈X px = 1} denote the associated probability simplex. The Hadamard (element-wise) product is

denoted by ‘◦’.

2. Related Literature
This paper is related to the extensive literature on assortment optimization and choice models: Talluri and

van Ryzin (2006), Kök et al. (2015), and Gallego and Topaloglu (2019) provide comprehensive overviews of

this field. This literature has sought to resolve the twin problems of accurately capturing customer demand

substitution using discrete choice models and efficiently finding the corresponding optimal assortment.

The most popular choice model is the MNL model dating back to the work of Luce (1959) and Plackett

(1975). Although the MNL model is liable to under-fitting data and suffers from the IIA property, it remains

popular as both its estimation and the resulting assortment optimization problem can be solved efficiently

1 See, e.g., https://www.bain.com/insights/successful-a-b-tests-in-retail-hinge-on-these-design-considerations/.

https://www.bain.com/insights/successful-a-b-tests-in-retail-hinge-on-these-design-considerations/
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(Talluri and van Ryzin 2004), even under a cardinality constraint on the size of the offered assortment

(Rusmevichientong et al. 2010, Davis et al. 2013).

The literature has proposed a number of richer choice models to account for the MNL model’s short-

comings. These include generalizations of the MNL model, such as the nested logit (Williams 1977, Davis

et al. 2014) and mixture of MNL models (Rusmevichientong et al. 2014), which however come at the cost

of more difficult estimation and optimization. Recently, two more general classes of choice models have

been proposed. Blanchet et al. (2016) develop a tractable Markov chain model that approximates a number

of parametric models; a similar idea was used in a simulation study in Zhang and Cooper (2005). Feldman

and Topaloglu (2017) consider the MC model in network revenue management, Désir et al. (2020) study

the constrained assortment optimization problem, and Şimşek and Topaloglu (2018) propose a method to

estimate its parameters. The second class of models is based on preference rankings, early examples of

which include Mahajan and van Ryzin (2001) and Rusmevichientong et al. (2006). This approach considers

customer preferences through distributions over preference lists, which allows very general preference struc-

tures without imposing a parametric model. Farias et al. (2013) and van Ryzin and Vulcano (2015, 2017)

study the estimation of preference ranking models. Although the assortment selection problem is intractable

for general PR models (Aouad et al. 2018), special cases (Honhon et al. 2012, Paul et al. 2018, Aouad et al.

2021) can be solved efficiently. Bertsimas and Mišić (2019) consider the closely related problem of product

line design under this model and propose a mixed-integer optimization based solution approach.

While more complex choice models reduce the bias in estimates, their added flexibility conversely tends

to make them prone to variance (over-fitting). This concern is particularly acute when the estimate feeds

into the assortment optimization problem due to the error-maximization effect of optimization (Smith and

Winkler 2006), which is well known in finance (Michaud 1989, DeMiguel and Nogales 2009) and machine

learning (see, e.g., Bishop 2006, Hastie et al. 2009). The robust optimization approach (Ben-Tal et al. 2009,

Bertsimas et al. 2011) explicitly recognizes that estimation should not produce a single point estimate for

the choice model parameters but rather an uncertainty set in which the parameters lie with a pre-specified

confidence. By selecting the optimal assortment considering the worst parameter setting deemed plausible,

the robust approach hedges against over-fitting and can thus be seen as a form of regularization (El Ghaoui

and Lebret 1997, Xu et al. 2009). Robust optimization has been applied to a wide array of operational

problems in revenue management (Birbil et al. 2009, Perakis and Roels 2010), portfolio selection (Goldfarb

and Iyengar 2003, Bertsimas and Sim 2004), inventory management (Bertsimas and Thiele 2006), facility

location (Baron et al. 2011), and appointment scheduling (Mak et al. 2015).

The robust approach has proved successful in accounting for parameter uncertainty in choice models. The

estimation procedure of Farias et al. (2013) is based on obtaining a worst-case revenues estimate among

preference distributions. Rusmevichientong and Topaloglu (2012), Désir et al. (2023), and Bertsimas and

Mišić (2017) study the robust assortment optimization problem under the MNL, MC, and PR models,
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respectively. Rusmevichientong and Topaloglu (2012) introduce uncertainty sets over MNL valuations and

show that this robust MNL model preserves the feature of the nominal model that revenue-ordered assort-

ments are optimal. Désir et al. (2023) extend this robust approach to the MC model and develop efficient

algorithms to solve it. Bertsimas and Mišić (2017) consider the related problem of robust product line design

under a PR model with both parameter and structural uncertainty.

In all of the aforementioned models, the decision maker deterministically chooses a single assortment to

offer. We extend these models by allowing the decision maker to instead randomly choose an assortment

according to a probability distribution, and showing when this may benefit her. From a mathematical per-

spective, the potential benefit from randomization arises from applying robust optimization to a discrete

optimization problem (Bertsimas et al. 2016, Delage et al. 2019, Delage and Saif 2022). We show, however,

that the superior performance of randomized assortments under this worst-case objective can translate into

improved results under the original expected value objective if the model parameters are estimated from

data, as is typically the case in practice. Through this insight, as well as our theoretical analysis of the ran-

domization receptiveness of an abstract assortment optimization problem, we also contribute to the robust

optimization literature.

While randomized strategies appear to be new in the context of assortment optimization, they have

been successfully applied in a growing number of related revenue management contexts. The most promi-

nent example of this are heuristic admission control strategies employed in network revenue management

(Reiman and Wang 2008, Jasin and Kumar 2012, Jasin 2015, Bumpensanti and Wang 2020) to decide which

assortment (e.g., of flight legs) to offer to customers over time (or which classes of customers to admit) under

uncertainty and resource constraints. These papers show that judiciously resolving a deterministic approxi-

mation of the problem can provide guarantees on expected revenues losses, when the firm probabilistically

decides which assortment to offer, which is referred to as the allocation control (PAC) heuristic. Ferreira

et al. (2018) study a retailer’s dynamic pricing problem with inventory constraints and learning about cus-

tomer demand. The retailer balances an exploration-exploitation tradeoff by selecting a distribution over a

discrete set of prices to offer. In a recent paper, Ma (2023) compares the decision to offer an assortment

with the use of lotteries where participating buyers do not know which product they will eventually receive.

Drawing on the mechanism design literature, he provides conditions for offering an assortment to be opti-

mal compared to such randomized allocation mechanisms. We add to this emerging stream of literature by

showing the value of optimal randomized strategies in the classic assortment optimization problem.

3. Value of Randomization in Robust Assortment Optimization
In this section, we define the generic robust assortment optimization problem to study the value of ran-

domized strategies in solving this problem. In Section 3.1 we study whether a randomized strategy may

benefit a firm solving this generic problem, and derive conditions for this to be the case. Section 3.2 then
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discusses the intuition for why randomization can be beneficial. In the subsequent Sections 4-6, we investi-

gate when, under prevalent choice models, randomization offers practical benefits. Section 3.3 summarizes

these results.

In the nominal assortment optimization problem, a firm chooses an assortment to offer to customers out

of N candidate products. A customer then either buys one of the offered products or makes no purchase,

according to a discrete choice model. Formally, an instance of the problem is a tuple (N ,S,C,r) defined

as follows. Let N = {1, · · · , n} denote the set of products, and let N0 = N ∪ {0} be the extended set

that contains the no-purchase alternative indexed 0. We denote by S ⊆ {S : S ⊆N} the set of admissible

assortments, which may exclude some subsets of N due to (e.g., cardinality) constraints. When the problem

is unconstrained, S is the power set of N . The choice model is a mapping C : S → ∆(N0) such that

C(i|S) = 0 for all i ∈ N \ S, S ∈ S. The price of product i ∈ N is ri > 0; we also include the price of

the no-purchase option, r0 = 0, in the vector of product prices r ∈ Rn+1
+ . The firm chooses an assortment

S⋆ ∈ S that maximizes its expected revenues R(S) =
∑

i∈S ri · C(i|S) among all admissible assortments

S ∈ S:

R⋆
nom = max

S∈S
R(S). (NOMINAL)

In reality, the choice model is typically estimated from data and hence uncertain. The robust assort-

ment optimization problem takes this uncertainty into account. An instance of this problem is a tuple

(N ,S,C,U ,r), where the set of products N and the set of admissible assortments S are defined as before.

