
Market Thickness in Online Food Delivery Platforms:
The Impact of Food Processing Times

Yanlu Zhao
Durham University Business School, yanlu.zhao@durham.ac.uk,

Felix Papier
ESSEC Business School, papier@essec.edu,

Chung-Piaw Teo
National University of Singapore, bizteocp@nus.edu.sg.

Problem definition: Online Food Delivery (OFD) platforms have witnessed rapid global expansion, partly

driven by shifts in consumer behavior during the COVID-19 pandemic. These platforms enable customers to

order food conveniently from a diverse array of restaurants through their mobile phones. A core functionality

of these platforms is the algorithmic matching of drivers to food orders, which is the focus of our study as

we aim to optimize this driver-order matching process.

Methodology/results: We formulate real-time matching algorithms that take into account uncertain food

processing times to strategically ‘delay’ the assignment of drivers to orders. This intentional delay is designed

to create a ‘thicker’ marketplace, increasing the availability of both drivers and orders. Our algorithms utilize

machine learning techniques to predict food processing times, and the dispatching of drivers is subsequently

determined by balancing costs for idle driver waiting and for late deliveries. In scenarios with a single order

in isolation, we show that the optimal policy adopts a threshold structure. Building on this insight, we

propose a new k-level thickening policy with driving time limits for the general case of multiple orders. This

policy postpones the assignment of drivers until a maximum of k suitable matching options are available.

We evaluate our policy using a simplified model and identify several analytical properties, including the

quasi-convexity of total costs in relation to market thickness, indicating the optimality of an intermediate

level of market thickness. Numerical experiments with real data from Meituan show that our policy can yield

a 54% reduction in total costs compared to existing policies.

Managerial implications: Our study reveals that incorporating food processing times into the dispatch

algorithm remarkably improves the e�cacy of driver assignment. Our policy enables the platform to control

two vital market parameters of real-time matching decisions: the number of drivers available to pick up

and deliver an order promptly, and their proximity to the restaurant. Based on these two parameters, our

algorithm matches drivers with orders in real-time, o↵ering significant managerial implications.

Key words : Online food delivery, Market thickness, Dynamic matching, Bipartite min-cost matching

History :

1

Electronic copy available at: https://ssrn.com/abstract=4612561



2

1. Introduction

The online food delivery (OFD) market has been expanding at an annual rate of 25% over the past five

years (Curry 2021). This growth has led to the rise of OFD platforms such as Meituan, UberEats, and

GrabFood (Chen et al. 2020). The COVID-19 pandemic in 2020 further accelerated this trend as social

distancing measures forced many restaurants to close their in-person dining services, leaving them reliant

on takeaway and delivery options. Many restaurants worldwide were able to survive solely because of the

OFD service (Chen and Hu 2020). Consequently, the top four OFD platforms in the U.S. – DoorDash,

UberEats, Grubhub, and Postmates – experienced a revenue increase of USD 3 billion in the first half of

2020 (Levi Sumagaysay 2020).

OFD platforms operate in a highly competitive landscape where operating and marketing costs often

exceed sustainable revenues. A significant contributor to these high operating costs is the strict service

requirements, particularly the consumer expectation for reliable and quick deliveries, often within minutes

of placing an order. According to a large-scale survey conducted by McKinsey (Hirschberg et al. 2016),

more than 60% of customers indicated that timely deliveries and meeting delivery targets are crucial

factors in OFD services. Failure to meet these targets can result in customers abandoning the platform,

leading to a significant loss of revenue (Mao et al. 2019, Hasija et al. 2020). However, meeting delivery

targets necessitates a high availability of drivers, thereby elevating operating costs. For example, Meituan’s

financial report revealed that the costs of their OFD business grew by 36% in 2019, primarily due to

increased expenses related to delivery riders (Meituan 2020).

There are also various other operational challenges in addition to the financial pressures. For instance,

the stock price of the OFD platform Deliveroo plummeted by as much as 31% within minutes of its

London debut in March 2021. One contributing factor was the scrutiny the company faced regarding its

treatment of food delivery drivers (Gemmell 2021). There is a growing body of literature that discusses

how food delivery platforms exert control over their drivers, often more so than other types of delivery

services. Today, millions of delivery drivers are e↵ectively ‘managed’ by algorithms. They are continuously

monitored through customer ratings and are influenced by various behavioral nudges, leading to new

societal challenges (Sun 2019). These conditions have prompted drivers to evaluate whether they should

disclose their genuine preferences and to develop strategies for selecting jobs, aiming to optimize their

earnings (see, e.g., temporal pooling in Chen and Hu 2020).

The task of assigning orders to drivers is arguably the most crucial aspect of platform operations.

E↵ective matching seeks to balance the costly idle time for drivers against the erosion of customer goodwill

due to late deliveries. While the importance of e↵ective matching extends across various sectors – from

kidney exchanges and job searches to online dating (Roth 2015) – what sets OFD platforms apart are the

immediate nature of the assignments, the significant costs and goodwill losses associated with delayed

Electronic copy available at: https://ssrn.com/abstract=4612561



3

deliveries, and the substantial variability in food processing times. Our paper aims to contribute to

this field by specifically examining the role of food processing time in the order assignment process.

We aim to address the following research questions: (a) How can matching policies for OFD platforms

e↵ectively incorporate food processing times to delay matching decisions? (b) What impact does this

delayed matching have on total costs and other performance metrics for the platform?

Figure 1 Order matching and food dispatching process in online food delivery platform.

OFD Process: Our research is motivated by the OFD operations (Figure 1) at Meituan, which involve

two main activities: order matching and food dispatching. When a customer decides to place a meal

order, the platform’s web portal shows a selection of nearby restaurants. The customer then chooses her

preferred dish from a specific restaurant and places the order. Upon receiving the order, the platform

notifies the provider, such as a restaurant or shop, to prepare the food as requested. The service time for

the platform is defined as the total duration from the moment an order is placed until the food is delivered

to the customer. This duration is subject to a service time target set by the platform. A driver is assigned

to pick up and deliver each order. Food can only be picked up from the restaurant when it is ready. In

this study, we do not focus on the dispatching process after an order is picked up, as it does not directly

influence the OFD matching problem. If a driver arrives at the restaurant before the order is ready, she

must wait. Conversely, if she arrives after the food is ready , it results in a late delivery, which can lead to

decreased food quality and lower customer satisfaction. Food can only be picked up from the restaurant

when it is ready. In this study, we do not focus on the dispatching process after an order is picked up,

as it does not directly influence the OFD matching problem. If a driver arrives at the restaurant before

the order is ready, she must wait. Conversely, if she arrives after the food is ready (delayed pick up), it

results in a late delivery, which can lead to decreased food quality and lower customer satisfaction. The

platform must strike a balance between driver waiting time and the lateness of deliveries (Ryan et al.

2018). Food Processing Time (FPT) is defined as the time it takes for the restaurant to prepare the food

Electronic copy available at: https://ssrn.com/abstract=4612561



4

once an order is received. This duration is typically unknown to the platform. Some platforms provide

customers with a guaranteed Estimated Time of Arrival (ETA). In these cases, FPT in our model can

be replaced by the time di↵erence between the promised delivery time, o↵set by the travel time from the

restaurant to the customer, and the time the request arrived at the system.

At Meituan, the average time to fulfill a food order ranges from 32 to 38 minutes. This duration

includes the time spent waiting for an order to be matched, driving to the shop, waiting at the shop, and

delivering the food to the customer. Shop-waiting time refers to the period between the driver’s arrival at

the restaurant and the moment the food is ready for pickup. Based on our data (Figure 2), shop-waiting

time accounts for 35% of the total service time for an order, which is nearly as long as the time for

delivery to the customer (41%). According to a study by Meituan (2021), delays in food preparation are a

major cause of tension between drivers and restaurants, because these delays result in significant waiting

time at shops. Similar issues related to shop-waiting time have been reported by Uber Eats and Deliveroo

drivers (Ryan et al. 2018, Bosredon 2021). Feedback from drivers indicates that there are some flaws in

the current delivery process, stating “The pickup is sometimes not ready at all... sometimes [it takes]

even 20 minutes.”(Ryan et al. 2018)

1 2 3 4 5 6 7 8 9 10 11 12

Region

0

500

1000

1500

2000

2500

T
im

e
 (

se
co

n
d
s)

Drive-to-shop Shop-waiting Delivery Fetch Engagement

Figure 2 Processing times in di↵erent stages of OFD in di↵erent regions in which the company operates.

Most previous research has primarily focused on the question of ‘Whom to match?’ in order to find

the closest driver for an order. This is typically achieved with routing optimization and other techniques.

However, few studies have addressed the issue of minimizing the shop-waiting time, a period for which

the OFD platform must pay the driver. This shop-waiting time is as important as the drive-to-shop time.

Ryan et al. (2018) developed a trip-inference model and a machine learning optimization tool specifically

aimed at reducing the average time drivers spend waiting, walking, and parking at individual restaurants.

Electronic copy available at: https://ssrn.com/abstract=4612561



5

However, they did not propose a general framework for making system-wide matching decisions. Recently,

Mao et al. (2022) analyzed an OFD platform’s data set and found that drivers typically wait almost six

minutes on average at restaurants. They asked the same question we examine in this paper: how can

drivers be better matched to minimize time spent waiting for orders? Note that the opportunity costs of

‘waiting for matching’ and ‘shop waiting’ di↵er: In the former situation, drivers have the option to accept

other jobs, while in the latter, they are unable to take on other work. Therefore, minimizing shop-waiting

time is crucial for the platform.

Food processing begins as soon as an order is placed on the platform1, even before driver matching

takes place. In our data set, the FPT is not known in advance and is highly variable, with an average of

23 minutes and a coe�cient of variation of 0.52. Despite this variability, advanced prediction techniques

can forecast FPT using data from past orders. Several studies have already incorporated ETA values into

research related to on-demand platforms (Liu et al. 2021b, Zehtabian et al. 2022, Cohen et al. 2022, Tao

et al. 2022). In this paper, we develop matching algorithms designed to minimize total costs by taking

into account both driving time and shop-waiting time. Specifically, we leverage the FPT to answer the

question of ‘When to match?’. Our approach falls under the umbrella of real-time supply chain analytics,

as we use extensive real-time operational data from various sources to enhance visibility and improve

decision-making (Gupta 2022).

Specifically, we investigate whether intentionally delaying the matching of an order to a driver o↵ers

advantages in finding better matches. This concept, known as market thickening, was introduced by

Akbarpour et al. (2020) in the context of online gaming and kidney exchanges. The FPT in OFD gives

the platform the leeway to delay matching without compromising food quality (because the driver has to

wait until the food being ready). However, excessive delays can result in higher costs due to late deliveries.

The platform must therefore strike a careful balance between waiting to improve market thickness with

better, shorter drive-to-shop matches and minimizing the costs of delivery delays. The complexity of this

decision problem is compounded by the high variability of the FPT and the real-time influx of orders

across the entire delivery area. Many OFD platforms use a batching policy to build market thickness,

where orders are accumulated and drivers are assigned at regular intervals. In this paper, we demonstrate

that our method outperforms the batching policy even when batch intervals are optimally chosen. The

underlying algorithmic idea of our approach is straightforward: monitor the number of drivers who can

fulfill an order within a specific range and assign the order only if the number of available drivers falls

below a certain threshold, denoted as k. One of the challenges is to identify the optimal value for k. Our

1 This is a conservative way to describe the food processing activities as it is challenging for platforms to track when
meal preparation actually begins in the kitchen (Mao et al. 2022).

Electronic copy available at: https://ssrn.com/abstract=4612561



6

computational results indicate that performance is best when k is set at a moderate level - neither too

high nor too low.

The order-driver matching problem discussed above can be categorized as a Bipartite Min-cost Matching

(BMM) problem. We explore the properties of an optimal policy, set forth upper and lower bounds, and

introduce two new policies: a k-level thickening (KT) policy for scenarios with known FPT and a bu↵ered

k-level thickening (BKT) policy for cases with uncertain FPT. Our paper makes three key contributions:

• To the best of our knowledge, this is the first study to investigate the impact of FPT in the OFD

sector on the resulting matching cost and driver waiting time.

• We formulate the original BMM problem as a dynamic matching model. In the specific case of a

single order in isolation, we analytically demonstrate that the optimal matching decisions adhere to

a state-dependent threshold policy. Inspired by this threshold structure in the single-order scenario,

we develop the driving-time-constrained KT policy to address the general problem.

• Through numerical experiments using real-world data, we show that our BKT policy decreases the

total costs per order by 54% compared to existing real-case matching policies.

2. Literature Review

Our research is situated at the intersection of literature on dynamic matching, market thickness, and

online food delivery. In this section, we outline the main contributions from each domain and elaborate

on how we build upon them.

Research on dynamic matching: In recent years, there has been a surge in studies related to dynamic

matching, particularly due to the emergence of the on-demand economy (Chen et al. 2020). Hu and Zhou

(2022) investigated stochastic and dynamic matching control within a two-sided discrete-time system.

Özkan and Ward (2020) introduced dynamic matching and pricing policies derived from a continuous lin-

ear program. To minimize unmatched requests, Banerjee et al. (2016) developed state-dependent matching

policies that take into account spatial demand heterogeneity. Varma et al. (2022) explored a two-sided

queuing system, focusing on joint pricing and matching controls.

Most of the aforementioned studies have considered matching policies in a myopic manner; that is,

they instantly match demand with supply. However, this approach is unlikely to be optimal, as it might

be more advantageous to reserve potential demand or supply for future periods. Akbarpour et al. (2020)

explored this trade-o↵ between matching frequency and market thickness, developing the so-called greedy

and patient matching mechanisms. These mechanisms were calibrated by Liu et al. (2019) using a data

set from DiDi. Ashlagi et al. (2018) demonstrated the superiority of batching policies with a data set

of New York City yellow cabs, while Yan et al. (2020) from Uber developed a dynamic waiting strategy

to enhance matching probability and supply e�ciency in ride-hailing practices. Castro et al. (2021) ana-

lyzed a matching system featuring both flexible and specialized agents. Manshadi et al. (2022) examined

Electronic copy available at: https://ssrn.com/abstract=4612561



7

matching on online volunteering platforms. Aouad and Saritac (2022) delved into the dynamic, stochastic

matching problem with limited times, developing matching algorithms that provide worst-case perfor-

mance guarantees. We draw inspiration from the idea of market thickening and extend it to a setting

with heterogeneous agents and variable edge weights that change in real-time.

Research on market thickness: Market thickness is defined as the number of participants in a market

(McLaren 2003). In matching markets, a long-standing discussion revolves around whether thickness

positively or negatively a↵ects the e↵ectiveness of matching. Gan and Li (2016) demonstrated that the

probabilities of matches in a thin market are significantly lower than those in a thick market. Akbarpour

et al. (2020) analyzed the impact of search friction on market thickness in online markets. Li and Netessine

(2020) discovered that a higher market thickness does not necessarily correlate with higher matching

rates, attributing this to the presence of abundant search friction. Liu et al. (2019) indicated that the

incremental value of market thickness, brought about by strategic waiting, might lead to fewer matches.

Chen (2019) employed an M/M/1 queue to investigate mismatch performance. Arnosti et al. (2021)

illustrated that straightforward operational interventions could alleviate congestion in matching markets

e↵ectively. Cui et al. (2022) examined the influence of market thickness on delivery e�ciency. Xie et al.

(2022) demonstrated that a little delay yields benefits in real-time online decision-making. They provided

evidence that the di↵erence between the proposed online policy with a delay and an o✏ine hindsight policy

diminishes at an exponential rate as the length of delay increases. We contribute to this ongoing debate

by showing that the benefits derived from market thickening exhibit a quasiconvex pattern, suggesting

the existence of an optimal thickening level that balances the positive and negative e↵ects.

