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Problem definition: “Long tail” products with intermittent demand often tie up valuable warehouse

space and capital investment for many companies. Furthermore, the paucity of demand data poses additional

challenges for model estimation and performance evaluation. Traditional inventory solutions are not designed

for products with intermittent demand. In this paper, we propose a new framework to optimize the choice

of “replenishment timing” and “replenishment quantity” for managing the inventory metrics of long tail

products, when evaluated over a finite horizon.

Methodology/results: Our analysis is motivated by a recent interesting observation that the gambler’s

fallacy phenomenon actually holds in a finite number of coin tosses. We use this phenomenon to analyze

the inventory problem for intermittent demand to demonstrate that classical inventory models using KPIs

such as fill rate, average cost per cycle, or average cost per unit, etc., must necessarily bias the underlying

demand distribution to account for the finite horizon effect. We provide the exact closed-form expressions

of the biased distribution to account for this effect in performance evaluation. The results show that the

choice of replenishment timing and replenishment quantity is essential to superior performance on several

key inventory metrics.

Managerial implications: For long tail products, the belief that it is less likely for another demand

to arrive shortly after a preceding one (the gambler’s fallacy), turns out to be true when performance

is tabulated over a finite horizon, even if demands across time are independent. So it pays to delay the

replenishment of depleted stocks to save on holding cost and warehouse space. Managers can optimize the

replenishment timing, besides choosing the replenishment quantity, to optimize the performance metrics of

several classes of inventory problems. This is especially useful for companies managing a large number of

long tail products.

Key words : intermittent demand, the gambler’s fallacy, long tail products, staggered base stock policy,

finite horizon

1. Introduction

Long tail, or slow-moving products, are inventory items with a low turnover that may stagnate

business cash flow. However, as the rate of new product introduction in various industries has

rapidly accelerated, this proliferation can also result in fewer sales per item, and higher demand

variability. For example, Cornacchia and Shamir (2018) examine a large automotive aftermarket

parts business wherein 98% of the products, contributing 62% of the sales revenue, are intermittent

or long tail in nature. The authors also reveal that intermittent demand can account for 86% of the

1



2 Authors’ names blinded for peer review

SKUs and nearly half of the revenue, even for a branded, fast-moving consumer goods company.

Similarly, a recent report by ToolsGroup1 confirmed that long tail products are becoming more

prominent and significant in many industries, with the long tail affecting a substantial portion of

revenue (see Table 1 for the impact of long tail products in selected companies, where the columns

“SKU’s in Tail” and “Revenue in Tail” report the proportions of long tail products and their

corresponding revenue contributions, respectively).

Table 1 Impact of Long Tail in Selected Companies Featured in the Report by ToolsGroup

Industry Total SKU’s % SKU’s in Tail Revenue in Tail
Food and Beverage 3,245 44% 36%

Consumer Packaged Goods #1 6,700 74% 52%
Electronics 720 85% 44%

Consumer Packaged Goods #2 9,800 86% 46%
Automotive Aftermarkets Parts #1 5,627 92% 28%

Specialty retailers 7300 96% 71%
Automotive Aftermarkets Parts #2 18,200 98% 62%

The intermittent demand for slow-moving items is especially notorious in the spare parts indus-

try. This is particularly evident in the aviation sector where spare parts are characterized by low

demand but high value. In response to this challenge, leading suppliers like AAR Corp, AJW

Aviation, and Boeing Distribution (formerly Aviall) have developed new business models to help

airlines to grapple with their large capital investments in spare parts inventory through innovative

spare parts delivery services. They offer repair management services to airlines, allowing them to

access parts when needed, and reducing the cost of maintaining inventory. Consequently, ensuring

the proper balance of inventory to meet customer demand while avoiding excessive investment in

inventory is critical to operational excellence.

One of the performance metrics in inventory management is the fill rate, which is defined as the

fraction of demand that can be met through immediate stock availability, without backorders or

lost sales. Through performance contracts with customers or internal review, an inventory manager

may be held accountable for meeting a target fill rate measured over a finite review horizon, e.g.,

monthly, quarterly, or yearly. The literature (cf. Thomas (2005)) often set inventory levels according

to a constant base stock policy to achieve a target fill rate, assuming that the demand is stationary

over an infinite horizon. However, this approach fails to acknowledge the gap between the fill rate

measured in an infinite horizon and that measured in a finite horizon. Chen et al. (2003) note that

the expected fill rate over a finite horizon is greater than or equal to the infinite horizon fill rate,

1 http://www.toolsgroup.com/images/wp-mastering-intermittent-demand.pdf

http://www.toolsgroup.com/images/wp-mastering-intermittent-demand.pdf
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which further implies that a short review horizon can benefit the inventory manager as pointed

out in Thomas (2005).

Our paper provides an alternative perspective of the finite horizon effect on inventory manage-

ment, motivated by the recent realization that the so-called Gambler’s Fallacy, a belief that “if

a particular event occurs more frequently than normal during the past, it is less likely to hap-

pen in the future (or vice versa)”2, actually holds for events tabulated over a finite horizon. This

observation has led to the re-examination of several empirical studies on the hot-hand versus the

gambler’s fallacy debate in contexts such as basketball, casino betting, and others. We refer the

readers to Miller and Sanjuro (2018) for a thorough discussion on the implications of this finding

in the economics literature.