The choice model C : S ×U →∆(N0), however, now depends on a realization u ∈ U from an uncertainty

set U (e.g., over choice model parameters). To avoid technicalities, we assume that U is a compact subset

of a finite-dimensional space. We stipulate that C(i|S,u) = 0 for all i∈N \S, S ∈ S and u∈ U . The deter-

ministic robust assortment optimization problem (see, e.g., Rusmevichientong and Topaloglu 2012) then

chooses the assortment that maximizes the worst-case expected revenues

R⋆
det(U) = max

S∈S
R⋆(S), (DETERMINISTIC ROBUST)

where R⋆(S) = minu∈U R(S,u) and R(S,u) =
∑

i∈S ri · C(i|S,u). When the uncertainty set U = {u0}
is a singleton, the choice model is known exactly and (DETERMINISTIC ROBUST) recovers the classi-

cal (NOMINAL) problem.

Instead of selecting a single assortment to offer, the firm could offer each assortment S ∈ S with a prob-

ability pS ≥ 0. In this paper, we therefore propose to solve the randomized robust assortment optimization

problem:

R⋆
rand(U) = max

p∈∆(S)
R⋆(p), (RANDOMIZED ROBUST)

where R⋆(p) = minu∈U R(p, u) and R(p, u) =
∑

S∈S pS ·R(S,u). The deterministic assortments S ∈ S
correspond to degenerated randomized assortments eS ∈ ∆(S) that place all probability mass onto indi-

vidual assortments, and thus the feasible region of RANDOMIZED ROBUST contains the feasible solutions
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of DETERMINISTIC ROBUST. Note that depending on its argument, R may refer either to the nominal

expected revenues or the expected revenues under the parameter realization u∈ U , and that R⋆ may refer to

the worst-case expected revenues of a single assortment or a randomization strategy.

3.1. Can Randomization Be Beneficial?

We now study whether the decision maker in the robust assortment optimization problem can benefit from

randomized strategies for generic choice models C and uncertainty sets U . In later sections, we consider the

value of randomization under three common choice models: the MNL model, the MC model, and the PR

model, each of which implies different definitions for C and U .

Since the RANDOMIZED ROBUST problem subsumes the DETERMINISTIC ROBUST problem, clearly

R⋆
rand(U)≥R⋆

det(U). Our goal is to show under what conditions randomization can benefit the firm, that is,

when the strict inequality R⋆
rand(U)>R⋆

det(U) is satisfied. We say the problem is then receptive to random-

ization, as per the following definition.

DEFINITION 1 (RANDOMIZATION-RECEPTIVENESS/PROOFNESS). An instance of the robust assort-

ment optimization problem is randomization-receptive if R⋆
rand(U) > R⋆

det(U) and randomization-proof

otherwise. Likewise, we say that the (un-)constrained robust assortment optimization problem under a

particular choice model is randomization-proof if all of its instances are randomization-proof, and it is

randomization-receptive otherwise.

We note that NOMINAL is randomization-proof by construction. Indeed, for singleton uncertainty sets

U = {u0}, RANDOMIZED ROBUST reduces to a linear program that attains its optimal value at an extreme

point of the probability simplex ∆(S). This in turn corresponds to a randomization that places unit proba-

bility onto a single assortment S ∈ S .

In contrast, the decision maker can benefit from randomization in the robust assortment optimization

problem. The following result establishes when this is the case by providing a necessary and sufficient

condition for an instance of the problem to be randomization-proof.

THEOREM 1. Fix a robust assortment optimization instance (N ,S,C,U ,r). The instance is

randomization-proof if and only if there is Q∈P(U) such that EQ[R(S, ũ)]≤R⋆
det(U) for all S ∈ S, where

P(U) denotes the set of all probability distributions supported on U .

We illustrate the statement of Theorem 1 with an example. Consider a robust assortment optimization

problem with three feasible assortments S1, S2 and S3 as well as two possible uncertainty realizations

u and u′. The expected revenues of each assortment are (R(S1, u), R(S2, u), R(S3, u)) = (2, 0, 1) and

(R(S1, u
′), R(S2, u

′), R(S3, u
′)) = (1/2, 3/2, 1). Figure 1 (left) shows that this problem is randomization-

proof. The figure depicts the expected revenues for all possible randomizations over the three assortments

for u and u′, with the worst-case expected revenues shown as solid regions. The optimal deterministic

solution is eS3
= (0,0,1), located along the vertical axis, withR⋆

det(U) = 1. Note that any deviation from the
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assortment S3 leads to a deterioration of the worst-case expected revenues: there is no direction in which we

can move away from eS3
to improve the worst-case expected revenues. In terms of the condition in Theorem

1, the optimality of the deterministic solution eS3
is certified by the distribution Q= 1

3
· δu + 2

3
· δu′ , so that

the expected value EQ[R(S, ũ)] equals R⋆
det(U) = 1 for all three assortments.

Next consider the same example but with the updated expected revenues

(R(S1, u), R(S2, u), R(S3, u)) = (1, 1/2, 3/2) and (R(S1, u
′), R(S2, u

′), R(S3, u
′)) = (1/2, 2, 1).

Figure 1 (right) shows that this problem is randomization-receptive. In contrast to the previous case, a

direction to improve the worst-case revenues now exists at each deterministic solution eS1
, eS2

and eS3
. In

terms of Theorem 1, any distribution Q with Q[ũ= u′]< 1 implies that EQ[R(S3, ũ)]>R⋆
det(U), while the

distributions satisfying Q[ũ= u′] = 1 imply EQ[R(S2, ũ)] = 2>R⋆
det(U).

Together, the two graphs in Figure 1 suggest that a deterministic assortment S maximizes the worst-case

expected revenues if and only if the graph p 7→R⋆(p) does not contain a feasible direction of improvement

at the point eS . This is indeed what the condition in Theorem 1 amounts to: At every optimal deterministic

assortment, there is no direction to move without compromising worst-case expected revenues. This intu-

ition can be made precise by considering the super-differential of R⋆(eS), and the resulting condition turns

out to be equivalent to the condition in Theorem 1. We relegate the formal justification of this statement to

Appendix B.
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Figure 1 Randomization-proof (left) and randomization-receptive (right) instances of RANDOMIZED ROBUST.

In both cases, we show two-dimensional projections of the three-dimensional probability simplex ∆(S) with

S = {S1, S2, S3} (triangles at the bottom of each diagram). The other two planes illustrate the expected

revenues under the two uncertainty realizations u and u′, respectively; solid (hollow) areas indicate regions

where the respective realization constitutes the worst (best) case.

The condition in Theorem 1 closely relates to the concept of strong duality, which we will use in subse-

quent sections when discussing common choice models. Specifically, strong duality implies the condition
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in Theorem 1, but the reverse is not true. Consequently, as the next result shows, strong duality implies

randomization-proofness.

COROLLARY 1. Suppose that strong duality holds for the problem (N ,S,C,U ,r):

max
S∈S

min
u∈U

R(S,u) = min
u∈U

max
S∈S

R(S,u).

Then the problem is randomization-proof.

Intuitively, any optimal deterministic assortment achieves the objective value of the left-hand side of the

equation in Corollary 1, while the right-hand side of this equation constitutes an upper bound on the worst-

case expected revenues achievable by any (deterministic or randomized) assortment strategy: It records the

expected revenues that can be achieved if the decision maker knew the uncertainty realization u prior to

making an assortment choice. Since this ‘crystal ball’ upper bound is achieved by an optimal deterministic

assortment, the decision maker cannot improve by randomizing between assortments. The reverse state-

ment, however, is not true: A problem instance may be randomization-proof even when strong duality does

not hold. Indeed, the left-hand example in Figure 1 illustrates this: we can verify that the ‘crystal ball’ solu-

tion is u′ with expected revenues 1.5 (at S2), which is greater than R⋆
det(U) = 1. Thus, strong duality does

not hold, yet our earlier discussion showed that the instance is randomization-proof.