Research on online food delivery: Our work also contributes to the OFD literature, which has

garnered significant attention in recent years (Reyes et al. 2018, Mao et al. 2019, Liu et al. 2021b, Chen

et al. 2022). The OFD routing problem poses particular challenges in last-mile delivery due to the stringent

service level targets. Although it bears similarities to the same-day delivery problem (Voccia et al. 2019),

the need for quick-response decisions to adhere to short delivery times distinguishes it fundamentally

from same-day delivery. Mao et al. (2022) conducted a comprehensive analysis of OFD operations using

an industrial data set, and our current study aligns with the future directions mentioned in their work.

Furthermore, Mao et al. (2019) empirically demonstrated that delivery performance is vital for an OFD

platform to retain customers, and Liu et al. (2021b) proposed a data-driven framework to model the OFD

problem and optimize assignment decisions. Ulmer et al. (2021) addressed a stochastic dynamic pickup

and delivery problem, considering random FPT and deadlines. Chen and Hu (2020) compared temporal

pooling and dedicated delivery in an on-demand delivery dispatching system. Distinctly, our work diverges

from existing research on OFD routing by incorporating intentional delay to foster a thicker market,

thereby enhancing compatibility between orders and drivers and increasing matching opportunities.

Electronic copy available at: https://ssrn.com/abstract=4612561



8

3. OFD Model Description

In this section, we introduce several key components to characterize the dynamic matching model in the

OFD business. Orders and drivers arrive at the platform according to Poisson processes with rates �o

and �d, respectively. We assume that �o < �d and that drivers abandon the system at exponential rate

�a for system stability (see also, e.g., Aouad and Saritac 2022).

Orders: An order is described by tuple xi = (⌧i, li, ⇠i), where ⌧i is the arrival time, li is the restaurant

location, and ⇠i is the FPT. Throughout the paper, we use index i for orders. Restaurant locations li are

independently distributed random variables with probability density function (pdf) fr(li). FPTs ⇠i are

independently distributed random variables with pdf f⇠(⇠i), which includes the duration of all activities

between order placement and the earliest time it can be fetched. We assume that the FPT is independent

of the matching policy and the state of the system (See Appendix 7.4.1 for an extension to a model in

which the FPT is a↵ected by the level of order congestion in the restaurant). We also assume that the

system planner can only observe the realization of the FPT ⇠i at the end of the food processing. However,

the planner predicts the FPT at order arrival (e.g., with advanced machine learning techniques as in Liu

et al. (2021b); see Section 5 for details about FPT prediction). We denote the predicted value by ⇠̂i, and

assume that this prediction is unbiased, i.e., ⇠̂i = E [⇠i]. Let the variance of the prediction error ⇠̂i � ⇠i

denoted by �2
⇠ . We refer to the special case of exact predictions (�2

⇠ =0) as known FPT. Orders can only

leave the platform when they are matched with a driver. Let It represent the set of orders that arrived

until time t.

Drivers: A driver is described by tuple yj = (⌧j , lj , taj ) with arrival time ⌧j , driver location lj , and

driver abandonment time taj > ⌧j . Throughout the paper, we use index j for drivers. Driver locations are

independently distributed random variables with pdf fd(lj). Drivers leave the platform either when they

are matched with an order or when they abandon. Abandonment times taj are not known to the planner

before the abandonment. We assume that a driver can only deliver a single order at a time; otherwise our

problem would integrate a routing problem, which is not in the scope of this research. Let Jt denote the

set of drivers that arrived and have not abandoned by time t.

Driving times: For picking up orders at the restaurant, let dij(t) denote the (deterministic) driving

time from the location lj of driver j to the location li of the restaurant of order i, if the driver begins

the drive at time t, i.e., we allow driving times to depend, for example, on time of day (our model can be

extended to integrate real-time estimation of non-deterministic driving times in which dij(t) is determined

at the time of matching). We only make the assumptions that t+dij(t)< t0+dij(t0) for t < t0, i.e., that a

driver cannot arrive earlier by waiting, and that dij(t) = dij(t+�) for some � and any i, j, t, i.e., that there

is periodicity (of length �, e.g., daily, weekly) in the driving times. For the driving time from restaurant

Electronic copy available at: https://ssrn.com/abstract=4612561



9

to customer, we assume that it is independent of the matching decision, and we therefore treat it as a

constant value, denoted by  .

Order-Driver-Matching: Based on the state of the system, the planner has to decide at what time

to match an order with a driver. For a given sample path, and policy ⌦ (i.e., the rule with which to make

matches), let M⌦
t be the set of order-driver pairs already matched by time t:

M⌦
t = {(i, j, tij) : order i and driver j matched at time tij , i2 It, j 2Jt,max(⌧i, ⌧j) tij min(t, taj )}. (1)

We consider a pair (i, j) between an order i and a driver j to be compatible at time t if the assignment

does not result in a delay in delivery, i.e., if t+ dij(t) ⌧i + ⇠i. Otherwise, we refer to the edge (i, j) as

expired. We refer to the time epoch tcij that solves equation tcij + dij(tcij) = ⌧i + ⇠i, i.e., the exact time at

which driver j has to drive to the restaurant to arrive at the end of the food processing to pick up order

i, as the edge expiration time. Assumption t+dij(t)< t0+dij(t0) for t < t0, ensures that there is a unique

edge expiration time per order-driver pair. Note that the exact edge expiration time is known in advance

to the planner only in the case of known FPT.

Cost model: The cost of an order incurs at the time when the order is matched or at the end of the

time horizon if it is not matched. It comprises two types of costs: First, the fetching cost, which reflects

the time a driver spends on fetching the order, consisting of the drive-to-shop time, dij(tij), and the

potential shop-waiting-time at the restaurant (given by the positive di↵erence between the arrival time of

the driver at the restaurant and the time of order completion by the restaurant): (⌧i+ ⇠i� tij �dij(tij))+.

Second, the potential cost of lateness, which represents the loss in customer satisfaction and which is

proportional to the delivery delay, (tij + dij(tij)� ⌧i � ⇠i)+. For a given matching policy ⌦, we write the

expected total costs per order, W⌦, as

W⌦ = lim
t!1

E

8
<

:
1
|It|

X

(i,j,tij)2M⌦
t

⇥
dij(tij)+ (⌧i + ⇠i � tij � dij(tij))

++ c · (tij + dij(tij)� ⌧i � ⇠i)+
⇤
9
=

; , (2)

where c is the per-time-unit penalty for delay in fetching. Without loss of generality, we normalize the

per-time-unit fetch cost to 1. The objective of the model is to minimize the sum of fetching cost and cost

of lateness. We denote the optimal policy by ⌦⇤, i.e., the policy that achieves the minimal expected cost

per order (W ⇤ =W⌦⇤
).

In the above model with known FPT, order and driver arrivals and driver abandonments are Markovian,

but the food processing times are not Markovian. Hence, the model belongs to the class of Semi-Markov

Decision Processes (SMDP), which we formally establish in Appendix 7.2.

In our analysis, we also report on performance indicators beyond total costs. These indicators include

average drive-to-shop times (V ⌦
p ), average in-shop waiting times (V ⌦

w ), average delay per order (V ⌦
d ),

Electronic copy available at: https://ssrn.com/abstract=4612561



10

service level (V ⌦
l ), average number of drivers available (V ⌦

n ), average amount of times the drivers are

engaged (V ⌦
e ), average amount of time the drivers are idle waiting for jobs (V ⌦

q ), as well as average net

income per driver per time unit (V ⌦
s ); see Appendix 7.1 for detailed definitions.

4. Policy Development and Analysis

In this section, we analyze the dynamic matching problem defined in Section 3. We commence by estab-

lishing a property of the optimal matching policy and illustrating the value of waiting in matching.

Subsequently, we define three benchmark policies that are used in practice and literature, and present

a lower bound on the total costs (Subsection 4.1). We then derive the optimal matching policy for the

special case of a single order in isolation (Subsection 4.2) and, building on this result, develop a heuristic

matching policy for multiple orders (Subsection 4.3).

In classical matching models, agents arrive randomly to a bipartite graph. Each edge has a fixed weight

representing the matching cost, with the objective of minimizing the sum of the weights of all selected

edges. A more generalized model is the dynamic matching problem with time windows, a topic rarely

investigated in existing research; see, for example, Cao et al. (2020) or Aouad and Saritac (2022). In these

models, the introduction of time windows significantly complicates the analysis. Our model is further

complex, incorporating both time windows and variable edge weights that change over time as an edge

expires. To facilitate our analysis, we initially examine the properties of the cost function, which we rely

on in the remainder of our study. The following condition is necessary for the optimal matching time.

Proposition 1. In the case that the FPT is known at order arrival (�2
⇠ = 0), it is never optimal to

match order i with a driver j at a time t if the edge is not yet expired (i.e., t+ dij(t)< ⌧i + ⇠i).

All proofs can be found in Appendix 7.3. The concept underlying Proposition 1 is straightforward: the

decision-maker is invariably better o↵ waiting until the edge expires than matching when the edge is not

expired. Nonetheless, the selection of the edge is not a priori apparent, a point illustrated in settings

such as the Uber Marketplace (https://www.uber.com/us/en/marketplace/matching/), and further

demonstrated in the subsequent example for our context.

Example 1. (Edge selection and value of waiting) Let us illustrate the potential benefits of

waiting through a simple example. In Figure 3, we compare myopic order-driver matching (left-hand side

of the figure) with optimal order-driver matching (right-hand side of the figure). The horizontal axis of

each side represents the geographical location, denoted as l, while the vertical axis represents the travel

time along the geographical line, denoted as t. At time t=0, order 1 arrives to the system at l1 =3 with

FPT ⇠1 =3 time units. A second order 2 arrives at t=2 at location l2 =0 with FPT ⇠2 =3 time units. A

driver A is available at t=0 and lA =1, and a second driver B arrives at t=1 and lB =4. Let us analyze

the performance of the two policies:

Electronic copy available at: https://ssrn.com/abstract=4612561



11

• Myopic matching: As depicted on the left-hand side of Figure 3, if the planner matches the order 1

with driver A myopically at time t= 0, then the planner must match the order 2 with driver B at

time t=2. The first matching incurs a cost of 3 (two units for driving and one for waiting until the

food is ready); the second matching incurs a cost of 4 + c(4� 3) = 4+ c. The total costs per order

are consequently (3+4+ c)/2= 3.5+0.5 · c.

• Optimal matching: As depicted on the right-hand side of Figure 3, if the planner waits until time

t= 2 to match the order 1 with driver B and until t= 4 to match the order 2 with driver A, the

first matching incurs a cost of 1, and the second matching incurs a cost of 1, leading to total costs

per order as (1+1)/2= 1.

The cost di↵erence between the two policies is 2.5 + 0.5 · c, reflecting the value of waiting and optimal

edge selection. The challenge, therefore, lies in determining the optimal matching combinations.

Figure 3 Example of myopic and optimal matching of two orders to two drivers.

4.1. Benchmark policies as lower and upper bounds

In this subsection, we introduce benchmark policies that act as lower and upper bounds for the perfor-

mance of the optimal policy, as defined in the model presented in Section 3. Firstly, we describe the Greedy

policy, denoted as ⌦g, which emulates the ‘match-as-you-go’ policies (Akbarpour et al. 2020) extensively

employed in real OFD platforms, including platforms like Meituan.

Definition 1. (Greedy Policy ⌦g) If an order i arrives at the platform at time t, then match it with

the closest driver in Jt whenever Jt 6= ;. If a driver j arrives at the platform at time t, then match her

with the closest order in It whenever It 6= ;.

The immediate greedy matching policy exposes the benefits achievable through delaying the matching

decision. It assigns drivers to potentially non-ideal orders, resulting in extended travel distances. Recog-

nizing this, several OFD platforms are exploring alternative matching policies to enhance the e�ciency

of the dispatch process. For instance, Meituan, in a pilot project, has installed terminals (ChuCanBao)

Electronic copy available at: https://ssrn.com/abstract=4612561



12

in restaurants, requesting chefs to update the FPT in real-time (Meituan 2021). Once the meal is ready,

the planner greedily allocates the order to a specific driver. We summarize this policy as follows.

Definition 2. (Match-after-ready (MAR) Policy ⌦r) When an order i2 It finishes processing at time

t, then match it with the closest driver in Jt whenever Jt 6= ;. If a new driver j enters the market at time

t, then match her with the closest, ready order in It.

Policy ⌦r emulates a delayed greedy policy, as it defers the myopic matching until the order is ready.

Intuitively, this policy eliminates the drivers’ waiting time at the restaurant. However, this improvement

comes with a trade-o↵ in food quality and customer satisfaction, as the prepared food must now await

the arrival of the drivers.

We also evaluate the performance of the well-known Batching policy, denoted by ⌦b, that is employed

by several online platforms (Yan et al. 2020). This policy groups jobs and drivers in intervals of ! time

units (e.g., one minute) before executing a linear program to optimally match the available orders with

drivers. Any unmatched orders and drivers are retained for the subsequent batch. In our simulations, we

determine the optimal batching period ! through back-testing (see ONLINE Appendix 8.3 for a detailed

formulation of the procedure).

Next, we define the optimal policy for a full-information case where FPTs, arrival and abandonment

times, and real-time driver locations are known in advance. We determine the optimal policy ⌦T over a

finite horizon T by solving the following linear program.

fW⌦T
= min

1
|IT |

8
<

:
X

i2IT

X

j2JT

X

tij2T

xijtij

⇥
dij(tij)+ (⌧i + ⇠i � tij � dij(tij))

++ c · (tij + dij(tij)� ⌧i � ⇠i)+
⇤

+c ·
X

i2IT

(T � ⌧i � ⇠i) · (1�
X

j2JT

X

tij2T

xijtij )

9
=

; (3)

subject to
X

j2JT

X

tij2T

xijtij  1,8i2 IT ;
X

i2IT

X

tij2T

xijtij  1,8j 2JT (4)

xijtij 2 {0,1},8i2 IT , tij 2 T , j 2JT ;xijtij =0,8tij <max(⌧i, ⌧j) and 8tij > taj . (5)

The decision variables xijtij indicate that an order i is matched with a driver j at time tij . Constraint

(4) ensures each order is matched with at most one driver and vice versa. Constraint (5) ensures that

only available orders and drivers are considered for matching. Since the scheduling horizon T is finite,

we have to account for delay costs of orders that are not matched at the end of the horizon, which is

represented by the last term in (3). We approximate the policy for the full-information case, denoted as

⌦f , by taking the limit of T as it approaches infinity, i.e., W⌦f

= limT !1fW⌦T
. It is evident that the

benchmark policies and the full-information case provide upper and lower bounds to the optimal costs, a

fact we establish in the following lemma (without proof).

Lemma 1. min{W⌦g

,W⌦r

,W⌦b}�W ⇤ �W⌦f

.

Electronic copy available at: https://ssrn.com/abstract=4612561



13

4.2. Analysis of dynamic matching with a single order

In this section, we focus on a unique case of a single order as described in Section 3, without any competing

orders for drivers. We aim to analytically determine the best strategy to understand the broader matching

problem’s core mechanisms.

We assume in this subsection that the FPT is known, i.e., �2
⇠ =0, and that the driving time is constant

and does not vary with the time of the day, i.e., dij(t)⌘ dij . We also assume that driver abandonment

is minimal due to the short matching time frame, so that it has little or no e↵ect on the matching

decision. Without loss of generality, we set the order’s arrival time to ⌧i = 0. We denote the remaining

food processing duration at any given time t by ⇠ri , which is given by ⇠ri = ⌧i + ⇠i � t. For simplicity,

we omit the order index i in our notation. For instance, dj represents the driving time of driver j to

the restaurant, instead of the full dij . Our analysis starts by identifying the optimal policy’s potential

matching times. Generally, if there is any active non-expired edge, it is preferable to wait until the last

edge expires. This idea is captured in the following proposition:

Proposition 2. For a single order scenario, it is never ideal to match a driver with the order while

any edges remain unexpired.

Considering the moment t0 when the last edge expires (i.e., dj = ⇠r), the decision-maker has two options:

• Instantly match driver j to the order, incurring a cost of dj .

• Wait for a driver with shorter driving time.

If dj is significant, waiting might be the better option. Our next theorem shows that this decision follows

a threshold structure. The decision-maker will choose to match only if driver j’s driving time is below a

certain limit. This threshold depends only on the remaining FPT and not on prior driver arrivals.

Theorem 1. In a single order scenario:

(a1) At the moment the last edge with driver j expires (dj = ⇠r), the optimal decision is to match the

order if and only if:

dj  d̃(⇠r) = d̃(dj), (6)

where d̃(⇠r) is a threshold function dependent solely on the remaining FPT, ⇠r.

(a2) If no drivers are currently available, upon the arrival of a new driver j with travel time and remaining

FPT such that dj > ⇠r, the order should be matched if and only if:

dj  d̃(⇠r). (7)

(b) The threshold function, d̃(⇠r), is defined as:

d̃(⇠r) =
W+(1, ⇠r)+ c⇠r

c+1
, (8)

Electronic copy available at: https://ssrn.com/abstract=4612561



14

with W+(1, ⇠r) representing the expected future cost after the last non-expired edge’s expiration

when the remaining FPT is ⇠r. This function, d̃(⇠r), (non-strictly) increases with ⇠r.

Theorem 1(a) suggests that the optimal policy follows a threshold approach, wherein immediate match-

ing is favorable only when the travel time of the last remaining driver falls below a certain threshold.

Theorem 1(b) further establishes that for drivers arriving after their edge has expired, this threshold

increases with the remaining FPT, ⇠r. Equivalently, the threshold decreases over time, indicating that

the later the match occurs, the lower the likelihood of accepting a driver with a given travel time. This

aligns with intuition: a driver arriving after the expiration of its edge is generally less preferred than one

arriving prior to expiration.

To develop the aforementioned theorem, we demonstrate that, at any given moment, the driver pos-

sessing the shortest driving time to the order dominates all other drivers in the eligible driver pool.

Consequently, the system exclusively relies on the driver with the minimum driving time. Subsequently,

by employing the Markov property of the arrival stream, we ascertain that the net value of matching a

particular driver at its edge expiration time dominates the net value of matching that same driver at any

later moment. Therefore, if the net value of matching a driver is negative at the edge expiration time,

it will always remain negative in the future, making it consistently advantageous to await the arrival of

a more suitable driver. These two observations imply the threshold structure of the optimal policy, as

established in Theorem 1.

Interestingly, an implication of Theorem 1 is that drivers satisfying the condition dj > d̃(⇠r = dj) will

invariably be overlooked, as the system always opts to hold out for a more suitable match. However,

fulfilling the condition dj  d̃(⇠r = dj) upon arrival does not ensure a match at the time of edge expiration,

as a more close-by driver might arrive in the meantime.

The future expected cost,W+(1, ⇠r), ensuing after the expiration of the last edge, when no non-expired

edges remain in the system (denoted by 1 in the first argument), can be deduced from the function

W+(d, ⇠r). This function represents the minimum future expected cost when the last edge to expire

exhibits a driving time d and the remaining FPT is ⇠r. The function W+(d, ⇠r) always has a solution (see

also the discussion in ONLINE APPENDIX 8.4) and can be evaluated numerically utilizing the following

system of equations:

W+(d, ⇠r) =Edj0Et̂j0

8
>>>>>>>>>><

>>>>>>>>>>:

min
�
d,W+(1, ⇠r � d)

 
, if (⇠r � d)2

⇥
0, t̂j0

⇤
,

W+(min{d,dj0}, ⇠r � t̂j0), if (⇠r � d)> t̂j0 ,

min
n
dj0 + c [dj0 � ⇠r]+ ,W+(1, ⇠r � t̂j0)

o
, if (⇠r � d)< 0 and dj0 > (⇠r � t̂j0),

W+(dj0 , ⇠r � t̂j0), if (⇠r � d)< 0 and dj0  (⇠r � t̂j0).

(9)

Electronic copy available at: https://ssrn.com/abstract=4612561



15

and W+(d, ⇠r) =W+(1, ⇠r) for any d > ⇠r, where j0 is the next driver arrival with driving time dj0 and

inter-arrival time t̂j0 .

We present an example to illustrate the application of the threshold policy. We selected a single restau-

rant and ten driver locations from the dataset introduced in Section 5. The locations were chosen to

ensure that drivers have an equal probability of being in any of the ten locations, i.e., fd(lj)⇡ 1/10 for

j =1, ...,10. The average FPT is ⇠ =23 minutes, and the arrival rate is �d =0.4. The results are depicted

in Figure 4. On the left-hand side, the blue dashed line represents the threshold d̃(⇠r) as a function of

the remaining FPT ⇠r. If the driving time at edge expiration, dj , (depicted by the red solid line) is below

the threshold function (blue dashed line), the driver will be matched with the order. On the right-hand

side of the figure, the driving radius around the restaurant corresponding to the threshold at varying

values of ⇠r is displayed. Drivers with a driving time less than the time at which the blue dashed line

and the red solid line on the left-hand side of Figure 4 intersect (dj =13.02 minutes), i.e., drivers located

within the shaded circle area on the right-hand side, are potential candidates for matching at edge expi-

ration. Those with a greater driving time, residing outside the shaded area, will never be matched. For

instance, drivers with dj = 1 arriving before ⇠r = 1 (i.e., before the edge expires) could be matched as

dj =1< 10= d̃(1); this also applies to drivers with dj =11. Conversely, drivers with dj =17 or dj =20 are

excluded from matching. This observation elucidates that for drivers arriving before the edge expiration,

a single threshold value determines whether the last non-expired driver is matched upon edge expiration.

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

5

10

15

20

25

T
o
ta

l 
c
o
st

s

Figure 4 Threshold function d̃(⇠r) as a function of remaining FPT ⇠r (left) and ’threshold’ circles around the

restaurant location for di↵erent values of ⇠r (right).

In most real-world scenarios, orders do not occur in isolation, and drivers have the potential to be

matched with other orders. However, the fundamental decision problem remains consistent in the general

model: the immediate cost of matching a driver to an order, dependent on the driving time, must be

weighed against the expected future cost of waiting. In the general model, the future cost of waiting likely

Electronic copy available at: https://ssrn.com/abstract=4612561



16

depends not only on the remaining FPT but also on additional factors such as the presence of other

outstanding drivers and orders. This renders the ‘threshold’ for acceptance versus waiting more complex

than in the scenario of an isolated, single order. We leverage this insight in the following subsection to

develop a matching policy for the general case, where a driving-time threshold is complemented by a

thickening level to regulate competition between orders for the best drivers.

4.3. KT Policy Development and Analysis

In this section, we develop the KT policy for the model in Section 3, based on the insights that we

have gained from our prior analysis. We describe the policy, analyze its properties, and develop a simple,

closed-form approximation of its performance.

KT Policy with Known FPT. Compared to the single-order case, in the presence of multiple

orders, it is not always optimal to wait until the last edge expires. This is because the corresponding

driver might not be available anymore; it may have already been matched with another order. This risk

of drivers ‘dropping out’ from the pool of eligible drivers for a given order renders it analytically infeasible

to establish a result equivalent to Theorem 1 for the general case. We, therefore, develop a heuristic policy

for the general case, incorporating a threshold structure with additional mechanisms to match earlier

when necessary to mitigate the risk of drop-outs. We refer to this policy as the driving-time-constrained

k-level Thickening (KT) Policy.

The ‘design’ of the KT policy comprises three ’mechanisms’, each grounded in our prior analysis. First,

the policy constrains the neighborhood through a threshold function on the driving time, denoted by

d̆(⇠r), which is optimal in the single-order scenario (Theorem 1). Second, in contrast to the optimal

strategy in the single-order case of awaiting the expiration of the last driver (see Proposition 2), the KT

policy regulates the level of market thickness (refer to the discussion in Section 1) through a threshold

parameter k. This parameter guards orders against the risk of a driver, for which the order is waiting to

‘drop out’, that is, being matched with a di↵erent order. A larger thickening level k results in reduced

waiting times, albeit potentially leading to less desirable driving times; a smaller k extends the waiting

period but could yield shorter driving times. Third, the KT policy also matches orders to the nearest

available driver when all compatible drivers have dropped out, preventing unnecessary delays due to

extended waiting times for incoming drivers, especially in situations with low driver arrival rate.

Before introducing the policy, let us define the driving-time constrained neighborhood Nt(i, d) of an

order i at time t as the set of compatible drivers that can reach the restaurant of order i within driving

time d, i.e., available drivers j for which dij(t) d.

Definition 3. (Driving-time-constrained KT Policy with known FPT, ⌦k,d̆(·)) Let the parameter k

represent the level of market thickness and d̆(·) a threshold function. In the case of multiple orders,

Electronic copy available at: https://ssrn.com/abstract=4612561



17

(a1) If, at the edge expiration time tcij for an order i and driver j, driver j is within the driving-time

constrained range of order i, i.e., dij(tcij) d̆(dij(tcij)) = d̆(⇠ri ), and if the number of drivers in this

neighborhood is less than or equal to k, i.e., |Ntcij
(i, d̆(⇠ri ))| k, then order i is immediately matched

with driver j. Moreover, for any other order i0 6= i for which driver j was the last non-expired driver

in its neighborhood, i.e., |N(tcij)
+(i0, d̆(⇠ri0))|=0, where (tcij)

+
is the time epoch immediately following

the matching (i, j), order i0 is immediately matched with the nearest available driver, i.e., driver

argminj0 di0j0(t
c
ij).

(a2) If, upon the arrival of a driver j, the edge expiration time tcij with an order i has already passed, i.e.,

tcij < ⌧j, and if driver j is within the driving-time-constrained range of order i, i.e., dij(⌧j) d̆(⇠ri ),

and the neighborhood of this order is empty, i.e., |N⌧j (i, d̆(⇠
r
i ))| = 0, then order i is immediately

matched with driver j. If multiple orders fulfill these conditions, the order with the greatest lateness

cost is selected for matching, i.e., the order i0 where i0 =argmax
i

(⌧j + dij(⌧j)� ⌧i � ⇠i)+.

Statement (a1) of the KT policy prescribes an action for order-driver pairs that reach their edge expiration

time. If the number of compatible drivers of the same order in the neighborhood falls below the threshold,

the pair is matched; otherwise, it is not. Statement (a1) also concerns a second action: if the expiring pair

is matched and if the matching leaves another order without any compatible drivers in the neighborhood,

it is matched with the closest driver. This additional action avoids situations in which orders are ‘starved’

and have to wait for the arrival of new drivers. The statement (a2) of the KT policy is similar to

the statement (a1) but concerns order-driver-pairs that are already expired at driver arrival. In such a

situation, the action is similar to the one of (a1), i.e., the pair is also matched if the number of compatible

drivers to the order is below the threshold.

Figure 5 Illustration of the KT policy with two examples (k= 2 and d̆(·) = 10).

Figure 13 provides a simple example of the functioning of the KT policy with parameters k = 2 and

d̆(·) = 10 based on two decision epochs, where the earlier point in time is on the left-hand side and the later

point in time on the right-hand side. The blue dot in the center represents the order’s restaurant location,

while red dots represent idle drivers. The red circle represents the neighborhood defined by the policy

Electronic copy available at: https://ssrn.com/abstract=4612561



18

parameter d̆(·) = 10. The dashed arrow indicates the edge between the order and a driver that is about to

expire. In the figure on the left-hand side, five idle drivers are located within the neighborhood. Because

k=2< 5, the driver of the expiring edge is not matched with the order. However, as time progresses, we

come to the time epoch that is illustrated in the figure on the right-hand side. At this time, only two idle

drivers are located in the neighborhood, which equals parameter k= 2 such that we immediately match

the driver of the expiring edge with the order.

For subsequent analysis, let k⇤ denote the optimal thickening level. It is evident that the KT policy

with k=1 aligns with the well-known Patient policy proposed by Akbarpour et al. (2020). Moreover, the

KT policy, with a su�ciently large value of k, is tantamount to matching when the first edge with an

eligible driver expires. In the presence of a single order, the KT policy converges to the optimal policy,

which we formally show in the following corollary.

Corollary 1. In the case of a single order (see Section 4.2), the KT policy ⌦k,d̆(·)
with k = 1 and

d̆(·)⌘ d̃(·) coincides with the optimal policy.

The result of Corollary 1 holds, because for k = 1 the policy always waits to match until the last edge

expires, a strategy that is optimal in the single-order case (Proposition 2). Furthermore, the threshold

policy, characterized by threshold function d̃(⇠r), results in optimal matching, as shown in Theorem 1. In

Appendix 7.5, apply the KT policy to Example 1 to illustrate how the KT policy can coincide with the

optimal policy for some cases.

KT Policy with Unknown FPT. In the case of unknown FPT (�⇠ > 0), the FPT value manifests

as a random variable, only revealed to the decision-maker once the food is prepared. Consequently, upon

the arrival of an order, the decision-maker can only determine an edge expiration time based on the

predicted FPT, ⇠̂i. This scenario introduces the possibility that an order may expire earlier or later than

anticipated. To address this, we extend our KT policy to the Bu↵ered KT (BKT) Policy, which protects

against FPT prediction errors by adding a bu↵er time bP̂�⇠
to the predicted edge expiration time. The

bu↵er bP̂�⇠
is set such that the probability P [⇠i  ⇠̂i + bP̂�⇠

] = P̂ is satisfied, where policy parameter P̂ is

the protection level. Should the prediction error adhere to a Normal distribution, the bu↵er is assigned

as bP̂�⇠
= zP̂ ·�⇠, with zP̂ representing the z�score corresponding to P̂ .

We define the ‘predicted’, ‘protected’ expiration time of an edge (i, j) with unknown FPT, denoted as

tbcij , to be the value satisfying the equation tbcij +dij(tbcij ) = ⌧i+ ⇠̂i+ bP̂�⇠
. This value is known to the planner

upon the arrival of the order. However, it is possible that food preparation finishes even before the time

tbcij . Consequently, under the BKT policy, decisions have to be made at the earlier of the two events,

referred to as the ‘critical decision’ time, given by min(tbcij , ⌧i + ⇠i), a value unknown to the planner until

either of the two events occurs.

Electronic copy available at: https://ssrn.com/abstract=4612561



19

Definition 4. (BKT Policy with unknown FPT, ⌦k,d̆(·),P̂ ) In the case of multiple orders,

(a1) If, at the ‘critical decision’ time min(tbcij , ⌧i + ⇠i) of an order i and driver j, driver j is within the

driving-time constrained range of order i, i.e., dij(tbcij )  d̆(dij(tbcij )), and if k or fewer drivers are

in the neighborhood, i.e., |Ntbcij
(i, d̆(dij(tbcij )))| k, then order i is immediately matched with driver

j. Furthermore, upon such a matching, for any other order i0 6= i for which driver j was the last

non-expired driver in the neighborhood of order i0, i.e., |N(tbcij )
+(i0, d̆(⌧i0 + ⇠̂i0 + bP̂�⇠

� tbcij ))|=0, where

(tbcij )
+

is the time epoch right after the matching (i, j), order i0 is immediately matched with the

nearest driver, i.e., driver argminj0 di0j0(t
bc
ij ).