The equivalence between strong duality and the condition in Theorem 1 holds in the special case where

the worst-case uncertainty realization is unique. Theorem 1 then simplifies to the following result: The

problem is randomization-proof if and only if, under the worst-case realization, the decision maker cannot

improve her expected revenues by deviating from the optimal deterministic assortment S⋆.

COROLLARY 2. Fix a robust assortment optimization problem (N ,S,C,U ,r) and let S⋆ be an optimal

deterministic assortment. If the worst-case parameter set argminu∈U R(S
⋆, u) is a singleton {u⋆}, then the

problem is randomization-proof if and only if

R⋆(S⋆) ≥ max
S∈S

R(S,u⋆).

3.2. Why Is Randomization Beneficial?

Theorem 1 and Corollary 2 provide conditions under which the firm benefits from randomizing its assort-

ment. We now investigate why this is the case. To establish an intuition, consider the following example.

EXAMPLE 1. A firm wishes to offer an assortment containing no more than two out a product universe

of three products, with prices r1 = 10, r2 = 9 and r3 = 8. The customers’ purchase behavior follows a multi-

nomial logit model with nominal product valuations v0 = (v00, v
0
1, v

0
2, v

0
3) = (1,1,1,1), where the outside

option has value v00 = 1. The optimal nominal assortment under the product valuations v0 comprises the

products {1,2} and generates expected revenues of 6.33 (cf. the first row of Table 1).
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Valuation
Assortments

{1} {2} {3} {1,2} {1,3} {2,3} 0.476 · {1,2}+0.524 · {2,3}
v0 5.00 4.50 4.00 6.33 6.00 5.67 5.98
v1 1.67 5.09 5.33 5.48 5.63 6.44 5.98
v2 7.5 3.00 3.56 7.67 7.58 4.74 6.13

Table 1 Expected revenues of different deterministic as well as the optimal randomized assortment under

the three valuations v0, v1 and v2 in our motivating example. The green and red shadings refer to the nominal

and worst-case performance of the optimal nominal assortment, respectively; the purple and cyan shadings

refer to the worst-case performances of the optimal deterministic robust and randomized robust assortments,

respectively.

Assume now that the product valuations may deviate from v0 and instead amount to v1 =

(v10, v
1
1, v

1
2, v

1
3) = (1,0.2,1.3,2) or v2 = (v20, v

2
1, v

2
2, v

2
3) = (1,3,0.5,0.8) as well. In that case, Table 1 shows

that the expected revenues of the optimal nominal assortment {1,2} decrease by up to 13.47% to 5.48 under

scenario v2. A firm using the deterministic robust approach would instead offer the assortment comprising

the products {1,3}, generating worst-case expected revenues of 5.63 that are 2.29% higher than those of

the optimal nominal assortment. However, by prudently randomizing between the assortments {1,2} and

{2,3}, the firm can further increase its worst-case expected revenues by 5.67% to 5.98.

The benefits of randomization can be understood from three complementary perspectives. In the exam-

ple, the firm faces the risk of adverse outcomes due to taking decisions under parameter uncertainty. From

a managerial perspective, randomization allows the firm to diversify against this risk and alleviate the

error-maximizing effect of optimization. From a mathematical viewpoint, this diversification amounts to

enlarging the feasible region of the deterministic robust assortment optimization problem by embedding

the discrete assortment choices of the latter into a probability simplex that allows the firm to select convex

combinations of multiple assortments in the randomized problem. From a game-theoretic viewpoint, finally,

the deterministic robust assortment optimization problem constitutes a Stackelberg leader-follower game

where the firm (the leader) chooses an assortment and ‘nature’ (the follower) picks the worst valuation

vector vi upon observing the selected assortment. In the randomized problem, on the other hand, nature

only observes the firm’s randomization strategy (as opposed to the randomly selected assortment), which

restricts its power. As per Theorem 1 and Corollary 2, the firm then enjoys diversification benefits from

randomization as long as a profitable move away from the optimal deterministic assortment exists under

the worst-case realization. Indeed, the example also illustrates the randomization-proofness condition in

Corollary 2: Since each optimal deterministic assortment in the table has a unique worst-case valuation, the

condition in Corollary 2 does not hold, and the problem is randomization-receptive.

3.3. When Is Randomization Beneficial?

In Sections 4-6, we study the benefits of randomization under three prevalent choice models: the multino-

mial logit model, the Markov chain model, and the preference ranking model. For each model, we investi-

gate (i) whether the problem can benefit from randomization; (ii) how large the potential benefits are; and
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Table 2 Summary of theoretical results on the benefits of randomization.

Choice model Constrained Randomization
receptiveness

Maximum benefit
R⋆

rand(U)/R⋆
det(U)

Complexity of
randomization

Multinomial Logit
Section 4

No No — —

Yes Yes Unbounded Exponential
Theorem 2 Theorem 2 Theorem 2

Markov Chain
Section 5

No Yes/No Bounded (Unknown)Theorem 4, Observation 2 Observation 3

Yes Yes Unbounded Exponential
Theorem 5 Theorem 5 Theorem 5

Preference Ranking
Section 6

No Yes Bounded Linear
Observation 4 Observation 5 Theorem 7

Yes Yes Unbounded Linear
Theorem 6 Theorem 6 Theorem 7

(iii) how complex the optimal randomization strategies may be, i.e., how many different assortments they

may involve.

Table 2 summarizes our findings. The randomization-receptiveness of the robust assortment optimization

problem depends on the complexity of the choice model and underlying business constraints. Under the

parsimonious MNL model, the problem is randomization-proof in the absence of any further constraints on

the chosen assortment. But when we either impose a cardinality constraint on the size of the assortment, or

use the MC or PR models to capture more complex customer behavior, randomization becomes beneficial.

Investigating the magnitude of the potential benefits of randomization, we find that these are bounded in the

absence of business constraints, but they can become arbitrarily large under cardinality constraints. Interest-

ingly, under both the MNL and MC models, the optimal randomization strategy may involve exponentially

many assortments, whereas the PR model always admits parsimonious optimal randomization strategies

that involve a small number of assortments.

4. Multinomial Logit Model
We first study the robust assortment optimization problem under the MNL model. We show that whether the

firm can benefit from randomization depends on the existence of a cardinality constraint on the size of the

assortment. The unconstrained problem is randomization-proof, while the cardinality-constrained problem

is not only randomization-receptive, but the resulting benefit can also be arbitrarily large (Section 4.1).

Section 4.2 develops algorithms for optimally solving the latter problem.

The MNL model is parameterized by a vector of customer product valuations v = (v0, v1, · · · , vn) ∈

Rn+1
++ . Given these valuations and an assortment S ∈ S , a customer purchases product i∈N with probability

ψi(S,v) =


vi

v0 +
∑

j∈S vj
if i∈ S,

0 otherwise,
(1)
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and the corresponding no-purchase probability is ψ0(S,v) = 1 −
∑

i∈S ψi(S,v). The expected revenues

amount to

R(S,v) =
∑
i∈S

ri ·ψi(S,v) =

∑
i∈S ri · vi

v0 +
∑

i∈S vi
, (2)

where we identify the parameter vector u with the product valuations v. In the corresponding robust assort-

ment optimization problems, we assume that u is only known to be contained in a compact uncertainty set

U = V ⊆Rn+1
++ .

4.1. Randomization-Receptiveness of the Multinomial Logit Problem

The unconstrained problem presented above is randomization-proof. Indeed, Désir et al. (2023) show that

the problem satisfies strong duality, that is, we have

max
S∈S

min
v∈V

R(S,v) = min
v∈V

max
S∈S

R(S,v).

Corollary 1 then implies that randomization over assortments cannot benefit the firm.

Strong duality, however, ceases to hold if we impose a cardinality constraint |S| ≤ C on the size of

the offered assortment. We have seen in Example 1 that the firm may benefit from randomization under a

cardinality constraint. We now show that the benefit from randomization can indeed be arbitrarily large in

the constrained problem, but that at the same time the optimal strategy may require randomization between

many assortments.