(a2) If, upon the arrival of a driver j, the ‘critical decision’ time min(tbcij , ⌧i + ⇠i) with an order i has

already passed, i.e., min(tbcij , ⌧i + ⇠i)< ⌧j, and driver j is within the driving-time-constrained range

of order i, i.e.,

dij(⌧j)

8
>><

>>:

d̆(⌧i + ⇠̂i + bP̂�⇠
� ⌧j), ⌧j  ⌧i + ⇠i,

d̆(⌧i + ⇠i � ⌧j), ⌧j > ⌧i + ⇠i,

(10)

and if this neighborhood is empty, i.e.,

8
>><

>>:

|N⌧j (i, d̆(⌧i + ⇠̂i + bP̂�⇠
� ⌧j)|=0, ⌧j  ⌧i + ⇠i,

|N⌧j (i, d̆(⌧i + ⇠i � ⌧j)|=0, ⌧j > ⌧i + ⇠i,

(11)

then order i is immediately matched with driver j. If multiple orders fulfill these conditions, the order

with the greatest ‘predicted’ lateness cost is selected for matching, i.e., the order i0 with

i0 =argmax
i

8
>><

>>:

(⌧j + dij(⌧j)� ⌧i � ⇠̂i � bP̂�⇠
)+, ⌧j  ⌧i + ⇠i,

(⌧j + dij(⌧j)� ⌧i � ⇠i)+, ⌧j > ⌧i + ⇠i.

(12)

In Appendix 7.4, we show how to adapt the BKT policy to di↵erent model extensions.

Simplified Performance Analysis of the KT Policy. Next, we explore the sensitivity of the

performance of the KT policy with known FPT with respect to the level of market thickness k. As the

original system is intractable, we perform this investigation on a simpler model, for which we can derive

a closed form expression for the total costs. For this simplified model, we assume that:

• The driving time to the restaurant and FPT are constant values, denoted by d and ⇠, respectively. d

represents the non-compressible driving time, i.e., the average driving time under maximum waiting

(i.e., with k=1); ⇠ represents the average FPT.

• The number of compatible drivers for an order at its arrival is a constant value denoted by k̃ (see

also Banerjee et al. 2018, who use a similar assumption).2

2 Using a fixed number of drivers for the analysis provides a more accurate approximation of the KT policy than a
M/G/1 queue, in which servers represent drivers. An analysis of a queue-based approximation and a comparison of
the accuracy of the two approximation models can be obtained from the authors upon request.

Electronic copy available at: https://ssrn.com/abstract=4612561



20

• The times between edge expiration events follow an exponential distribution with rate ✓, and we

assume drop-outs and new arrivals of drivers to be balanced during the time an order waits to be

matched. As a consequence, the matching duration tij � ⌧i (i.e., the time between arrival of an order

and its matching) corresponds to the sum of k̃� k+ 1 exponentially distributed delays with rates

µj = j✓. We denote this random variable by X(k). It follows a hypoexponential distribution with

mean µ(k) =
k̃P

j=k
µ�1
j and pdf f̃k(x).3

The values d, k̃, and ✓ can be derived from the neighborhood definition, i.e., from the threshold function

d̆(·) of the KT policy. Based on the above simplifications, we obtain from Equation (2) the following

expression for the total matching cost in the platform:

Proposition 3. Expected total costs per order in the simplified system are given by

fW⌦k,d̆(·)
(k) = d+E[(⇠̄� d̄)�X(k)]++ c ·E[X(k)� (⇠̄� d̄)]+

= d+

Z ⇠�d

0
(⇠�x� d)f̃k(x)dx+ c ·

Z 1

⇠�d

(x+ d� ⇠)f̃k(x)dx

= ⇠�µ(k)+ (1+ c) · p(k), (13)

with

p(k) =E[X(k)� (⇠� d)]+ =
e�k✓(⇠�d)

k✓
·
✓
k̃
k

◆
·
k̃�kX

m=0

(�1)m ·
(k̃�k

m )

em✓(⇠�d)
�
1+ m

k

�2 . (14)

The delay penalty is represented by the term c ·p(k), where p(k) represents the expected delay. The fetch

cost is given by ⇠ � µ(k) + p(k), representing the e↵ective driving time under thickening level k as the

sum of the non-compressible part of the driving time (for k = 1) plus the additional driving time from

‘earlier’ matching (for k > 1).

Proposition 3 provides insights into the structure of the total costs of the thickening policy. We can

interpret µ(k) as the average duration that orders remain on the platform before they are matched. Since

µ(k) is decreasing in k, the smaller the k, the longer the order stays in the system to allow the market to

thicken. Fetch costs are intuitively decreasing with waiting (i.e., the smaller the k), while the penalty cost

is intuitively increasing with the matching delay (i.e., with smaller k), which is evident from the structure

of the term for expected delay, E[X(k)� (⇠�d)]+. As fetch costs and penalty costs are influenced by the

thickening level in opposite directions, the optimal thickening level k⇤ is likely the one that balances both

types of costs. We formally establish that the expected cost per order is quasi-convex in the thickening

level k and submodular in k and c in the following proposition.

3 This assumption is reasonable, durations are frequently approximated by exponential distributions. In ONLINE
Appendix 8.1, we show that the edge expiration times of our data set are well represented by the exponential
distribution. Rate ✓ is determined by average driving times, arrival rates of orders and drivers, and other factors.

Electronic copy available at: https://ssrn.com/abstract=4612561



21

Proposition 4. For given (d, k̃,✓), total costs per order in the simplified system are fW⌦k,d̆(·)
, is

(a) Quasi-convex in the thickening level k.

(b) Submodular in parameters k and c, such that k⇤(c) is (non-strictly) increasing in c.

Part (a) of Proposition 4 implies that the total costs initially decrease and then increase with the thick-

ening level k, illustrating the fundamental trade-o↵ of thickening in matching markets (see, e.g., Chen

2019). This result facilitates a straightforward search for the optimal k⇤. The value derived from our sim-

plified model can serve as a starting point in the search for the optimal policy parameters, a process we

undertake in Section 5. Part (b) of Proposition 4 indicates that the parameters k and c are strategically

complementary in the marginal cost (Topkis 1978). The net cost for an additional k does not increase

with an increase in c, and vice versa. Consequently, the optimal thickening level k⇤(c) is monotone in the

penalty unit cost c. The Greedy policy (Subsection 4.1) incurs total costs of ⇠ under the assumptions of

our simplified model, meaning that the performance di↵erence between the Greedy policy and the KT

policy can be conveniently expressed as W⌦g �fW⌦k,d̆(·)
= µ(k)� (1+ c)p(k). We observe that, for some

values of k, the Greedy policy may outperform the KT policy; however, since the term p(k) approaches

zero for large values of k, a su�ciently large level of k can always be chosen such that the KT policy

dominates the Greedy policy.

5. Numerical Experiments

In this section, we use the data set from the OFD platform Meituan in China to test the performance of

di↵erent policies. After a description of the data set, we analyze the performance of the di↵erent policies

under the assumption that the FPT is known. Then, we develop a prediction model for the FPT and

apply the prediction model and our policies to the case in which the FPT is uncertain upon order arrival.

More simulation details are provided in ONLINE Appendix 8.2.

5.1. Data Description and Preliminary Analysis

Meituan is the largest OFD platform in China. We have access to one month of data, from 3-30 July 2017.

This data set includes more than 1 million detailed orders, drivers, and weather information collected from

eleven regions with an area of ⇠ 60km2 per region. Order information contains, among others, order ID,

order arrival time, region, food provider ID, food value, locations of the food provider and the customer,

arrival time of driver at the shop, and delivery begin and end time. The orders cover 2 447 food providers

and 153 096 customers. Driver information contains minute-wise numbers of waiting and busy drivers in

the network.

In our data set, the platform experiences an average number of 3 200 orders per day per region. Demand,

however, varies considerably across time periods and in its spatial density. The temporal analysis of arrival

Electronic copy available at: https://ssrn.com/abstract=4612561



22

times shows that nearly 40% of orders are made for lunch time (10:00-14:00) and 30% for dinner time

(18:00-20:00). To simplify our experiments, we define three scenarios based on the arrival time of the

order: no-rush, rush, and overall. The no-rush scenario is comprised of all orders that arrive in the period

of 7:00-10:00, the rush scenario comprises all orders that arrive during the period 10:00-14:00, and the

overall scenario includes all orders during a day (7:00-23:00). The overall order arrival rate is �o = 3

per minute. The average FPT values of the three scenarios in the data set are 14’28 (14 minutes and

28 seconds) for the no-rush-scenario, 25’42 for the rush-scenario, and 23’13 for the overall scenario. The

standard deviation in the overall scenario is 11’94 minutes. More than 70% of FPT values are less than

or equal to 30 minutes. We provide a detailed description of the data set in ONLINE Appendix 8.1.

The nonuniformity of the demand over the time of the day implies, however, that the demand for

driver capacity also varies significantly during the day. Relying only on a fixed number of inhouse drivers

would render it di�cult to maintain a consistent service level during rush hours. Therefore, Meituan uses

crowdsourced, on-demand drivers who provide the required flexibility to satisfy demand variation over

the course of the day. Inhouse drivers are paid a fixed salary (3000 yuan per month) plus compensation

for each delivered order. Crowdsourced drivers, on the other hand, only receive compensation for each

delivered order, which is higher than the variable compensation of inhouse drivers. For ease of exposition,

we assume that the unit fetch cost paid to both types of drivers are standardized to one (⇠20 yuan/hour).

See Appendix 7.4.2 for an extension in which drivers have type-specific compensation. We did not observe

driver abandonment during the day in our data-set, and therefore use a negligible abandonment rate

(�a ! 0). However, the impact of �a is further tested and presented in Appendix 7.4.6.

In our simulation, to characterize the one-to-one delivery process of our model, we assume that a driver

has an average speed of v=18km/h and becomes available instantly after she finishes a delivery. We also

assume that the previous matching neither a↵ects the driver location after delivery nor the restaurant

location of new demands. This assumption is reasonable, because when drivers are on time, the driving

time from restaurant to customer is fixed. It allows us to mimic the driver arrivals in the data set since

drivers appear as new arrivals upon service completion.

To determine the unit penalty cost c, the platform’s marketing department has to assess the deteri-

oration in customer experience per time unit of delay and the resulting loss in future revenues. In our

numerical experiments, we use a base value of c=6, which is six times the cost of a driver, i.e., 20⇥6= 120

yuan per hour of delay; a value similar to the approx. USD 10-20 per order used in prior research (see

Mao et al. 2019).

For each analysis, we numerically determine the optimal policy parameters (k⇤ and d̆⇤(·) for the KT

policy, and P̂ ⇤ with the other parameters for the BKT policy). We use a constant threshold value, d̆,

instead of a threshold function, because estimating a function for each restaurant would be too complex.

Electronic copy available at: https://ssrn.com/abstract=4612561



23

We use the simplified model (see Subsection 4.3) for an initial calibration of the search for the policy

parameters. This leads to substantial run time savings in the implementation of our policy in practice.

After the first calibration, we can vary each parameter successively and compute the total costs with

simulation, until a local optimum is found.

5.2. Performance Analysis with Known Food Processing Time

In this subsection, we assume that the exact FPT is known to the planner at the arrival time of the order.

We perform a simulation study to compare the performance of di↵erent policies under this assumption.

Note that the exact FPT of each order is included in the order history of our data set, so that we can

feed it into our simulation.

Impact of driving-time-constraint d̆(·). We analyze how the driving-time constraint d̆ impacts

the KT policy. We simulate our policy with values d̆ 2 {100,200,300,400,600,1} seconds (which leads

to driving distances of {0.5,1,1.5,2,3,1} km with the average driver speed), and numerically optimize

thickness level k⇤ for each value of d̆. Note that the case of d̆=1 refers to the case without a limit on

driving time. In Table 1, we find that the total costs W⌦k⇤,d̆

are at first strongly decreasing in d̆, then

slightly increasing, with d̆⇤ =300 being the optimal value (W⌦k⇤,d̆⇤
=104). The larger the neighborhood,

the more opportunities for the order to be matched with a ‘good’ driver, thereby incurring less overtime

penalty and reducing total costs. The protection against the assignment of far-away drivers is partially

achieved by the market thickening mechanism. However, an oversized neighborhood can also lead to a

slight increase in the costs due to matching with faraway drivers. This is consistent with the insights of

Li and Netessine (2020): Range d̆ helps the planner reduces unnecessary search friction and avoid certain

costly drivers.

Table 1 Results of the KT policy ⌦k⇤,d̆
as a function of driving-time range d̆ (for the overall scenario).

d̆ (sec) 100 200 300 400 600 1
Opt. level k⇤ 4 4 5 5 5 5

Total Costs W⌦k⇤,d̆

17827 520 104 108 110 110

Service Level V ⌦
l (%) 32.96 91.57 98.64 99.32 99.72 99.72

Drive-to-Shop time V ⌦
p (sec) 68 98 100 105 108 108

Accuracy of the simplified model. Next, we analyze the accuracy of the simplified model (Subsec-

tion 4.3). Given d̆ as the driving-time limit, we set ⇠ to the average FPT and d to the non-compressible

driving time computed from the KT policy with k=1. Value k̃ is determined numerically with simulation.

To determine value ✓, we utilized the equation ✓= ln k̃/(⇠�d) to reflect the relationship (⇠�d)⇡
k̃P

j=1

1
µj
,

and then we further numerically fine-tuned ✓ for better accuracy. Figure 6 shows the total costs obtained

from the simulation of the KT policy and from the simplified model for all three scenarios (no-rush, rush,

overall) and as a function of thickening level k. The average approximation gap in Figure 6, i.e., the

Electronic copy available at: https://ssrn.com/abstract=4612561



24

mean absolute percentage error ✏= |fW⌦k,d̆ �W⌦k,d̆ |/W⌦k,d̆

, over all three scenarios is 5.17%. We conclude

that our simplified model approximates the actual performance of the KT policy fairly accurately. Given

Figure 6, we also conclude that the approximation model exhibits the same structural behavior as the KT

policy, such as the quasi-convexity in k, shown in Proposition 4, and that it has similar optimal values

k⇤, indicating that the simplified model can be used to optimize parameter k.

0 10 20 30 40 50

Market thickness k

100

120

140

160

180

200

220

240

260

T
o

ta
l 

c
o

s
ts

0 100 200 300 400 500
Market thickness k

0

50

100

150

200

250

T
o

ta
l 

c
o

s
ts

0 100 200 300 400 500
Market thickness k

0

50

100

150

200

250

T
o

ta
l 

c
o

s
ts

Figure 6 Total costs comparison of the KT policy and the simplified model for the three scenarios.

Table 2 Comparison of total costs of di↵erent matching policies.

Greedy Batching MAR KT Lower bound

Scenarios W⌦g

W⌦b

W⌦r

W⌦k⇤,d̆⇤
W⌦f

no-rush 872 626 969 187 135

rush 1542 1198 813 98 66

overall 1346 1017 833 104 69

Performance comparison of di↵erent policies and lower bound. Table 2 shows the total costs

obtained from the simulation of the di↵erent policies that we analyze. For the KT policy, we numerically

optimized the thickness level k and the driving time constraint d̆, and obtained k⇤ = 4 and d̆⇤ = 300. In

comparison to the benchmark policies, in the overall scenario, the KT policy has 92% lower total costs

than the Greedy policy, 90% lower total costs than the Batching policy, and 88% lower costs than the

MAR policy. The results indicate that the KT policy significantly outperforms the benchmark policies,

which confirms the value of market thickening. In addition, we find that the KT policy has a performance

close to the lower bound, W⌦f

of the full-information case, indicating the e↵ectiveness of the policy.