THEOREM 2. For any number of products n≥ 2 and any restriction |S| ≤C, C ∈ {1, · · · , n− 1}, there

are instances of the cardinality-constrained robust MNL problem where

1. R⋆
det(V) = 0 while R⋆

rand(V)> 0;

2. the unique optimal randomized assortment strategy places equal (positive) probability on each assort-

ment S satisfying |S|=C and zero probability on all other assortments.

The first part of Theorem 2 implies that the benefitsR⋆
rand(V)/R⋆

det(V) from randomization are unbounded.

The proof of the theorem, which is relegated to the appendix, considers a class of robust constrained MNL

instances where all products have equal price and the uncertainty set V comprises all valuation vectors v

in which exactly B valuations are zero and the remaining valuations are 1. For B ≥ C, where C is the

admissible assortment cardinality, any deterministic assortment S results in worst-case expected revenues

of zero since the uncertainty set contains a vector v in which vi = 0 for all i ∈ S. The optimal randomized

strategy, on the other hand, places equal (positive) probability on all assortments with exactly C products,

and zero probability on all other assortments. As long as B < n, this randomized strategy raises strictly

positive worst-case revenues since there is a strictly positive probability that the offered assortment contains

products whose values are strictly positive even under the worst-case valuation realization. The optimal ran-

domization strategy, however, may involve exponentially many assortments, as we can see from the second

statement by setting C = ⌊n/2⌋, which results in Θ(2n/
√
n) many assortments. Optimal randomization

strategies can thus generally be complex. We next turn to the problem of finding such optimal strategies.
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4.2. Solving the Randomized Constrained Multinomial Logit Problem

Appendix A presents two algorithms to compute randomization strategies for the constrained robust MNL

problem with a binary representable uncertainty set of the form

V = {v=Fξ : Aξ≤ b, ξ ∈ {0,1}m} , (3)

where F ∈R(n+1)×m, A∈Rl×m and b∈Rl. While any discrete uncertainty set is binary representable, we

list some popular uncertainty sets that enjoy compact representations.

(i) Budget uncertainty sets. For lower and upper valuation bounds v,v ∈Rn+1 and an uncertainty budget

Γ∈N, we define the uncertainty set

V =
{
v= v− (v−v) ◦ ξ : e⊤ξ≤ Γ, ξ ∈ {0,1}n+1

}
.

Under the budget uncertainty set, up to Γ valuations vi can attain their lower bounds vi, whereas the

remaining valuations vi attain their upper bounds vi.

(ii) Factor model uncertainty sets. For a nominal valuation vector v0 ∈Rn+1 and a factor loading matrix

Φ∈R(n+1)×m, we define the uncertainty set

V =
{
v= v0 +Φ(2ξ− e) : ξ ∈ {0,1}m

}
.

Here, the valuations v differ from their nominal values v0 by ΦB∞, where B∞ = {−1,1}m contains

the extreme points of the unit ∞-norm ball in Rm.

(iii) Norm uncertainty sets. For a nominal valuation vector v0 ∈ Rn+1 and lower and upper valuation

bounds v,v ∈Rn+1, we define the uncertainty set

V =

{
v= v0 +(v−v0) ◦ ξ+ +(v−v0) ◦ ξ− :

∥∥(v−v0) ◦ ξ+ +(v−v0) ◦ ξ−
∥∥
p
≤ θ

ξ+ + ξ− ≤ e, ξ+,ξ− ∈ {0,1}n+1

}
where p ∈ {0,1,∞} and θ ∈ R+. Norm uncertainty sets hedge against valuations v that reside in a

θ-neighbourhood of the nominal valuations v0, as measured by the p-norm.

The randomized constrained MNL model can be formulated as a robust linear program. To this end,

denote by S = {S ∈ N : |S| ≤ C} the set of assortments whose cardinality is less or equal to the size

restriction C. The problem can then be written as

maximize min
v∈V

∑
S∈S

pS ·
∑

i∈S ri · vi
v0 +

∑
i∈S vi

subject to
∑
S∈S

pS = 1

pS ≥ 0, S ∈ S.

(4)
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This problem is computationally challenging since it typically comprises an exponential number of decision

variables, and its objective function contains an embedded optimization problem that minimizes a non-

convex function over a discrete uncertainty set V . For later reference, we note that the dual of problem (4)

amounts to the robust linear program

minimize max
S∈S

∑
v∈V

κv ·
∑

i∈S ri · vi
v0 +

∑
i∈S vi

subject to
∑
v∈V

κv = 1

κv ≥ 0, v ∈ V.

(5)

Strong duality between (4) and (5) holds since (4) is feasible by construction. Similar to problem (4),

problem (5) is computationally challenging due to the typically exponential number of decision variables as

well as the embedded maximization over a discrete ‘uncertainty set’ S whose decision variables S appear

in a non-convex objective function.

In Appendix A, we propose an exact column generation scheme as well as a heuristic local search method

to solve the randomized constrained MNL problem.

5. Markov Chain Model
The MC model proposed by Blanchet et al. (2016) generalizes the MNL model. Under the MC model, the

choice behavior of a customer is described through a vector λ ∈Rn+1
+ , where λi, i= 0, · · · , n, denotes the

probability of product i being the most preferred choice, as well as a matrix ρ = (ρij)i,j ∈ R(n+1)×(n+1)
+ ,

where ρij , i, j = 0, · · · , n, characterizes the probability of the customer substituting product i by product

j if product i is not available. In other words, an arriving customer attempts to purchase each product

i= 0, · · · , n with probability λi. If the preferred product, say i, is not offered, then she attempts to purchase

each product j = 0, · · · , n with probability ρij , and the process continues as if j had been her preferred

choice. We require that ρ00 = 1 as well as ρii = 0 and ρi0 > 0 for all i ̸= 0.

In the robust assortment optimization problem under the MC model (Désir et al. 2023), the substitution

matrices ρ are only known to reside in an uncertainty set

U ⊆

{
ρ∈R(n+1)×(n+1)

+ :

n∑
j=0

ρij = 1 ∀i= 0, · · · , n

}
,

which we assume to be compact in order to avoid technicalities. Under this setting, the substitution behavior

of the customers can be determined by any substitution matrix ρ ∈ U , and the decision maker optimizes

the expected revenues considering the worst such matrix. We require that all ρ ∈ U satisfy ρ00 = 1 as well

as ρii = 0 and ρi0 > 0 for all i ̸= 0. In addition, we require that there exists a ρ ∈ U and a product i ̸= 0

satisfying that ρi0 < 1.
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We now study whether the robust assortment optimization problem under the MC model benefits from

randomization. To do so, we first express the problem as a robust Markov decision process (MDP) in Sec-

tion 5.1. Leveraging this interpretation, we then show that the benefits of randomization depend on the

nature of parameter uncertainty. Specifically, we contrast product-wise substitution sets where no informa-

tion is available about the dependence of ρij and ρkl whenever i ̸= k and general substitution sets (Sec-

tion 5.2). Section 5.3, finally, discusses the solution of the (un-)constrained robust assortment optimization

problem under the MC model.

5.1. A Robust MDP Reformulation for the Unconstrained Markov Chain Problem

Our objective is to reformulate the robust assortment optimization problem under the MC model as an

instance of a robust MDP as per the following definition.

DEFINITION 2 (ROBUST MDP). A robust MDP is defined by the tuple (X ,A,P, q, c, γ), where X
denotes the state space, A represents the action space, q(x), x∈X , characterize the initial state distribution,

c(x,a), x∈X and a∈A, denote the immediate rewards, and γ ∈ (0,1) is the discount factor. The ambiguity

set

P ⊆

{
p :X ×A×X →R+ :

∑
x′∈X

p(x′|x,a) = 1 ∀x∈X , ∀a∈A

}
contains all transition kernels p that are deemed plausible by the decision maker.

A robust MDP starts in state x∈X with known probability q(x). The decision maker can then select any

action a∈A, upon which an immediate reward of c(x,a) is earned and the MDP transitions to state x′ ∈X
with probability p(x′|x,a), where p can be any element of the ambiguity set P . The process then continues

in the same fashion, governed by the same transition kernel p, for an infinite length of time. The decision

maker wishes to determine a policy π :X →A, which declares for each state x ∈X which action a ∈A is

to be taken in state x, that maximizes the worst-case expected total discounted reward:

max
π∈Π

min
p∈P

E

[
∞∑
t=0

γt · c(xt, at)
∣∣∣ x0 ∼ q

]
Here, Π denotes the set of all deterministic, memoryless policies π :X →A, {(xt, at)}∞t=0 is the stochastic

process induced by the initial probabilities q, the transition probabilities p and the policy π, and E is the

expectation operator with respect to this process.

We next construct a robust MDP for the unconstrained robust assortment optimization problem under the

MC model.

DEFINITION 3 (ROBUST MDP REPRESENTATION). For a given MC model, we define the robust

MDP (X ,A,P, q, c, γ) via the state space X =N0, the action space A= {⊤, ⊥}, the ambiguity set P that

contains all transition kernels p satisfying

p(x′|x,⊤) =

{
1 if x′ = x,

0 otherwise,
p(x′|x,⊥) =


ρxx′/γ if x,x′ ̸= 0,

1−
∑
χ∈N

ρxχ/γ if x′ = 0,

0 otherwise

∀x,x′ ∈X (6)
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for some ρ∈ U , the initial state probabilities q(x) = λx, x∈X , the immediate rewards c(x,⊤) = (1−γ)rx
and c(x,⊥) = 0, x∈X , and γ = 1−min{ρi0 : ρ∈ U , i∈N}.

Intuitively, the states of the robust MDP describe the different purchase options x ∈N0 of the customer,

and the actions ⊤ and ⊥ characterize the options of the decision maker to include (exclude) any of the

products x ∈ N in/from the assortment. Note that the virtual product 0 is always available, and hence the

selected action does not matter in state 0. If the customer enters a state whose associated purchase option

is part of the assortment, then this state keeps generating revenues and is never left. Otherwise, the next

purchase option considered by the customer is selected randomly according to some ρ∈ U .

We next show that Definition 3 indeed describes a valid robust MDP.

OBSERVATION 1. The robust MDP from Definition 3 is well-defined.

We can now establish the equivalence between the unconstrained robust assortment optimization problem

under the MC model and our robust MDP from Definition 3.

THEOREM 3. The unconstrained robust assortment optimization problem under the MC model is equiv-

alent to the robust MDP from Definition 3 in the following sense:

(i) For every S ∈ S , the worst-case expected total discounted reward of any πS ∈Π satisfying πS(i) =⊤,

i∈ S, and πS(i) =⊥, i∈N \S, coincides with the revenues R⋆(S).

(ii) For every π ∈Π, the revenuesR⋆(S) of S = {i∈N : π(i) =⊤} coincide with the worst-case expected

total discounted reward of π.

Theorem 3 shows that there is a one-to-many relationship between the assortments S ∈ S of the assort-

ment optimization problem and the policies πS : X →A through the relation i ∈ S ⇔ πS(i) =⊤, i ∈N .

The relationship is not one-to-one since the no-purchase option 0 is always available, irrespective of whether

πS(0) = ⊤ or πS(0) = ⊥. Theorem 3 allows us to apply the rich arsenal of solution methods for robust

MDPs to the unconstrained deterministic robust assortment optimization problem under the MC model

with product-wise substitution sets (cf. Section 5.3). In the next subsection, we will leverage the estab-

lished theory for robust MDPs to investigate under which conditions the decision maker may benefit from

randomizing between multiple assortments, that is, when R⋆
rand(U)>R⋆

det(U).

REMARK 1 (NOMINAL ASSORTMENT OPTIMIZATION). If the uncertainty set of the robust assortment

optimization problem is a singleton, say U = {ρ0}, then the robust MDP from Definition 3 reduces to a

nominal MDP. In that case, the conclusions from Observation 1 and Theorem 3 continue to apply.

5.2. Randomization-Receptiveness of the Markov Chain Problem

We saw that under the MNL model, the unconstrained robust assortment optimization problem is

randomization-proof. We now investigate whether this remains the case for the more general MC model.

It turns out that while certain special cases of this more general problem are randomization-proof, the firm
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may generally benefit from randomization even in the unconstrained setting, and this carries over to the

cardinality-constrained setting.

We first consider the special case of uncertainty sets with product-wise substitution sets,

U =
{
ρ∈R(n+1)×(n+1)

+ : ∃ρ0, · · · ,ρn ∈ U such that ρij = ρiij ∀i, j ∈N0

}
.

One readily verifies that this condition is equivalent to requiring that

U =×
i∈N0

Ui, where Ui =
{
ρi = (ρi0, · · · , ρin)∈Rn+1

+ : ρ∈ U
}
.

Intuitively, the uncertainty set U has product-wise substitution sets when knowledge of the uncertain sub-

stitution probabilities ρi = (ρi0, · · · , ρin) for product i ∈ N0 does not allow the decision maker to infer

anything about the uncertain substitution probabilities ρj = (ρj0, · · · , ρjn) for any other product j ∈ N0,

j ̸= i, beyond the fact that ρj ∈ Uj . In this case, similar to the MNL model, randomization offers no benefits

in the unconstrained problem.

THEOREM 4. If the uncertainty set U of the unconstrained robust assortment optimization problem

under the MC model has product-wise substitution sets, the problem is randomization-proof.

The proof of Theorem 4 shows that for product-wise substitution sets, the robust MDP from Definition 3

has an (x,a)-rectangular ambiguity set, which implies strong duality:

max
π∈Π

min
p∈P

E

[
∞∑
t=0

γt · r(xt, at)
∣∣∣ x0 ∼ q

]
= min

p∈P
max
π∈Π

E

[
∞∑
t=0

γt · r(xt, at)
∣∣∣ x0 ∼ q

]
.

Corollary 1 then implies that the problem is randomization-proof.

Désir et al. (2023) derive a strong duality result for the unconstrained robust assortment optimization

problem under the MC model with product-wise substitution sets (termed row-wise uncertainty in that

work). In contrast to our result, which establishes a connection between the unconstrained assortment opti-

mization problem and robust MDPs and subsequently leverages existing results for robust MDPs, Désir

et al. (2023) prove strong duality ab initio.

While product-wise substitution sets may appear to constitute an intuitive choice for the uncertainty set

U , they are unlikely to arise as a result of a statistical estimation from historical data. Instead, a data-driven

estimation approach based on a confidence region formed, for example, by a maximum likelihood estima-

tion, would exhibit an asymptotically elliptical shape under which all rows ρi of the uncertain substitution

matrix ρ are dependent (cf. Billingsley 1961). Under such general substitution sets, strong duality no longer

holds for the associated robust MDPs (cf. Wiesemann et al. 2013), which opens up the possibility for the

problem to be randomization-receptive. This does not automatically imply, however, that randomization is

beneficial, as the next result shows.
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PROPOSITION 1. Any instance of the unconstrained robust MC problem with two products, irrespective

of the geometry of the uncertainty set U , is randomization-proof.

Generally, however, the more complex choice behavior captured by the MC model allows the firm to

benefit from randomization. Specifically, with three or more products, we can find instances where the

unconstrained robust MC problem with general substitution sets is receptive to randomization.

OBSERVATION 2. For any number n≥ 3 of products, the unconstrained MC problem is randomization-

receptive.

In the constrained MNL problem, we found the potential benefits of randomization to be unbounded. In

the unconstrained MC problem, however, this is not the case, as the following result shows.

OBSERVATION 3. Under the unconstrained MC problem with general substitution sets, the benefits of

randomization are bounded from above by

R⋆
rand(U)
R⋆

det(U)
≤ max{ri : i∈N}

min{ri : i∈N}
.

The intuition underlying Observation 3 is as follows. Imagine first that the customers do not exercise the

outside option. In that case, the benefits of randomization cannot exceed the bound of Observation 3 since

in the unconstrained problem, the assortment containing all products N is always feasible and generates

revenues of at least min{ri : i∈N}, while no randomized assortment strategy can generate more revenues

than max{ri : i ∈N}. Since the probability of a customer exercising the outside strategy under assortment

T is at most as large as under any assortment S ⊆ T , one can show that the bound of Observation 3 carries

over to the case where customers can exercise the outside option.