Table 3 shows performance indicators other than the total costs of the policies under investigation.

For ease of exposition, we only provide the performance indicators for the overall scenario. The average

drive-to-shop time V ⌦
p of the KT policy is comparatively shorter than those of the other policies such

as Greedy and Batching, indicating the benefits of market thickening. In addition, we observe that the

engagement time V ⌦
e per order of a driver is shorter under the KT policy than that under other policies, in

particular compared to the Greedy and the Batching policies. As a result, the platform can considerably

Electronic copy available at: https://ssrn.com/abstract=4612561



25

Table 3 Performance indicators of di↵erent matching policies in the overall scenario.

Drive-to-Shop Delay Service Level Engagement Time Engaged Drivers Waiting Time Idle Time Net-income

Policies V ⌦
p V ⌦

d V ⌦
l (%) V ⌦

e V ⌦
n V ⌦

w V ⌦
q V ⌦

s

⌦g 127 2 99.18 2135 164 1209 1675 11.1

⌦b 274 3 90.39 1708 131 634 3668 6.3

⌦r 119 119 0 919 70 0 2068 6.0

⌦k⇤,d̆⇤
100 1 98.64 900 69 0 1596 7.1

⌦f 69 0 100 869 67 0 1620 6.9

All time values in seconds.

increase the delivery capacity (V ⌦
n under the KT policy is approx. half than those of the Greedy and

Batching policies). Furthermore, from V ⌦
w , we observe that the KT policy eliminates shop-waiting time,

indicating the significance of finding an appropriate matching time to reduce waiting. The MAR policy

also eliminates shop-waiting, but creates serious delay that has significant impact on the service level.

The social welfare of drivers, represented by net income V ⌦
s and expected idle time V ⌦

q in Table 3 is

highest under the Greedy policy, as the policy compensates drivers even if they are waiting. However, it

achieves this outcome with high costs for the platform for waiting at restaurants. The KT policy, on the

contrary, achieves comparably high net-income for drivers at competitive platform costs, leading to higher

overall e�ciency of the ecosystem than the other policies. The discussion shows that a matching policy

has to trade-o↵ the triangular objectives of three parties: platform (low cost), drivers (high income), and

customers (high service level). The company has to define its balance to these parties. In Appendix 7.4.5,

we propose a socially friendly KT policy that pays and releases drivers after a cut-o↵ limit on idle time.

5.3. Performance Analysis with Unknown FPT

In Subsection 5.2, we considered the case where the platform knows the exact FPT at the time of assigning

a driver to an order. This is, however, rarely the case in practice. In this subsection, we analyze how

FPT uncertainty a↵ects the di↵erent policies. First, we present a machine learning model to predict FPT

values in real time. Then, we analyze the policy performance. We focus on the overall case in this section.

5.3.1. Prediction model for food processing times In recent years, the prediction of delivery

time for online food delivery has received much attention (e.g., Gao et al. 2021, Liu et al. 2021b) but we

are unaware of any work to predict FPT. For our problem, however, an accurate prediction of the FPT

facilitates the matching between order and drivers, reduces ‘shop-waiting’ of drivers and delivery delays.

We propose a causal forecasting model, i.e., a model that exploits the characteristics of an order to

predict its FPT. We compare several machine learning models to calibrate the prediction. To feed the FPT

prediction procedure, we take the ⇠120,000 orders of a complete month in the target region in the overall

scenario. We use 80% of the order in-sample data to train the model, and the remaining 20% out-sample

data to test the performance of the prediction model. First of all, we have to identify the characteristics

Electronic copy available at: https://ssrn.com/abstract=4612561



26

that influence the FPT most. A technical report (Hao 2017) from scientists at Meituan indicate the

following factors as key determinants for the FPT: Order arrival time (weekday, hour, minute of a day),

food value, packaged box value and number of dishes (food number), order congestion situation of the

food provider (number of waiting orders), food provider ID, and weather condition (rainy vs. sunny).

To align the scale of features, we normalize the continuous features and convert the categorical features

by the one-hot encoding technique (Brownlee 2018). Then, we test a wide range of machine learning

methods including eXtreme Gradient Boosting (XGBoost), k-Nearest Neighborhood (kNN), Lasso, Deep

Neural Network (DNN), Random Forest (RndForest) and Ridge Regression (Ridge), see e.g., Hastie et al.

(2009). We feed each method with the training data and conduct 10-fold cross-validation to select the

best hyper-parameters for the models, for example, the learning rate, the shrinkage parameters and the

number of trees. We implemented the training and testing procedures with scikit-learn package in Python.

Table 4 Average predicted FPT and FPT prediction errors of di↵erent machine learning methods (in minutes)

Method XGBoost kNN Lasso DNN RndForest Ridge

In-Sample

⇠ 19.57 19.51 19.55 19.50 19.55 19.55

RMSE 7.25 8.19 8.88 9.12 7.73 7.89

MAE 5.52 6.17 6.85 6.98 5.95 5.99

Out-of-Sample

⇠ 21.52 21.67 20.17 23.55 20.51 21.47

RMSE 8.62 8.98 11.08 11.76 9.65 10.08

MAE 6.58 6.84 8.41 9.35 7.35 7.76

The out-of-sample results of di↵erent measurements and methods are summarized in Table 4. We report

the value of the average FPT ⇠, the square root of the mean squared error (RMSE) and the mean absolute

error (MAE) for each method. The results indicate that XGBoost produces the smallest out-of-sample RMSE,

8.62, and hence, we adopt XGBoost for our numerical experiments. The four main factors that a↵ect the

predicted FPT by XGBoost are order arrival time (F-score 6,281; where the F-score is the number of times

that a feature is used to split the data across the prediction process, indicating its relative importance),

food value (F-score 5,322), the congestion situation/waiting number (F-score 1,854), and the packaged

box value (F-score 959). Our predictors explain 49% of the total FPT variance (R2 = 0.49). Note that

several of the above factors (e.g., arrival time, food value, and order waiting number) may be proxies for

the di�cult-to-observe congestion level at the restaurant.

5.3.2. Performance analysis with predicted FPT. First, we analyze the additional costs

from uncertainty in the FPT. Figure 7 shows the di↵erences in total costs between the KT policy applied

to the case of perfect FPT (see Subsection 5.2) and the BKT policy applied to the case of unknown

FPT, under di↵erent protection levels P̂ . Thickness level k⇤ and d̆⇤ are numerically optimized for each

Electronic copy available at: https://ssrn.com/abstract=4612561



27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

Figure 7 Percentage di↵erence in total costs between the KT policy with known FPT (⌦k⇤,d̆⇤) and the BKT

with unknown FPT (⌦k⇤,d̆⇤,P̂ ) for di↵erent protection levels P̂ .

protection level. From Figure 7, we observe that the total costs in the case of unknown FPT decrease

and then increase with the protection level (with P̂ ⇤ = 0.4), indicating that it can even be advantageous

to include a negative bu↵er (i.e., P̂ < 0.5). The results also indicate that ignoring the uncertainty leads

to a considerable cost increase, sixfold for P̂ =0.5.

Table 5 Performance comparison for di↵erent policies and real-case (with unknown FPT for overall scenario).

Total Costs Drive-to-Shop Delay Service Level Engagement Time Engaged Drivers Waiting Time Idle Time Net-income

Policies W⌦ V ⌦
p V ⌦

d V ⌦
l (%) V ⌦

e V ⌦
n V ⌦

w V ⌦
q V ⌦

s

⌦g 1346 127 2 99.18 2135 164 1209 1675 11.1

⌦b 1180 287 41 81.19 1731 133 645 3730 6.3

⌦r 833 119 119 0 919 70 0 2068 6.0

⌦k⇤,d̆⇤,P̂⇤
634 110 39 64.42 1201 92 291 1522 8.7

real-case 1383 472 0 100 2183 167 693 � 19.8

All time values in seconds.

Table 5 shows total costs and other indicators for the BKT, Greedy, MAR, and Batching policies as well

as for the real decisions that we observed in the data set from Meituan. The Meituan data set does not

show delayed fetching, and because we know that the company uses a policy similar to the Greedy policy

so we assume that the delay is close to zero. The BKT policy with numerically optimized parameters

k⇤ = 5, d̆⇤ = 300, P̂ ⇤ = 0.4 reduces total costs by 54% compared to the real decisions (and to the Greedy

policy), by 24% compared to the MAR policy, and by 46% compared to the Batching policy. The BKT

policy also dominates other policies for the drive-to-shop time V p
⌦ . The impact of the policies on driver

net income is similar as the one we have observed for known FPT.

In Table 5, we have numerically searched for the optimal parameters k⇤, d̆⇤, P̂ ⇤ for the BKT policy. To

provide some intuition on how total costs are a↵ected by the parameters, Figure 8 plots total costs by

thickness level k and protection level P̂ for given d̆⇤ = 300 seconds. We do not only observe that total

Electronic copy available at: https://ssrn.com/abstract=4612561



28

costs are quasi-convex in the thickening level k, confirming the result of Proposition 4, we also observe

that total costs are quasi-convex in protection level P̂ for a given thickening level k.

Figure 8 Total costs under BKT policy as a function of thickening and protection levels for given d̆⇤ = 300.

Impact of prediction error �⇠. Next, we analyze the sensitivity of the BKT policy to the prediction

error �⇠. From Table 2, we know that the KT policy is sensitive to FPT prediction errors. Therefore,

we investigate the impact of �⇠ on the performance of the BKT policy by performing experiments with

di↵erent values of prediction error. In the simulation, we replace the FPT prediction with a weighted

combination between the FPT prediction with XGBoost and the real FPT value from the data set (based

on the overall scenario). Changing the weight of the exact FPT value in the weighted combination allows

us to construct FPT predictions with varying degrees of �⇠. The corresponding results are shown in Figure

9. With given d̆⇤ =300, the results indicate that the BKT policy with numerically optimized parameters

of k⇤ and P̂ ⇤ dominates the Batching policy for all di↵erent values of prediction error. Furthermore,

the performance advantage of the BKT policy over the Batching policy increases significantly when the

prediction error decreases (i.e., when the weight of the exact FPT in the prediction increases). This

observation demonstrates the importance of accurate FPT prediction. In practice, OFD platforms can

invest in better FPT prediction, for example, by collecting more information about food orders, such as

food details and the number of employees currently on shift, or by providing incentives to restaurants to

reduce the variability of FPT. The food platform may provide revenue sharing or rewards to restaurants

for limiting FPT to a predefined range. Similar measures are used by online ride-hailing platforms to

reduce variability of driving times. For example, drivers at platform Uber have to follow GPS-calculated

routes to avoid low ratings and even a penalty (Liu et al. 2021a).

In Appendix 7.4, we analyze the relaxation of certain model assumptions, including scenarios with

endogenous FPT, driver-type-specific compensation schemes, variable driver speed, regional clustering,

driver abandonment, and a socially friendly adaptation of the BKT policy.

Electronic copy available at: https://ssrn.com/abstract=4612561



29

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

T
o

ta
l 

c
o

s
ts

Figure 9 Total costs of the BKT policy and the Batching policy as a function of the precision of FPT prediction

for given d̆⇤ = 300.

6. Conclusion

In this paper, we have explored market thickening and dynamic order-driver matching on OFD platforms,

drawing motivation from the operations of the Meituan platform in China. We have expanded upon

existing matching solutions by incorporating uncertain food processing times into the matching decisions.

We have formally defined a dynamic matching model as an SMDP and derived bounds on the performance

based on di↵erent information schemes (known FPT vs. unknown FPT). In the case of a single order in

isolation, we demonstrated that the optimal policy follows a threshold structure. Based on this result,

for the general matching system, we have formulated a driving-time-constrained k-level thickening (KT)

policy for real-time order and driver matching, and extended this policy to the Bu↵ered k-level thickening

(BKT) policy, which includes a risk bu↵er to safeguard against the prediction error of the FPT. We have

developed a closed-form approximation of the KT policy’s performance and derived several analytical

properties of the approximation, including the quasi-convexity of the total costs with respect to the

thickening level. Through extensive numerical experiments using a real data set fromMeituan, we observed

that the BKT policy reduces the drive-to-shop time by 77% and shop-waiting time by 58% compared

to the real-case benchmark, e↵ectively doubling driver e�ciency. Similarly, under the BKT policy, the

number of orders delivered increased by 1.35 units/hour, resulting in a reduction in the number of required

drivers from 167 to 92. In conclusion, the BKT policy achieved a total costs reduction of 54% compared

to the benchmark.

Our research yields several noteworthy insights. First, we ascertain that delaying the matching of orders

during food processing to cultivate a thicker marketplace is advantageous. Strategies such as greedy

matching, matching after the food is ready, and short-interval batching are significantly outperformed by

the KT policy, which dynamically adapts the market thickness. Importantly, we note that the FPT is piv-

otal information for making matching decisions. Despite utilizing an advanced prediction model, a degree

Electronic copy available at: https://ssrn.com/abstract=4612561



30

of prediction error persists. This error contributes to a substantial increase in costs when the policy is not

adapted to accommodate the uncertainty of the FPT, even though, the cost increase can be significantly

mitigated through the BKT policy. This observation suggests that OFD platforms benefit from investing

in enhancing FPT prediction accuracy, possibly by gathering more information from restaurants or by

o↵ering incentives to restaurants to reduce FPT variability.

The solutions and insights derived from our analysis are not confined to OFD platforms but extend

to any setting where dispatching and driving run concurrently with processing. This is observable, for

instance, in one-to-one delivery platforms with time-sensitive targets, such as Shansong (ishansong.com)

and Lalamove (huolala.cn). These platforms necessitate the processing of goods (e.g., packaging or load-

ing) before they are ready for shipping. Container-trucking platforms like Duckbill (en.duckbillscm.com)

present another analogous scenario. These platforms coordinate the delivery of containers to ports for

international transportation, where the uncertain container loading times at the factories resemble the

FPT in our study. The platform must judiciously assign containers to available trucks to ensure that nei-

ther the truck waits unnecessarily at the factory nor the container misses its scheduled customs clearance

time at the port. Furthermore, our research opens several avenues for future exploration. In this paper,

we have solely focused on one-to-one matching, notwithstanding the prevalent practice of consolidating

multiple orders in-vehicle for drivers. This practice allows drivers to collect orders for multiple customers

in a single pickup activity, implying that a matched driver might remain on the platform post-assignment.

Another promising avenue is the real-time forecasting of driver speed, potentially employing machine

learning techniques as suggested by Tao et al. (2022), and incorporating this information dynamically into

the matching policy. Lastly, exploring the coordination between the restaurant’s operational decisions

and the platform’s matching/routing decisions o↵ers a compelling direction to further enhance e�ciency.

Acknowledgments

References

Akbarpour, Mohammad, Shengwu Li, Shayan Oveis Gharan. 2020. Thickness and information in dynamic matching

markets. Journal of Political Economy 128(3) 783–815.

Aouad, A, O Saritac. 2022. Dynamic stochastic matching under limited time. Operations Research 70(4) 2349–2383.

Arnosti, Nick, Ramesh Johari, Yash Kanoria. 2021. Managing congestion in matching markets. Manufacturing &

Service Operations Management 23(3) 620–636.

Ashlagi, Itai, Maximilien Burq, Patrick Jaillet, Amin Saberi. 2018. Maximizing e�ciency in dynamic matching

markets. arXiv preprint arXiv:1803.01285 .

Banerjee, Siddhartha, Daniel Freund, Thodoris Lykouris. 2016. Pricing and optimization in shared vehicle systems:

An approximation framework. arXiv preprint arXiv:1608.06819 .