We now turn to the cardinality-constrained problem. The next result confirms that similar to the MNL

problem, the cardinality-constrained MC problem is randomization-receptive under product-wise and gen-

eral substitution sets. Moreover, the benefits of randomization are again unbounded, and any optimal ran-

domization strategy can be complex.

THEOREM 5. For any number of products n≥ 3 and any restriction |S| ≤C, C ∈ {1, · · · , n− 2}, there

are instances of the cardinality-constrained robust MC problem with product-wise substitution sets where

• R⋆
det(U) = 0 while R⋆

rand(U)> 0.

• the unique optimal randomized assortment strategy places equal (positive) probability on each assort-

ment S satisfying |S|=C and zero probability on all other assortments.

5.3. Solving the Randomized Markov Chain Problem

To solve the unconstrained and constrained randomized assortment optimization problem under the MC

model with general substitution sets, we stipulate that the uncertainty set U ⊆ R(n+1)×(n+1)
+ is a finite set

of substitution matrices. In the special case of product-wise substitution sets, we furthermore stipulate that
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U =×i∈N0
Ui for finite sets Ui ⊆ Rn+1 of substitution vectors for each product i ∈N0. Popular examples

of such uncertainty sets include projections of factor model uncertainty sets onto the cross-product of n+1

probability simplices ∆(N0). We present in Appendix A a two-layer column generation framework to solve

the corresponding assortment optimization problems.

6. Preference Ranking Model
The PR model (see, e.g., Bertsimas and Mišić 2019) is parameterized by K bijective preference rankings

σk :N0 →{1, · · · , n+1}, k ∈K= {1, · · · ,K}, with occurrence probabilities λk ∈R+ satisfying e⊤λ= 1.

The probability that a customer is characterized by the preference ranking σk, k ∈K, is λk. Faced with the

assortment S as well as the no-purchase option 0, such a customer purchases the product i ∈ S ∪ {0} that

has the smallest rank in σk, that is, i ∈ argmin{σk(j) : j ∈ S ∪{0}}. Hence, the expected revenues of the

assortment S ∈ S under the PR model amount to

R(S,λ) =
∑
k∈K

λk ·Rk(S), (7)

where Rk(S) = ri for the unique i ∈ S ∪ {0} that satisfies σk(i)< σk(j) for all j ∈ S ∪ {0}, j ̸= i. In the

corresponding robust assortment optimization problem, we assume that the vector of occurrence probabil-

ities λ is only known to be contained in a compact ambiguity set U = Λ⊆ {λ ∈ RK
+ : e⊤λ= 1}, and we

seek to maximize the worst-case expected revenues.

Section 6.1 studies the potential benefits of randomization under the robust PR problem, and Section 6.2

discusses the solution of the (un-)constrained robust assortment optimization problem under the PR model.

6.1. Randomization-Receptiveness of the Preference Ranking Problem

Similar to the MC problem under general uncertainty sets, the robust assortment optimization problem under

the PR model is randomization-receptive even in the absence of any further constraints (such as cardinality

constraints). In fact, randomization can be beneficial for any number of products, as we show next.

OBSERVATION 4. For any number of products n≥ 2, the unconstrained as well as the constrained PR

problem are randomization-receptive.

Contrary to the constrained MNL and MC problems (cf. Theorems 2 and 5), however, and similar to the

unconstrained MC problem with general substitution sets (cf. Observation 3), the benefits of randomization

are then bounded.

OBSERVATION 5. For any instance of the unconstrained robust PR problem with n = 2 products, the

benefits of randomization are bounded from above by R⋆
rand(U)/R⋆

det(U) ≤ 2. Moreover, for any instance

the benefits of randomization are bounded from above by

R⋆
rand(U)
R⋆

det(U)
≤ max{ri : i∈N}

min{ri : i∈N}
.
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When we impose a cardinality constraint |S| ≤ C on the size of the offered assortment, similar to the

cardinality-constrained MNL and MC problems (cf. Theorems 2 and 5), the potential benefits of random-

ization in the cardinality-constrained PR problem can be arbitrarily large.

THEOREM 6. For any number of products n≥ 2 and any restriction |S| ≤C, C ∈ {1, · · · , n− 1}, there

are instances of the cardinality-constrained robust PR problem where R⋆
det(U) = 0 while R⋆

rand(U)> 0.

We have seen that in the cardinality-constrained MNL and MC problems, optimal policies may require

randomization between an exponentially large number of assortments (cf. Theorem 2 and Theorem 5).

By contrast, under the PR model (whether constrained or not), there is always a parsimonious optimal

randomization strategy.

THEOREM 7. Under the PR model (with arbitrary constraints on the set of admissible assortments),

there always exists an optimal randomization strategy which places strictly positive weight on no more than

K + 1 assortments. Moreover, when the uncertainty set is an affine map of a polyhedral subset of Rm,

there exists an optimal randomization strategy which places strictly positive weight on no more than m+1

assortments.

6.2. Solving the Randomized Preference Ranking Problem

Theorem 7 allows us to formulate the unconstrained and constrained randomized assortment optimization

problem under the PR model as robust K-adaptability problems that determine K + 1 assortments and

their randomization weights (Bertsimas and Caramanis 2010, Hanasusanto et al. 2015). While the resulting

problems can be expressed as mixed-integer linear programs of compact size that are amenable to solution

via standard solvers, our numerical experiments indicate that this approach does not scale to problems

of interesting size. Instead, we develop an exact and a heuristic column generation scheme to compute

randomization strategies for the PR model. To this end, we assume that the ambiguity set Λ is a polyhedral

set of the form

Λ=
{
λ=Fξ : Aξ≤ b, ξ ∈Rm

+

}
, (8)

where F ∈RK×m, A∈Rl×m and b∈Rl. We list below two popular choices of such sets.

(i) Norm ambiguity sets. For a nominal ranking prevalence vector λ0 ∈ RK
+ and a radius θ ∈ R+, we

define the ambiguity set

Λ=
{
λ : e⊤λ= 1,

∥∥λ−λ0
∥∥
p
≤ θ, λ∈RK

+

}
,

where p ∈ {1,∞}. Norm ambiguity sets hedge against all perturbations of the ranking prevalence

vector λ that are contained in a p-ball of radius θ around the nominal vector λ0. In particular, the

choice p= 1 recovers the total variation distance, a popular ϕ-divergence (Bayraksan and Love 2015),

which allows us to choose the radius θ based on statistical bounds.
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(ii) Approximate ellipsoidal ambiguity sets. For a nominal ranking prevalence vector λ0 ∈ RK and a

symmetric and positive definite matrix P ∈RK×K , we set

Λ=
{
λ : e⊤λ= 1, λ=λ0 +Pξ, ∥ξ∥1 ≤

√
K, ∥ξ∥∞ ≤ 1, λ∈RK

+ , ξ ∈RK
}
.

Note that {ξ ∈ RK : ∥ξ∥2 ≤ 1} ⊆ {ξ ∈ RK : ∥ξ∥1 ≤
√
K} ∩ {ξ ∈ RK : ∥ξ∥∞ ≤ 1}, and thus the

ambiguity set constitutes an outer (conservative) approximation of an ellipsoid with center λ0 and

semi-axes defined by P . Ellipsoidal ambiguity sets recover the Pearson χ2-divergence, another popular

ϕ-divergence (Bayraksan and Love 2015), and they emerge asymptotically as confidence regions of a

maximum likelihood estimation.

The randomized robust assortment optimization problem under the PR model can be formulated as the

following robust linear program:

maximize min
λ∈Λ

∑
S∈S

∑
k∈K

pS ·λk ·Rk(S)

subject to
∑
S∈S

pS = 1

pS ≥ 0, S ∈ S

(9)

Problem (9) is computationally challenging as it involves exponentially many decision variables pS , S ∈ S .

For our solution schemes, it is useful to consider the dual of problem (9):

minimize max
S∈S

∑
k∈K

λk ·Rk(S)

subject to λ∈Λ
(10)

Strong duality between (9) and (10) holds since (9) is feasible by construction. Although problem (10)

contains only polynomially many decision variables, the optimization problem embedded in its objective

function maximizes over a combinatorial set S ∈ S. Thus, neither the primal problem (9) nor the dual

problem (10) is amenable to a solution with an off-the-shelf solver. We present in Appendix A.3 a column

generation scheme for problem (9) that can be interpreted as a cutting plane approach for problem (10).

7. Numerical Results
This section aims to elucidate the value of randomization using both synthetic and real data. We first inves-

tigate when randomization can help to improve the worst-case expected revenues under the cardinality-

constrained MNL problem using synthetic data. We also study the computational price to be paid for exact

and heuristic solutions to the deterministic and randomized robust assortment optimization problems, and

we demonstrate how the improvement of the worst-case expected revenues can translate into improvements

of the out-of-sample expected revenues in a data-driven setting. Finally, Section 7.2 demonstrates the value

of randomization on a real-world data set. Appendix F presents numerical results on the value of random-

ization and computational cost in the MC and PR problems on synthetic data. All solution schemes are
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C
5% 10% 15% 20% 25% 30% 50% 75%

Γ

5% 100.00% 98.00% 83.60% 52.40% 20.40% 6.80% 0.40% 0.40%
33.50% 4.17% 0.97% 0.35% 0.20% 0.10% 0.00% 0.00%

10% 96.40% 100.00% 96.40% 79.60% 48.40% 17.20% 0.00% 0.00%
20.20% 19.99% 5.09% 1.60% 0.54% 0.24% 0.00% 0.00%

15% 74.00% 95.20% 99.60% 92.00% 68.00% 35.60% 0.00% 0.00%
13.94% 12.18% 13.12% 4.48% 1.50% 0.54% 0.00% 0.00%

20% 50.00% 80.00% 92.40% 97.20% 82.40% 56.80% 0.00% 0.00%
9.49% 7.19% 7.63% 8.67% 3.42% 1.12% 0.00% 0.00%

25% 26.40% 50.40% 70.40% 84.40% 90.00% 70.40% 1.60% 0.80%
6.87% 4.84% 4.56% 4.92% 5.72% 2.36% 0.04% 0.01%

30% 11.20% 27.60% 41.60% 61.20% 74.80% 80.00% 1.20% 0.40%
5.27% 3.29% 2.85% 2.68% 3.00% 3.46% 0.15% 0.01%

50% 0.00% 0.00% 0.00% 0.40% 1.20% 1.60% 8.40% 0.40%
0.00% 0.00% 0.00% 0.26% 0.28% 0.26% 1.07% 0.01%

75% 0.00% 0.00% 0.00% 0.00% 0.40% 0.40% 0.80% 0.40%
0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.00% 0.01%

Table 3 Benefits of randomization in the cardinality-constrained MNL problem. In the table, the rows

(columns) correspond to different uncertainty budgets Γ (assortment cardinalities C).

implemented in C++ and run on Intel Xeon 2.20GHz cluster nodes with 16 GB dedicated main memory in

four-core mode. Our data sets and detailed results, together with the source codes of all our algorithms, can

be found online.2

7.1. The Cardinality-Constrained Multinomial Logit Problem

We first consider the cardinality-constrained MNL model where the product prices ri are selected uniformly

at random from the interval [0,10]. We use a budget uncertainty set (cf. Section 4.2) where the lower and

upper product valuations vi and vi, i ∈ N , are chosen uniformly at random from the intervals [0,4] and

[6,10], respectively, whereas the valuation of the no-purchase option is fixed at v0 = 5.

Table 3 presents results for n= 20 products where the uncertainty budgets Γ (rows) and the assortment

cardinalities |S| ≤ C (columns) are set to various percentages of n. For each table entry, the first (upper)

value denotes the percentage of 250 randomly generated instances in which the optimal randomized assort-

ment outperformed the optimal deterministic robust assortment in terms of worst-case expected revenues,

while the second (lower) value reports the average outperformance on those instances. The table shows

that the benefits of randomization are most significant when Γ is close to C and both quantities are small

relative to the number of products. The latter is intuitive as C = n recovers the randomization-proof uncon-

strained robust MNL problem while Γ= n recovers the randomization-proof nominal MNL problem under

the valuations v0 = v (cf. Example 3.2 of Rusmevichientong and Topaloglu 2012).

We next investigate the benefits of randomization when the number n of products varies. To this end,

we select C = Γ = ⌊ 1
2

√
n⌋, which is in line with the central limit theorem-type uncertainty budget sets

2 www.doc.ic.ac.uk/∼wwiesema/assortment opt.zip

www.doc.ic.ac.uk/~wwiesema/assortment_opt.zip
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proposed by Bandi and Bertsimas (2012). The ‘randomized exact objective’ column of Table 4 shows that

the benefits of randomization (measured here in terms of the average outperformance over the deterministic

robust assortment over 250 random problem instances), while decreasing with problem size, is significant

for all considered instance sizes. Interestingly, our exact column generation scheme for the randomized

problem is actually faster than the cutting plane technique that we implemented for the deterministic robust

problem, as the columns ‘deterministic exact runtime’ and ‘randomized exact runtime’ in Table 4 reveal.

This is caused by the fact that the cutting plane technique requires significantly more iterations (median

14 for n= 25 and median 47 for n= 50, for example) than the column generation scheme (median 5 for

n= 25 and median 7 for n= 50, with 2-5 primal and dual iterations per main iteration). Since each (main)

iteration adds a fractional linear term to the problems that requires an individual reformulation resulting in

additional auxiliary variables and big-M constraints, the number of (main) iterations is a key performance

indicator for both algorithms.

The columns ‘deterministic heuristic’ and ‘randomized heuristic’, finally, report the runtimes and objec-

tive values of the ADXOpt heuristic for the deterministic and randomized robust problems, respectively. In

both cases, the objective values are again measured relative to the worst-case expected revenues of the exact

deterministic robust problem. We see that for both problems, the ADXOpt heuristic performs very well,

particularly on larger instance sizes. For the deterministic robust problem, the optimality gaps approach 0%

as the instance sizes grow, while for the randomized robust problem, the outperformance of the ADXOpt

heuristic approaches the outperformance of the exact solution approach. We thus conclude that one should

solve the deterministic and randomized robust problems exactly for small problem sizes, in which case the

cutting plane and column generation schemes are fast, while one may want to resort to heuristic solutions

for larger problem sizes, where the optimality gap of ADXOpt decreases rapidly.

deterministic randomized
exact heuristic exact heuristic

n runtime objective runtime objective runtime objective runtime
5 0.02 -6.80% 0.00s 37.95% 0.01s 24.97% 0.00s
10 0.05 -1.83% 0.00s 35.15% 0.03s 32.03% 0.00s
15 0.13 -0.96% 0.00s 35.39% 0.08s 34.01% 0.00s
20 2.30 -0.84% 0.00s 21.30% 1.80s 20.11% 0.03s
25 6.94 -0.41% 0.01s 22.72% 3.58s 21.96% 0.05s
30 18.38 -0.38% 0.01s 21.99% 5.88s 21.15% 0.09s
35 27.18 -0.40% 0.02s 21.63% 8.10s 21.04% 0.12s
40 299.18 -0.23% 0.05s 9.41% 64.21s 8.58% 0.76s
45 592.28 -0.12% 0.07s 7.29% 97.56s 6.71% 1.09s
50 937.29 -0.11% 0.09s 6.09% 171.07s 5.66% 1.57s

Table 4 Exact and heuristic solutions for the cardinality-constrained MNL problem. All percentages are

reported relative to the optimal solutions of the deterministic robust problem.

We consider the cardinality-constrained MNL model where the product prices ri are selected uniformly

at random from the interval [0,10]. We use a budget uncertainty set (cf. Section 4.2) where the lower and
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upper product valuations vi and vi, i ∈ N , are chosen uniformly at random from the intervals [0,4] and

[6,10], respectively, whereas the valuation of the no-purchase option is fixed at v0 = 5.