Banerjee, Siddhartha, Yash Kanoria, Pengyu Qian. 2018. State dependent control of closed queueing networks with

application to ride-hailing. arXiv:1803.04959v2 .

Electronic copy available at: https://ssrn.com/abstract=4612561



31

Baxendale, Peter. 2011. T. e. harris’s contributions to recurrent markov processes and stochastic flows. The Annals

of Probability 39(2). doi:10.1214/10-aop594. URL https://doi.org/10.1214%2F10-aop594.

Bosredon, Mickael. 2021. Deliveroo : Flexibilité, protection sociale... la question du statut des livreurs á vélo en débat.

https://www.20minutes.fr/economie/.

Brownlee, Jason. 2018. Why one-hot encode data in machine learning? https://machinelearning mastery.com/

why-one-hot-encode-data-in-machine-learning/.

Cachon, G.P., K.M. Daniels, R. Lobel. 2017. The role of surge pricing on a service platform with self-scheduling

capacity. Manufacturing & Service Operations Management 19(3) 368–384.

Cao, Yufeng, Anton Kleywegt, He Wang. 2020. Dynamic pricing for truckload transportation marketplaces. Available

at SSRN 3700227 .

Carlsson, John Gunnar, Sheng Liu, Nooshin Salari, Han Yu. 2021. Provably good region partitioning for on-time

last-mile delivery. Available at SSRN 3915544 .

Castro, Francisco, Peter Frazier, Hongyao Ma, Hamid Nazerzadeh, Chiwei Yan. 2021. Matching queues, flexibility

and incentives.

Chen, Manlu, Ming Hu, Jianfu Wang. 2022. Food delivery service and restaurant: Friend or foe? Management Science

68(9) 6539–6551.

Chen, Mingliu. 2019. Matching supply and demand with mismatch-sensitive players. Available at SSRN 3458673 .

Chen, Mingliu, Ming Hu. 2020. Courier dispatch in on-demand delivery. Available at SSRN 3675063 .

Chen, Ying-Ju, Tinglong Dai, C Gizem Korpeoglu, Ersin Körpeoğlu, Ozge Sahin, Christopher S Tang, Shihong Xiao.

2020. Om forum—innovative online platforms: Research opportunities. Manufacturing & Service Operations

Management 22(3) 430–445.

Cohen, Maxime C, Michael D Fiszer, Baek Jung Kim. 2022. Frustration-based promotions: Field experiments in

ride-sharing. Management Science 68(4) 2432–2464.

Cui, Ruomeng, Wenchang Zhang, Zhanzhi Zheng. 2022. Market thickness and delivery e�ciency in food delivery

platforms. Available at SSRN 4239864 .

Curry, David. 2021. Food delivery app revenue and usage statistics (2021). https://www.businessofapps.com/data/

food-delivery-app-market/.

Gan, Li, Qi Li. 2016. E�ciency of thin and thick markets. Journal of Econometrics 192(1) 40–54.

Gao, Chengliang, Fan Zhang, Guanqun Wu, Qiwan Hu, Qiang Ru, Jinghua Hao, Renqing He, Zhizhao Sun. 2021.

A deep learning method for route and time prediction in food delivery service. Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery & Data Mining . 2879–2889.

Gemmell, Katharine. 2021. Deliveroo’s stock market debut is a flop. should you still buy? https://www.bloomberg.

com/news/articles/2021-03-31/.

Gupta, Ashutosh. 2022. What is a supply chain control tower - and what’s needed to deploy one? https://www.

gartner.com/en/articles/what-is-a-supply-chain-control-tower-and-what-s-

needed-to-deploy-one.

Hao, Jinghua. 2017. Real-time delivery order assignment policy: modeling and optimization. https://tech.meituan.

com/2017/10/11/o2o-intelligent-distribution.html.

Hasija, Sameer, Zuo-Jun Max Shen, Chung-Piaw Teo. 2020. Smart city operations: Modeling challenges and oppor-

tunities. Manufacturing & Service Operations Management 22(1) 203–213.

Hastie, Trevor, Robert Tibshirani, Jerome Friedman. 2009. The elements of statistical learning: data mining, inference,

and prediction. Springer Science & Business Media.

Electronic copy available at: https://ssrn.com/abstract=4612561



32

Hirschberg, C, A Rajko, T Schumacher, Wrulich M. 2016. The changing market for food deliv-

ery. https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/

the-changing-market-for-food-delivery.

Hu, Ming, Yun Zhou. 2022. Dynamic type matching. Manufacturing & Service Operations Management 24(1)

125–142.

Levi Sumagaysay. 2020. The pandemic has more than doubled food-delivery apps’ business. Now what? https:

//www.marketwatch.com/story/.

Li, Jun, Serguei Netessine. 2020. Higher market thickness reduces matching rate in online platforms: Evidence from

a quasiexperiment. Management Science 66(1) 271–289.

Liu, Meng, Erik Brynjolfsson, Jason Dowlatabadi. 2021a. Do digital platforms reduce moral hazard? the case of uber

and taxis. Management Science 67(8) 4665–4685.

Liu, Sheng, Long He, Zuo-Jun Max Shen. 2021b. On-time last-mile delivery: Order assignment with travel-time

predictors. Management Science 67(7) 4095–4119.

Liu, Tracy Xiao, Zhixi Wan, Chenyu Yang. 2019. The e�ciency of a dynamic decentralized two-sided matching

market. Available at SSRN 3339394 .

Manshadi, Vahideh, Scott Rodilitz, Daniela Saban, Akshaya Suresh. 2022. Online algorithms for matching platforms

with multi-channel tra�c. SSRN Electronic Journal doi:10.2139/ssrn.4036904. URL https://doi.org/10.

2139%2Fssrn.4036904.

Mao, Wenzheng, Liu Ming, Ying Rong, Christopher S Tang, Huan Zheng. 2019. Faster deliveries and smarter order

assignments for an on-demand meal delivery platform. Available at SSRN 3469015 .

Mao, Wenzheng, Liu Ming, Ying Rong, Christopher S Tang, Huan Zheng. 2022. On-demand meal delivery platforms:

Operational level data and research opportunities. Manufacturing & Service Operations Management 0(0).

McLaren, John. 2003. Trade and market thickness: e↵ects on organizations. Journal of the European Economic

Association 1(2-3) 328–336.

Meituan. 2021. Let more voices participate in the change, the meituan takeaway “order allocation” algorithm is

public (in chinese). https://mp.weixin.qq.com/s/qyegF_r_SPGnkEdZqkVjxA.

Meituan, Dianping. 2020. Annual report 2019. http://meituan.todayir.com/html/index.php.

Özkan, Erhun, Amy R Ward. 2020. Dynamic matching for real-time ride sharing. Stochastic Systems 10(1) 29–70.

Reyes, Damian, Alan Erera, Martin Savelsbergh, Sagar Sahasrabudhe, Ryan O’Neil. 2018. The meal delivery routing

problem. Optimization Online .

Roth, Alvin E. 2015. Who gets what–and why: the new economics of matchmaking and market design. Houghton

Mi✏in Harcourt.

Ryan, Waliany, Kang Lei, Murati Ernel, Amin Mohammad Shafkat. 2018. How trip inferences and machine learning

optimize delivery times on uber eats. https://www.uber.com/en-GB/blog/uber-eats-trip-optimization/.

Shaked, Moshe, George Shanthikumar. 1988. Stochastic convexity and its applications. Advances in Applied Proba-

bility 20 427–446.

Sun, Ping. 2019. Your order, their labor: An exploration of algorithms and laboring on food delivery platforms in

china. Chinese Journal of Communication 12(3) 308–323.

Tao, Jiawei, Hongyan Dai, Weiwei Chen, Hai Jiang. 2022. The value of personalized dispatch in o2o on-demand

delivery services. European Journal of Operational Research 0(0).

Topkis, Donald M. 1978. Minimizing a submodular function on a lattice. Operations Research 26(2) 305–321.

Ulmer, Marlin W, Barrett W Thomas, Ann Melissa Campbell, Nicholas Woyak. 2021. The restaurant meal delivery

problem: dynamic pickup and delivery with deadlines and random ready times. Transportation Science 55(1)

75–100.

Electronic copy available at: https://ssrn.com/abstract=4612561



33

Varma, Sushil Mahavir, Pornpawee Bumpensanti, Siva Theja Maguluri, He Wang. 2022. Dynamic pricing and match-

ing for two-sided queues. Operations Research 0(0).

Voccia, Stacy A, Ann Melissa Campbell, Barrett W Thomas. 2019. The same-day delivery problem for online

purchases. Transportation Science 53(1) 167–184.

Xie, Yaqi, Will Ma, Linwei Xin. 2022. The benefits of delay to online decision-making. Available at SSRN .

Yan, Chiwei, Helin Zhu, Nikita Korolko, Dawn Woodard. 2020. Dynamic pricing and matching in ride-hailing

platforms. Naval Research Logistics (NRL) 67(8) 705–724.

Zehtabian, Shohre, Christian Larsen, Sanne Wøhlk. 2022. Estimation of the arrival time of deliveries by occasional

drivers in a crowd-shipping setting. European Journal of Operational Research 0(0).

Electronic copy available at: https://ssrn.com/abstract=4612561



34

7. Appendix

7.1. Additional performance indicators

We analyze performance of our policies beyond total costs. In this appendix, we introduce additional

performance indicators. Traditionally, allocation policies focus on the expected drive-to-shop time per

order, which we define for a given policy ⌦ as

V ⌦
p = limt!1E 1

|It|
P

(i,j,tij)2⌦t
dij(tij). (15)

Obviously, small V ⌦
p indicates an assignment of drivers near the restaurants. In our paper, we also consider

the expected waiting-in-shop time per order that drivers wait at the restaurant,

V ⌦
w = limt!1E 1

|It|
P

(i,j,tij)2⌦t
(⌧i + ⇠i � tij � dij(tij))+, (16)

which allows us to define the expected total engagement time per order , from matching to final delivery,

V ⌦
e , as V ⌦

e = V ⌦
p +V ⌦

w + .

To analyze the service quality, we consider indicators such as expected delay per order,

V ⌦
d = limt!1E 1

|It|
P

(i,j,tij)2⌦t
(tij + dij(tij)� ⌧i � ⇠i)+ , (17)

and service level,

V ⌦
l =1� limt!1E 1

|It|
P

(i,j,tij)2⌦t
1 (tij + dij(tij)� ⌧i � ⇠i > 0) , (18)

where 1(·) is the indicator function. Low V ⌦
d and high V ⌦

l indicate a high service quality.

We use two di↵erent indicators to measure the e�ciency of driver allocation or usage:

Expected idle time per driver : V ⌦
q = lim

t!1
E 1
|It|

X

(i,j,tij)2⌦t

(tij � ⌧j), (19)

Expected number of engaged drivers : V ⌦
n = �o ·V ⌦

e , (20)

where V ⌦
q describes the expected waiting-to-be-matched time of a driver. Short V ⌦

q implies short waiting

for a driver to be assigned to an order, which is an important concern for participation of self-scheduled

drivers in platform scheduling (Cachon et al. 2017). V ⌦
n indicates the total number of drivers engaged on

average and relies on Little’s Law.

The matching decisions have a significant impact on the number of orders that a driver can complete,

ultimately a↵ecting their earning potential (Ryan et al. 2018). Finally, as a reflection of drivers’ social

welfare, we analyze the expected net-income per time unit of a driver, which we define as:

V ⌦
s =

ce·V ⌦
e �cg·v·(V ⌦

p + )

V ⌦
e +V ⌦

q
. (21)

V ⌦
s can be interpreted as the ratio of a driver’s total income ce ·V ⌦

e (where ce denotes the reward per

unit time) minus driving cost cg ·v · (V ⌦
p + ) (where cg is the cost per mileage, e.g., for gasoline, and v is

the average driving speed) to the work duration of a driver, V ⌦
e +V ⌦

q . Indicator V ⌦
s reflects the net-income

per time unit invested by a driver and is an important indication for the economic attractiveness of a

matching policy for drivers.

Electronic copy available at: https://ssrn.com/abstract=4612561



35

7.2. SMDP model formulation

We formally define our model with known FPT (see Section 3) as an SMDP by describing its elements.

State: Even though the arrival processes are continuous, we consider that decisions are only made

upon driver or order arrivals, driver abandonment, or edge expiration times. Hence, we can write Sn =

(xn,yn, en, t̃n) for the state that the planner observes at the time of the nth event time. The set xn =

{((⇠0i)n, li)} records information of all arrived but unmatched orders. Let (⇠0i)n = ⇠i+ ⌧i� t̃n represent the

‘remaining’ FPT of an open order i at the current time t̃n, and li the order’s restaurant location. Note

that we formulate the SMDP based on ‘remaining’ times, using the prime (0) to distinguish remaining

durations from absolute time epochs. (⇠0i)n can take negative value indicating that it already exceeds the

FPT but the order is still not matched. t̃n is the ‘time index’, i.e., the current time in the periodicity � of

the time-dependent driving times. The set yn = {lj} indicates the location of each active driver j (note

that we do not need to keep track of drivers’ abandonment times as these are not known to the planner

before the abandonment). Finally, the event indicator en 2 {0,1,2,3} indicates the current decision epoch

occurs when an order arrives (en = 0), a driver arrives (en = 1), a compatible edge expires (en = 2), or a

driver abandons (en =3). We denote the state space of all possible Sn by set S.

Actions and costs: If the planner decides to match an order i with a driver j, an = (i, j); otherwise,

no action is taken and an = ;. The action space is presented as A(Sn) and contains all feasible matchings

of orders and drivers. For a state S and action a, the immediate cost is given by C(Sn,an) = dij(t̃n) +

((⇠0i)n � dij(t̃n))++ c · (dij(t̃n)� (⇠0i)n)
+ if an = (i, j) and C(Sn,an) = 0 if an = ;.

State transitions: For any state transition, the remaining FPT values are updated with sojourn

time tsn by setting (⇠0i)n = (⇠0i)n�1 � tsn and time index t̃n is updated as t̃n = (t̃n�1 + tsn) mod �. If a

driver abandons (e = 3), the driver is removed from the set of active drivers, i.e., yn = yn�1 \ {lj}. If

the action an = (i, j) is selected, the planner will remove the corresponding elements respectively, i.e.

x
+
n = xn \{((⇠0i)n, li)} and y

+
n = yn \{lj}. At each transition, we can calculate the ‘remaining’ time to the

expiration of an order-driver pair (i, j), i.e., (tcij
0)n from state Sn, by (tcij

0)n = (⇠0i)n � dij((tcij
0)n + t̃n).

State transitions depend on the sojourn time and probabilities to transit from a stage Sn to a stage

Sn+1 if action an is taken. The transition process is not purely Markovian because the remaining edge

expiration times tcij
0 are known and deterministic, only the order and driver arrival times and driver

abandonment times are Markovian. Therefore, to describe the state transition behavior, we first need

to characterize the random variable sojourn time T s(Sn,an) (with realization tsn), which is distributed

according to cumulative distribution function

F (ts|S,a) =

8
>>><

>>>:

1�e�(�o+�d+�a|y|)ts

1�e
�(�o+�d+�a|y|)min

(i,j)
(tcij 0|tcij 0>0)

, ts <min
(i,j)

�
tcij

0|tcij 0 > 0
�
,

1, ts �min
(i,j)

�
tcij

0|tcij 0 > 0
�
,

(22)

Electronic copy available at: https://ssrn.com/abstract=4612561



36

where |y| is the number of unmatched drivers and min
(i,j)

�
tcij

0|tcij 0 > 0
�
is the minimum of the positive, feasible

‘remaining’ times to expiration of pairs (i, j) 2A(Sn). If there is no pair (i, j) with tcij
0 > 0, F (ts|S,a)

reduces to F (ts|S,a) = 1� e�(�o+�d+�a|y|)ts .