Table 3 presents results for n= 20 products where the uncertainty budgets Γ (rows) and the assortment

cardinalities |S| ≤ C (columns) are set to various percentages of n. For each table entry, the first (upper)

value denotes the percentage of 250 randomly generated instances in which the optimal randomized assort-

ment outperformed the optimal deterministic robust assortment in terms of worst-case expected revenues,

while the second (lower) value reports the average outperformance on those instances. The table shows

that the benefits of randomization are most significant when Γ is close to C and both quantities are small

relative to the number of products. The latter is intuitive as C = n recovers the randomization-proof uncon-

strained robust MNL problem while Γ= n recovers the randomization-proof nominal MNL problem under

the valuations v0 = v (cf. Example 3.2 of Rusmevichientong and Topaloglu 2012).

We close this section with a data-driven experiment. To this end, we fix n = 10 products and consider

different cardinalities C ∈ {1,2,3,4} for the admissible assortments. The product prices ri are generated

randomly by the same procedure as before. The true customer valuations are unknown and satisfy v0i = eβ
0
i ,

where β0
i is drawn uniformly at random from −3 to 3, i ∈ N ; we fix v00 = e0 and assume that this quan-

tity is known. We assume that 5, 10, · · · , 95 historical samples of random assortments of cardinality C

are available, together with the purchase choice that each customer made. In the nominal model, we then

estimate the valuations v̂ from the historical data using a maximum likelihood estimation, and we solve

the resulting nominal assortment optimization problem. In the deterministic and randomized robust mod-

els, we employ the budget uncertainty set where both Γ ∈ {0, · · · , n} and (v,v) = ([1− γ]v̂, [1 + γ]v̂),

γ ∈ {0,0.025, · · · ,0.5} are selected using 7-fold cross-validation on the available historical data. Since the

validation data reports the customer choices for assortments that differ from the assortment computed using

the training data, each iteration of our cross-validation proceeds in two steps. We first use the validation

set to perform a maximum likelihood estimation of the valuations. We subsequently use the nominal MNL

model associated with these estimated valuations to approximate the out-of-sample revenues of the assort-

ment computed using the training data. We then compare the actual out-of-sample expected revenues of the

three models under newly generated data using the true valuations v0.

For each cardinality C ∈ {1,2,3,4} and sample size 5, 10, · · · , 95, Figure 2 reports the average optimal-

ity gaps (over 100 randomly generated instances) of the out-of-sample expected revenues of each model

relative to the expected revenues of the nominal model under the true valuations. The figure shows that these

optimality gaps decrease with sample size (i.e., from left to right in each graph) as well as the cardinality

of the assortment (i.e., from the leftmost to the rightmost graph). This is expected as in both cases, the esti-

mation problem can rely on more data and hence becomes easier. In all cases, the randomized robust model

outperforms the deterministic robust model, which in turn outperforms the nominal model. We emphasize
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Figure 2 Data-driven experiment for the MNL problem with cardinality constraint C = 1,2,3,4, from left to

right. All optimality gaps are reported relative to the expected revenues of the clairvoyant model that knows

the true customer valuations.

that this is not a priori obvious as the deterministic and randomized robust models use the available histor-

ical data for both estimation and parameter selection, and hence have less data than the nominal model to

estimate v̂. Interestingly, for small cardinalities—where the estimation problem is most challenging—the

randomized robust model significantly outperforms both the nominal and the deterministic robust model.

For larger cardinalities, the performance of the deterministic and randomized robust models are becoming

more similar. It is noteworthy, however, that the randomized robust model is never performing worse than

the deterministic robust model (in terms of average optimality gap), while it is at the same time easier to

solve (cf. Table 4).

7.2. Experiments with Real-World Data

In this section, we demonstrate the value of randomized strategies on real data. To this end, we use the

data set of Bertsimas and Mišić (2017, 2019), which is derived from a field study on consumer preferences

for hypothetical Timbuk2 laptop bag designs by Toubia et al. (2003) (see also Belloni et al. 2008). The

data set contains 330 preference rankings for 3,584 bag designs, as well as the revenues associated with

each design.3 Bertsimas and Mišić (2017) use the data to study the value of accounting for uncertainty in

deterministic robust assortment optimization under the PR model (among others). Here, we extend their

approach to the randomized robust assortment optimization problem.

Bertsimas and Mišić (2017) solve the nominal and deterministic robust problems heuristically for the

entire data set. By contrast, we use the approach described in Section 6.2 to solve the nominal as well as

the deterministic and randomized robust problems exactly for a subset of available products. Specifically,

we pick the n= 300 products generating the highest average consumer utilities in the data set and trim the

preference ranking lists to only include these products and the no-purchase option. Following Bertsimas and

Mišić (2017), we assume that each customer type is equally probable, that is, λk = 1/K for all k ∈K. For

3 The data set is available at https://github.com/vvmisic/optimalPLD.

https://github.com/vvmisic/optimalPLD
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WCL(%) RID(%) RIR(%) RIRD(%)

θ

0.1 6.07 0.15 0.15 0.00
0.2 12.14 0.34 0.35 0.01
0.3 18.22 0.56 0.78 0.21
0.4 24.09 0.76 2.74 1.96
0.5 29.88 0.88 6.62 5.69
0.6 35.68 1.02 11.73 10.60

Table 5 Benefits of randomization in the real-world case study over n= 300 products. The rows correspond

to different radii θ of the uncertainty set.

the deterministic and randomized robust problems, we employ a 1-norm ambiguity set with varying radius

θ (cf. Section 6.2).

Following Bertsimas and Mišić (2017), we use two metrics to quantify the value of the deterministic

and randomized robust approaches: the worst-case loss and the relative improvement. The worst-case loss

(WCL) measures the largest possible loss of the optimal nominal assortment SN over the uncertainty set U :

WCL = 100% · R
⋆
nom −R⋆(SN)

R⋆
nom

,

where R⋆
nom is the expected revenues of SN under the nominal occurrence probabilities λ0 and R⋆(SN)

denotes the worst-case expected revenues of SN over the uncertainty set U . The second metric is the rela-

tive improvement (RI) in worst-case expected revenues when using the deterministic or randomized robust

approach instead of the nominal assortment:

RID = 100% · R
⋆
det(U)−R⋆(SN)

R⋆(SN)

and RIR = 100% · R
⋆
rand(U)−R⋆(SN)

R⋆(SN)
,

where R⋆
det(U) and R⋆

rand(U) denote the optimal values of the deterministic and randomized robust assort-

ment optimization problems, respectively.

Table 5 reports the worst-case losses and relative improvements for different radii θ. The table shows

that the worst-case loss from solving the nominal problem grows with the radius of the uncertainty set, as

expected. The deterministic robust approach (column RID), consistently with Bertsimas and Mišić (2017),

benefits the decision maker in terms of the relative improvement, and the magnitude of the improvement

increases with the radius of the uncertainty set. The relative improvement achieved by the randomized

robust strategy (RIR) is significantly higher, however, demonstrating the additional benefit of randomization

in hedging against uncertainty in the preference rankings. The difference in relative improvements between

the two robust approaches is reported in the column RIRD, which shows that the additional gains of the

randomized approach are substantial and grow with the size of the uncertainty set. The results thus indicate

the potential promise of employing randomization in robust assortment optimization on real-world data.



Author: Randomized Assortment Optimization
28 Article submitted to Operations Research

8. Concluding Remarks
Our results call for more research into the importance of randomization for revenue management. We have

seen that a firm can benefit from using randomization—instead of the standard approach of deterministically

offering a single assortment—in the robust assortment optimization problem. However, it is not a priori

obvious which problem settings may benefit from randomization: two similar models, such as the MC model

with product-wise and general uncertainty sets, may lead to starkly different conclusions. While our analysis

suggests that more general versions of the assortment optimization problem tend to be more receptive to

the benefits of randomization, more research is needed into this potential benefit under other choice models

and constraints, as well as other revenue management problems. Also, all of the computational approaches

developed in this paper study the static problem formulation where the decision maker does not update her

knowledge about the uncertain problem parameters. As a next step, it would be instructive to study optimal

dynamic randomization strategies where the decision maker learns about the uncertain problem parameters

over time.
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