Based on the distributions of drivers and orders, and given that arrival times and locations are indepen-

dent, we can formulate the transition probabilities pSn,Sn+1(an|tsn+1) from the above elements, which we

omit for space considerations (details are available from the authors on request). The minimal expected

cost per order, W ⇤(S0), with initial state S0 given by

W ⇤(S0) = lim
ñ!1

min
a

E
"Pñ

n=1C(Sn,an)Pñ
n=1 1(en =0)

#
, (23)

where 1(·) is the indicator function. From the assumptions �d > �o and �a > 0 and the definition of

the SMDP follows that at least for a policy that immediately matches order-driver-pairs, the embed-

ded Markov chain of the SMDP is �-irreducible, positive Harris-recurrent, and, hence, has a stationary

distribution (Baxendale 2011).

7.3. Proofs

Proof of Proposition 1. If an edge is matched and it is not expired, according to the objective

function, the planner is always weakly better o↵ if she waits and matches them when the edge expires. If

there is no edge in the graph, it means there are only orders (or drivers) in the system. When the next

feasible driver (or order) arrives, it will establish a matching with an order either at a compatible edge

expiring or instantly, because the edge with the new arrival is already expired. Note that because of the

assumption t+ dij(t)< t0 + dij(t0) for any t < t0, any edge has only a single edge expiring time. ⌅
Proof of Proposition 2. Using the cost function in Equation (2), we have cost of matching the

single order with driver j with remaining food processing duration ⇠r (recall that we drop order index i

from the notation when considering the single-order-model) of dj + (⇠r � dj)+ + c · (dj � ⇠r)+. From the

above equation, we can make two observations: matching at the edge expiration time ⇠r = dj minimizes the

cost of matching driver j to the single order, and if we consider only edge expiration times for matching,

the best match among a given driver pool is the one with the shortest driving time dj .

From the further observation that the driver with the shortest driving time is also the one for which

the edge expires last, we can follow that it is never optimal to match a driver if one or more edges are

not yet expired, which finalizes the proof. ⌅
Proof of Theorem 1. Parts (a1) and (a2): This proof first establishes two key arguments of the

threshold structure of the optimal decision: First, we show that in the single-order-model the optimal

policy decides only at two di↵erent points in time: At driver arrivals it chooses the better between the

best existing driver and the incoming driver to ‘keep in the system’. At edge expiration, the system

Electronic copy available at: https://ssrn.com/abstract=4612561



37

decides between matching the expiring driver and waiting for a better driver. The resulting stochastic

process iterates over these times. Second, we show that for the decision at edge expiration, the future

cost only depends on the remaining FPT and not on any other elements of the state space such as prior

driver arrivals. This implies the threshold structure of the decisions. In the proof, we rely in parts on the

formulation of the problem as an SMDP, as presented in Appendix 7.2.

From Proposition 2, we know that it is never optimal to allocate a driver to the single order at times

other than the latest edge expiration time of existing drivers or the arrival of a new driver (if the edge is

already expired at the time of arrival and there are no other non-expired edges). Hence, we can simplify

the state Sn in our single-order system to Sn = (dj , ⇠r) with driver j being the one whose edge expires

last (the driver with the shortest travel time), and ⇠r being the remaining time until the food is prepared.

Please note that before the arrival of the first driver, the state element dj is naturally empty. In this case,

we set dj =+1.

Let us denote the expected minimum cost in state (dj , ⇠r) at arrival time of driver j0 (or at edge

expiration time of driver j, dj = ⇠r, in which case we set dj0 =+1) as W (dj , ⇠r|dj0). Furthermore, we use

notation W+(dj , ⇠r) to denote the expected minimum future cost right after a decision which results in

the state (dj , ⇠r). We can then construct function W (dj , ⇠r|dj0) from the following complete list of possible

events.

(a) No arrival, but edge of existing driver j expires (dj0 =1^ dj = ⇠r). In this case, it is optimal to

match or wait, i.e., W (dj , ⇠r|dj0) =min
�
dj ,W+(dj , ⇠r)

 
=min

n
dj + c (dj � ⇠r)+ ,W+(dj , ⇠r)

o
.

(b) Arrival of driver j0 with expired edge and edge of existing driver j expired (dj0 >

⇠r ^ dj > ⇠r). In this case, it is also optimal to match or wait, i.e., W (dj , ⇠r|dj0) =

min
n
min{dj + c (dj � ⇠r)+ , dj0 + c (dj0 � ⇠r)+},W+(min{dj , dj0}, ⇠r)

o
.

(c) Arrival of driver j0 with expired edge and edge of existing driver j not expired (dj0 > ⇠r ^ dj <

⇠r). In this case, it is optimal to continue waiting with the non-expired edge, i.e., W (dj , ⇠r|dj0) =

W+(dj , ⇠r) =W+(min{dj , dj0}, ⇠r).

(d) Arrival of driver j0 with non-expired edge and edge of existing driver j expired (dj0 < ⇠r ^ dj > ⇠r).

In this case, it is optimal to wait with new driver and its non-expired edge, i.e., W (dj , ⇠r|dj0) =

W+(dj0 , ⇠r) =W+(min{dj , dj0}, ⇠r).

(e) Arrival of driver j0 with non-expired edge and edge of existing driver j not expired (dj0 < ⇠r ^

dj < ⇠r). In this case, it is optimal to wait, with the edge that expires last, i.e., W (dj , ⇠r|dj0) =

W+(min{dj , dj0}, ⇠r).

The expected future cost right after a decision and in state (dj , ⇠r), W+(dj , ⇠r), is given by taking the

expectation over the next arrival:

Electronic copy available at: https://ssrn.com/abstract=4612561



38

W+(dj , ⇠
r) =Edj0Et̂j0

8
>><

>>:

W (dj , ⇠r � dj |1), if (⇠r � dj)2
⇥
0, t̂j0

⇤
,

W (dj , ⇠r � t̂j0 |dj0), else,

(24)

where j0 is the next driver arrival with driving time dj0 and exponential inter-arrival time t̂j0 . Notably,

the case (⇠r�dj)2
⇥
0, t̂j0

⇤
represents the event that the edge of driver j expires before the arrival of driver

j0. Specifically, the equation can be enriched as

W+(dj , ⇠
r) =Edj0Et̂j0

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

min
�
dj ,W+(1, ⇠r � dj)

 
, if (⇠r � dj)2

⇥
0, t̂j0

⇤
,

W+(dj , ⇠r � t̂j0), if (⇠r � dj)> t̂j0 and dj0 > (⇠r � t̂j0),

W+(min{dj , dj0}, ⇠r � t̂j0), if (⇠r � dj)> t̂j0 and dj0  (⇠r � t̂j0),

min
n
min{dj + c [dj � ⇠r]+ , dj0 + c [dj0 � ⇠r]+},W+(1, ⇠r � t̂j0)

 
,

if (⇠r � dj)< 0 and dj0 > (⇠r � t̂j0),

W+(dj0 , ⇠r � t̂j0), if (⇠r � dj)< 0 and dj0  (⇠r � t̂j0),

(25)

Please note that, without loss of generality, we abused notation by writing the expectation Edj0 for the

expected travel time resulting from driver location lj0 .

The decision between matching the current driver and waiting for the future only occurs in

case (a), and in case (b) if dj0 < dj . For these two cases, the decision equation is the same,

min
n
dj + c [dj � ⇠r]+ ,W+(dj , ⇠r)

o
, with j replaced by j0 in the second case.

To show that the threshold with which drivers are matched depends only on the remaining FPT,

we have to show that future cost are independent of prior driver arrivals. In order to show this result,

we need the result that the optimal policy will never match the single order with an existing driver

with an expired edge. Recall that an existing driver can only have an expired edge if it has not been

matched at the time the edge expired (or the driver arrival time, whatever was later), i.e., if condition

dj +c (dj � ⇠r)+ >W+(dj , ⇠r) was true at time dj = ⇠r (or the arrival time if the edge was already expired

at arrival, dj > ⇠r). From this time onwards, term dj + c (dj � ⇠r)+ = (c + 1)dj � c⇠r is increasing at

rate c in time. Term W+(dj , ⇠r), on the other hand, can increase at most at rate c in time because of

the following argumentation: For any sample path realization, the total costs W+(dj , ⇠r) contain only a

single cost term for a single match, given by structure dj0 + c (dj0 � ⇠r)+ of some future driver j0. Thus,

the maximum rate by which W+(dj , ⇠r) can decrease in ⇠r, i.e., increase in time, is c, and condition

dj + c (dj � ⇠r)+ >W+(dj , ⇠r) will always stay true. Hence, it is never optimal to match the order with

this driver after the edge expiration time. From the fact that the optimal policy never matches an existing

driver with an expired edge, we conclude that W+(dj , ⇠r), at the time an edge expires or a driver with an

Electronic copy available at: https://ssrn.com/abstract=4612561



39

expired edge arrives, is independent of dj , i.e.,W+(d1, ⇠r) =W+(d2, ⇠r) for any two values d1 > ⇠r, d2 > ⇠r.

Given this result, we can write without loss of generality W+(dj , ⇠r) =W+(1, ⇠r) for any dj > ⇠r.

The decision given by expression min
n
dj + c [dj � ⇠r]+ ,W+(1, ⇠r)

o
has a threshold structure because

the first term is obviously increasing in dj while the second term is independent of dj , such that both

terms can become equal at at most a single point/interval. From the above argument also follows that

case (b) in which dj <dj0 will never have a match as optimal decision.

Following this structure, and because we focus on expiring/expired edges for which dj � ⇠r, the threshold

can be derived from the following equation dj + c(dj � ⇠r)
!
=W+(1, ⇠r). Equation (6) and the result of

the theorem then follow directly as a consequence by setting

d̃(⇠r) =
W+(1, ⇠r)+ c⇠r

c+1
. (26)

Part (b): From Equation (26) we observe that threshold function d̃(⇠r) is proportional to the sum of

W+(1, ⇠r) and c⇠r. In the proof of part (a) of this theorem, we have shown thatW+(1, ⇠r) is independent

of dj and that it cannot decrease in ⇠r at a rate greater than c. Term c⇠r is obviously increasing in ⇠r

at rate c. Hence, threshold function d̃(⇠r) as being proportional to the sum of W+(1, ⇠r) and c⇠r is

non-decreasing in ⇠r. ⌅
Proof of Proposition 3. The pdf of a hypoexponential distribution is f̃k(x) =

Pk̃
j=k `j(0)µje�µjx,

where `j(0) is the Lagrange basis polynomial associated with point µj . It follows directly from Equation

(2) that total costs are equivalent to

fW⌦k,d̆(·)
(k) = d+

Z ⇠�d

0
(⇠�x� d) · f̃k(x)dx+ c ·

Z 1

⇠�d

(x+ d� ⇠) · f̃k(x)dx

= d+

Z +1

0
(⇠�x� d) · f̃k(x)dx+(1+ c)

Z 1

⇠�d

(x+ d� ⇠) · f̃k(x)dx

= d+

Z +1

0
(⇠� d) · f̃k(x)dx�

Z +1

0
xf̃k(x)dx+(1+ c)

Z 1

⇠�d

(x+ d� ⇠) · f̃k(x)dx

= ⇠�
k̃X

j=k

µ�1
j +(1+ c)p(k) (27)

with

p(k) =

Z 1

⇠�d

(x+ d� ⇠) ·
k̃X

j=k

µje
�xµj

0

@
k̃Y

i=k,i 6=j

µi

µi �µj

1

Adx=
k̃X

j=k

e�µj(⇠�d)

µj

0

@
k̃Y

i=k,i 6=j

µi

µi �µj

1

A . (28)

Next, we transform expression p(k) to allow us to evaluate it easily for varying values of k. We denote

each element of the sum (on the right-hand side) in p(k) as �j . Then, setting j = k+m(0m k̃� k),

we obtain

�j = �k+m =
e�µk+m(⇠�d)

µk+m

0

@
k̃Y

i=k,i 6=k+m

µi

µi �µk+m

1

A . (29)

Electronic copy available at: https://ssrn.com/abstract=4612561



40

Given that µj = j✓, the ratio of �k+m and �k+m+1 can be written as

�k+m

�k+m+1
=

e�µk+m(⇠�d)

e�µk+m+1(⇠�d)
· µk+m+1

µk+m
·

k̃Q
i=k,i 6=k+m

µi

µi�µk+m

k̃Q
i=k,i 6=k+m+1

µi

µi�µk+m+1

= (�1) · e✓(⇠�d)

✓
k+m+1
k+m

◆2
m+1

D� (k+m)
,

(30)

which enables us to get

�k

�k+m
=

�k

�k+1
· �k+1

�k+2
...
�k+m�2

�k+m�1
· �k+m�1

�k+m
= (�1)m · em✓(⇠�d)

⇣
1+

m
k

⌘2 m!(k̃� k�m)!

(k̃� k)!

= (�1)m · em✓(⇠�d)
⇣
1+

m
k

⌘2 1

(k̃�k
m )

, (31)

expressing elements �k+m as the product of �k and a simple coe�cient, finalizing the proof. ⌅
Proof of Proposition 4 Part a (Quasi-convexity): For given (d, k̃,✓), the random variable (RV)

X(k) is given as the sum of independent exponential RV and can by written as

X(k) =
k̃X

j=k

Xj ,

with Xj as an exponentially distributed RV with rate j✓. Note that X(k+1)�X(k) =�Xk, Xj > 0 for

any j, and Xj >st Xj+1 for any j (see also Shaked and Shanthikumar (1988)). Total costs can be written

as a function of random variable X(k) in the following way:

⇠�X(k)+ (1+ c)[X(k)� (⇠� d)]+. (32)

The n-step di↵erence function at point k of the above cost term, which we denote by �W (k,n), is given

by

�W (k,n)

= ⇠�X(k+n)+ (1+ c)[X(k+n)� (⇠� d)]+ �
�
⇠�X(k)+ (1+ c)[X(k)� (⇠� d)]+

�

= X(k)�X(k+n)+ (1+ c)
�
[X(k+n)� (⇠� d)]+ � [X(k)� (⇠� d)]+

�

=

 
n�1X

j=0

Xk+j

!
+(1+ c)

0

@
"
X(k)� (⇠� d)�

 
n�1X

j=0

Xk+j

!#+
� [X(k)� (⇠� d)]+

1

A

= Y (k,n)+ (1+ c)
�
[X(k)� (⇠� d)�Y (k,n)]+ � [X(k)� (⇠� d)]+

�
, (33)

where we set Y (k,n) =st

⇣Pn�1
j=0 Xk+j

⌘
for notational convenience. Note that �W (k,0) = 0 + (1 +

c)
�
[X(k)� (⇠� d)� 0]+ � [X(k)� (⇠� d)]+

�
=0 and that Y (k,n+1)>st Y (k,n) for all k and n. Function

�W (k,n) is stochastically convex in Y (k,n) because it is composed of the sum of a linear term and a

convex function [·]+.

Electronic copy available at: https://ssrn.com/abstract=4612561



41

Let us assume that total costs in Equation (32) stochastically (non-strictly) increase at some k0, i.e.,

that �W (k0,1) =�W (k0,1)��W (k0,0)�st 0. Then, because function �W (k,n) is stochastically convex

in Y (k,n) =
⇣Pn�1

j=0 Xk+j

⌘
and this term is stochastically increasing in n, it holds that �W (k0, n)�st 0

for all n� 1, implying that the total costs function in Equation (32) for no k > k0 drops below its value

at k0. The immediate consequence is that it is non-decreasing after its first increase, which also holds for

the expectation and establishes quasi-convexity of fW⌦k,d̆(·)
in k.

Part b (Submodularity): For given (d, k̃,✓), as shown in the proof of part (a) of Proposition 4, term

E[X(k)� (⇠ � d)]+ is non-increasing in k. Hence, for the di↵erence function holds (1 + c)E[X(k + 1)�

(⇠ � d)]+ � (1+ c)E[X(k)� (⇠ � d)]+  0. Taking the derivative of the di↵erence function in c shows the

submodularity of the total costs in k and c. Moreover, given that set k 2 [1, k̃] is a sublattice and if we

further assume that the domain of c is a poset, Theorem 6.1 in Topkis (1978) applies: Since fW⌦k,d̆(·)
is

submodular in k and c, the optimal k⇤ 2 ⇤ is ascending in parameter c. ⌅

7.4. Model and policy extensions

In this appendix, we study endogenous FPT, driver-type dependent compensation schemes, variable driver

speed, clustering, driver abandonment, and a socially friendly adaptation of the BKT policy that limits

the idle times of drivers.

7.4.1. Endogenous FPT ⇠i: In practice, the congestion level of a restaurant may a↵ect food

processing times and customer behavior. In the main model that we describe in Section 3, we assume

that neither the distribution of the FPT nor the arrival rate of orders to a certain restaurant are a↵ected

endogenously by the system state. In this subsection, we extended our model to allow the FPT and the

arrival rate of orders to be a↵ected by the congestion level of the restaurant. If congestion is high, food

processing may take longer. In addition, the customer who observes the congestion may cancel the order

and search for alternatives. Therefore, we integrate the real-time congestion level of a restaurant in the

endogenous FPT prediction. To this end, we modify the simulation procedure with the following changes:

We introduce a state variable ‘number of orders waiting-to-be-fetched’ for each restaurant to indicate its

real time congestion level, that we classify as low, medium or high for simplicity. For example, at 15 orders

or above (3 orders or below), we define the congestion level as high (low). Then, we adjust the arrival

rate of the restaurant and/or its FPT distribution to this congestion level. We implement this situation

in the simulation by advancing the next order arrival for this restaurant by 5 minutes if the congestion

is low, and by postponing it by 5 minutes if the congestion is high. In the same sense, we also stretch

(advance) the FPT by 10% of its predicted value if the congestion of the restaurant is high (low).

The left-hand side of Figure 10 shows the costs of the BKT policy for di↵erent values of k and bu↵er level

under the modified arrival rate, and the right-hand side of Figure 10 indicates the costs of the BKT policy

Electronic copy available at: https://ssrn.com/abstract=4612561



42

for the case of modified FPT with d̆⇤ = 300. In both cases, we observe the same quasi-convex structure

that we observed in the original model. For the left-hand side, we obtain minimal cost W⌦k⇤,d̆⇤,P̂⇤
= 699

at k⇤ = 8 and P̂ ⇤ = 0.6, which is slightly higher (+10.3%) than the costs in the original model. For the

right-hand side, we obtain minimal cost W⌦k⇤,d̆⇤,P̂⇤
=684 at k⇤ =5 and P̂ ⇤ =0.4, which is +7.9% higher

than the costs of the original model. It is intuitive that costs increase in these scenarios, as the congestion

level introduces additional uncertainty to the model.

Figure 10 Total costs under BKT policy as a function of thickening and protection levels for endogenously

a↵ected arrival rate (left-hand side) and FPT (right-hand side).

7.4.2. Driver-type dependent compensation schemes: In practice, the unit fetch cost may

depend on the type of driver (inhouse or crowdsourced) and the compensation scheme a↵ect the matching

decisions (which type to match). In this subsection, we extend the (B)KT policy to consider driver-type

dependent compensation. To this end, we introduce two separate driver-reward functions rin(x) and

rcs(x) for inhouse and crowdsourced drivers, respectively, with x = dij(tij) + (⌧i + ⇠i � tij � dij(tij))+.

Reward function rin(·) includes a fixed commission and a variable payment for each order; rcs(·) only has

a variable compensation for completed orders. Specifically, we set the fixed commission to 300, which is

around 300/3600 ·20= 1.67 yuan per order. We assume that the unit variable cost paid to a crowdsourced

driver is +50% higher than that of an inhouse driver. We obtain rin(x) = 300+x and rcs(x) = 1.5 ·x.

We take the cost di↵erences between both driver types into account in decision making by applying

a transformation of the edge-expiration-timing of crowdsourced drivers. Given the reward functions,

we redefine the edge expiration time of a crowdsourced driver to the time when the matching of an

inhouse driver leads to the same cost as the matching of the crowdsourced driver at the edge expiration

time, ṫj , i.e, rin(ṫj) = rcs(tj). We then adapt the BKT policy to take into account the re-defined edge

times. For example, with our numbers, the redefined edge expiration time of a crowdsourced driver

Electronic copy available at: https://ssrn.com/abstract=4612561



43

is ṫj = r�1
in [rcs(tj)] = 1.5tj � 300 if tj � 600 (which ensures rin(600) = rcs(600)) otherwise, ṫj = tj . The

crowdsourced driver will then be checked whether to match at ṫj time units before the end of the food

processing. If matched, the order and the crowdsourced driver exit the system together. If not matched,

the driver becomes inactive until tj time units before the FPT, after which, she can be used for delayed

matching and incur penalty cost. Note that even if matched at tj , the order is also delayed but with zero

penalty cost upon this moment.

Next, we test the adapted BKT policy for di↵erent values of variable commission of crowdsourced

drivers and di↵erent values of fixed commission for inhouse drivers. In Table 6, we see that total costs

increase in the variable commission of crowdsourced drivers. We also find that the share of matched

inhouse drivers slightly increases, as the matching of crowdsourced drivers becomes more expensive.

Table 6 Results of adapted BKT policy W⌦k⇤,d̆⇤,P̂⇤
by variable commission for crowdsourced drivers with

P̂ ⇤ = 0.4, d̆⇤ = 300.

Var. commission 1x 1.2x 1.4x 1.6x 1.8x 2.0x

Total costs W⌦k⇤,d̆⇤,P̂⇤
904 944 982 1031 1066 1110

Share of inhouse drivers (%) 68.13 68.27 68.35 68.40 68.67 68.68

The results in Table 7 show that total costs also increase in the fixed commission for inhouse drivers.

This time, the share of matched inhouse drivers slightly decreases because of the increased cost for this

driver type.

Table 7 Results for adapted BKT policy W⌦k⇤,d̆⇤,P̂⇤
by fixed commission for inhouse drivers with

P̂ ⇤ = 0.4, d̆⇤ = 300.

Fixed commission 100 200 300 400 500 600

Total costs W⌦k⇤,d̆⇤,P̂⇤
765 836 904 972 1040 1108

Share of inhouse drivers (%) 68.50 68.13 68.13 68.13 68.13 68.13

7.4.3. Variable driver speed: Liu et al. (2021b) found that drivers may speed up to reach the

restaurant on time and avoid overtime penalties. Next, we study how such behavior would a↵ect our

results by modifying our model: With probability pvd, a delay event happens that threatens the timely

arrival of a driver at the restaurant. In the simulation, if an order is matched after the edge expired, it

is automatically treated as potentially delayed. In this case, the platform o↵ers a fixed compensation of

cup if the driver speeds up, and the driver arrives on time with probability pvt. In this case, the platform

pays cup. If the driver does not arrive on time, the compensation is not paid out.

Electronic copy available at: https://ssrn.com/abstract=4612561



44

We numerically analyze the results of this scenario. We set d̆⇤ = 300, pvd = 0.05, cup = 600 (⇠3 yuan),

and pvt = 0.5, and vary the probability values. The results are shown in Table 8. We find that the total

costs are positively increasing in the delay probability pvd, indicating the necessity for the planner to take

into account potential delay events. We also find that total costs are decreasing in pvt, indicating that less

reliability leads to higher costs. We conclude that incentives to motivate drivers to speed up may reduce

overtime penalties.

Table 8 Results for BKT policy W⌦k⇤,d̆⇤,P̂⇤
as a function of probability pvd and probability pvt with

P̂ ⇤ = 0.4, d̆⇤ = 300.

Delay probability pvd 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Total costs W⌦k⇤,d̆⇤,P̂⇤
638 642 645 650 654 657 659 662 664 668

On-time probability pvt 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Total costs W⌦k⇤,d̆⇤,P̂⇤
669 665 662 657 654 652 649 646 642 638

7.4.4. Regional clustering: In Section 3, we defined the neighborhood of orders as the set of all

available drivers. But Li and Netessine (2020) found that redundant market thickness may lead to search

friction and consequently to a low matching rate. This motivated us to test the e↵ect of our neighborhood

assumption by analyzing clustering.

To this end, we divide the selected service region into nc fixed clusters. Table 9 shows the results for

nc 2 {1,2,4,8} and d̆ = 300, where nc = 1 is the model that we studied in the main part of the paper.

We report the percentage gap against this model, W⌦k⇤,d̆,P̂⇤
(nc =2)�W⌦k⇤,d̆,P̂⇤

(nc =1))/W⌦k⇤,d̆,P̂⇤
(nc =

1)⇥ 100. The tests results indicate that clustering of a region may be beneficial, particular respecting to

certain performance measurements. For example, for nc =2, both the expected delay per order V d
⌦ (-5%)

and overall service level (+5%) have been improved, which might be due to reduced search friction, as

discussed above. Moreover, if we continue to divide the region into more clusters (nc = 4 and nc = 8),

the total costs increase because the average delay time V w
⌦ is seriously increased compared to the case

nc = 2. This reveals that, by further dividing the region into more clusters, the clustering restricts the

availability of drivers and leads to a thin marketplace.

Intuitively, each subregion may have di↵erent optimal parameters for the (B)KT policy. We show that

for case nc = 4 in Figure 11, the quasi-convex structure of the total costs that we showed in Subsection

4.3 for the simplified model can also be observed for each subregion, but the optimal values of k⇤ and

P̂ ⇤ di↵er between subregions (e.g., given d̆= 300, k⇤ = 4 and P̂ ⇤ = 0.3 for subregion 1 while k⇤ = 2 and

P̂ ⇤ =0.2 for subregion 4).

Our analysis shows that clustering may lead to certain benefits (in terms of service level, i.e., matching

rate) and optimal partitioning of clusters (e.g., Carlsson et al. 2021) remains an important research

problem for on-time last-mile delivery.

Electronic copy available at: https://ssrn.com/abstract=4612561



45

Table 9 Percentage gap of total costs for nc 2 {1,2,4,8} clusters.

Total Costs Drive-to-Shop Delay Service Level Engagement Time Engaged Drivers Waiting Time Idle Time Net-income

Policies W⌦k⇤,d̆,P̂⇤
V p
⌦ V d

⌦ V l
⌦ (%) V e

⌦ V n
⌦ V w

⌦ V q
⌦ V s

⌦

nc =1 634 110 39 64.42 1201 92 291 1522 8.7

nc =2 662 118 37 68.90 1242 95 324 1883 8.2

nc =4 735 112 58 62.68 1188 91 277 2661 6.3

nc =8 762 127 59 62.42 1208 93 281 1473 10.8

All time values in seconds.

Figure 11 Total costs under BKT policy as a function of thickening and protection levels under nc = 4 subregions.

7.4.5. Socially friendly BKT policy: The results of Section 5 indicate that the (B)KT policy

e↵ectively reduces the platform’s cost by reducing the drivers total engagement time. However, the objec-

tives of platform and of drivers are conflicting, and this e↵ect leads to a decrease in expected net-income

of the drivers, because of the longer (non-paid) idle time of drivers. In this subsection, we therefore pro-

pose a socially friendly adaptation of the (B)KT policy, by limiting the length of idle times for drivers.

Electronic copy available at: https://ssrn.com/abstract=4612561



46

If a driver exceeds a threshold y of idle time, it receives a compensation cq and leaves the platform (e.g.,

transfers to another platform or exits for a break) without matching.

We perform a numerical experiment to study the impact of this adaptation of the BKT policy. We set

the threshold y 2 {30,45,60,75,90,120,1} minutes (the last case corresponds to the model in the main

part of the paper) and the compensation to cq = 900 · y/60 (5 yuan per hour). Figure 12 shows total

costs of the platform and driver net income as a function of y. Both, total costs as well as driver income,

decrease with greater y, indicating the inherent conflict between the interests of the platform and those

of the drivers (see also Meituan 2021). The platform has to give up on part of its profit to maintain a

higher driver income. Our modified BKT policy allows the platform to reduce the burden of overly long

idle times of drivers and, by appropriately setting threshold y, to find a balance for W⌦k⇤,d̆⇤,P̂⇤
and V ⌦

s

that corresponds to its driver availability and company values.

30 45 60 75 90 120 180 240 300 360
700

720

740

760

780

800

820

840

T
o

ta
l c

o
st

s

9

9.5

10

10.5

11

11.5

12

12.5

13

E
xp

e
ct

e
d

 n
e

t-
in

co
m

e
 (

yu
a

n
)

Figure 12 Platform’s total costs and driver’s expected net-income as function of threshold y with P̂ ⇤ = 0.4, d̆⇤ =

300.

7.4.6. Abandonment rate of drivers: The assumption regarding driver abandonment is crucial

for ensuring the long-term stability of the matching system. However, the abandonment rate, �a (i.e., the

number of drivers abandoning per hour), also impacts the availability of circulating drivers within the

system, consequently a↵ecting both the driving time and total costs. We perform additional numerical

tests to further investigate the influence of this parameter on the results.

In Table 10 we show the total costs per order and the average drive-to-shop time under di↵erent

value of abandonment rate �a. A discernible trend becomes evident: as �a increases, both total costs,

W⌦k⇤,d̆⇤,P̂⇤
, and drive-to-shop time, V p

⌦ , increase. Total costs increase significantly between �a = 0 and

Electronic copy available at: https://ssrn.com/abstract=4612561



47

Table 10 Results for BKT policy W⌦k⇤,d̆⇤,P̂⇤
as a function of abandonment rate �a.

Abandonment rate �a 0 1/20 1/10 1/5 1/2 1 5 10 20

Total costs W⌦k⇤,d̆⇤,P̂⇤
634 634 634 630 647 691 913 1017 1153

Drive-to-shop V p
⌦ 110 110 110 106 108 116 154 191 211

�a =20, starting at 634 and ending at 1153 (+82%). This trend suggests that higher abandonment rates

lead to higher costs (under the BKT policy), which is a consequence of the reduced availability of eligible

drivers in the system. The evolution of the drive-to-shop time V p
⌦ appears to be more consistent than

that of the total costs as �a grows.

7.5. Solving the Example 1 with KT policy

In this subsection, we apply the KT policy (k = 1 and d̆(·) = 2) to Example 1 (see Section 4). In Figure

13, on the left-hand side, we observe that at t=1, the connection between Driver A and Order 1 is about

to expire. However, with the arrival of Driver B, we know that there are two compatible drivers for Order

1. Consequently, we do not match Driver A at this moment. At time t=2, Driver B’s availability expires,

marking the last compatible driver for Order 1. Consequently, we match Order 1 with Driver 1 at this

time. Simultaneously, Order 2 enters the system at time t= 2. At t= 4, the connection between Driver

A and Order 2 is about to expire, leading us to match both. In this scenario, Driver B and Order 1 have

exited the system, and we represent this in the right-hand side of Figure 13 (shadowed area). We conclude

that the KT policy takes the same decisions as the optimal policy presented in Figure 3.

Figure 13 Illustration of the KT policy applied to Example 1.

Electronic copy available at: https://ssrn.com/abstract=4612561