We examine the implications of this phenomenon for long tail products, when demand epochs can

be few and far between (e.g., demand for spares). Since the likelihood of having another demand

occurring shortly after the preceding one is much lower due to the gambler’s fallacy effect, should

managers replenish the stock immediately after a demand epoch, or risk having an empty shelf for

a short period of time following a demand epoch? This is tantamount to the claim that the safest

time to fly is the day after a major plane crash, or the belief that “I Already Crashed Once, So

Now I’m Safe”.3

For several classes of inventory problems, particularly those with performance metrics that are

evaluated over a finite horizon, we show that it is essential to optimize both replenishment timing

and quantity to effectively leverage the gambler’s fallacy effect. For instance, different from the

constant base stock policy focused by Thomas (2005), we find that a staggered base stock (SBS)

policy, which gradually increases the inventory level by delaying replenishment orders over multiple

phases, can further improve the fill rate over a finite horizon even if the arising demands are

independent and identically distributed (i.i.d) across time periods. At the same time, the SBS

policy requires less warehouse storage space to hold the inventory, which may lead to a significant

reduction in warehouse space if the policy is applied to the range of slow-moving items in a company

(cf. Table 1).

The potential benefits of SBS are not limited to the metric on fill rate. Our analysis also shows

that the staggered policy is beneficial for many other inventory metrics evaluated over a finite

horizon. These metrics include average cost per cycle (the average cost during a cycle between two

consecutive events) and EBITDA margin (the Earnings Before Interest, Tax, Depreciation, and

Amortization percentage of total revenue).

2 See https://en.wikipedia.org/wiki/Gambler27s_fallacy

3 https://www.psychologytoday.com/sg/blog/good-thinking/201305/i-already-crashed-once-so-now-i-m-safe

https://en.wikipedia.org/wiki/Gambler 27s_fallacy
https://www.psychologytoday.com/sg/blog/good-thinking/201305/i-already-crashed-once-so-now-i-m-safe
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1.1. The Finite Horizon Effect: The Gambler’s Fallacy in Intermittent Demand

In its most basic form, intermittent demand prediction is tantamount to predicting the outcome in

a sequence of independent coin tosses, with “H” (head) indicating a demand epoch, and “T” (tail)

otherwise. While it is natural to believe that what happens in the next coin toss does not depend

on the outcome of previous tosses, most people exhibit a cognitive bias known as the Gambler’s

Fallacy, believing that the next coin toss is unlikely to be “H” if it follows a streak of successive

“H”s. In operations management, this fallacy assumes that another order (demand) for a long tail

product arriving immediately after one has been received is less likely, even when the order arrival

process is stationary and independent across time. While this is often couched as a mistaken belief

or fallacy, Miller and Sanjuro (2018) prove that this phenomenon actually holds for independent

Bernoulli data observed over a finite horizon!

We use a coin-flipping example to illustrate this phenomenon. Suppose we start with an initial

state of “H” and proceed to flip a coin three more times. Our goal is to determine the proportion of

the outcomes “HH” and “HT” in the experiment. Given the assumption of a fair coin, our intuition

may suggest that we should see the same proportion of “HH” and “HT” on average, i.e., chances

of seeing another “H” immediately after an “H” in the experiment should be 1/2. Surprisingly, for

a fair coin, the expected proportion of “H” after another “H” turns out to be smaller than 1/2!

Table 2 The Gambler’s Fallacy in 3-flip Experiments

Initial State 3-flip Sequence Proportion of “H”s after an “H” in the Sequence
H TTT 0/1 = 0
H TTH 0/1 = 0
H THT 0/2 = 0
H HTT 1/2
H THH 1/2
H HTH 1/2
H HHT 2/3
H HHH 3/3 = 1

Average 1
8
(0+0+0+1/2 +1/2 + 1/2 + 2/3 + 1) = 19/48

Table 2 summarizes the possible outcomes in the 3-flip experiment4. Note that each outcome

has an equal weight of 1/8, and the expected proportion of an “H” following another “H” is only

19/48! Thus, we are more likely to see a “T” following an “H”, which coincides with the gambler’s

fallacy. The intuition behind this finite horizon effect is the fact that the expectation is weighted

by the equal probability of each sequence rather than the proportion of “H” in that sequence.

4 Note that Miller and Sanjuro (2018) did not assume an initial state in their analysis, but we have opted for this
variant to facilitate the analysis in the inventory management context.
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More specifically, in the case of n independent coin flips with a success probability p ∈ (0,1), if

p̂ denotes the proportion of “H” that immediately follows an “H” observed in a n-flip experiment,

then p̂ is a random variable where its expectation E[p̂] will be presented in Section 3.2. In Figure

1, we show the gap between p and E[p̂], measured by (p−E[p̂])/p, for different finite horizon n.

The gambler’s fallacy effect is notably pronounced for small values of p (i.e., slow-moving product)

and moderate values of n. For instance, if the intermittent demand has an arrival probability of

p= 0.1 and we estimate the arrival probability based on n= 52 weekly observations in a year, the

estimation error induced by the finite horizon effect can be as large as 14.27%.
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Figure 1 Estimation error (in %) from the gambler’s fallacy for different values of p and n

Given the gap between p and the expected value of p̂, Miller and Sanjuro (2018) assert that

empirical work can be vulnerable to such bias, and the results in many empirical works may have

to be reversed if the bias in the estimation has been corrected.

1.2. The Finite Horizon Effect in Fill Rate Performance

We use a simple inventory problem with stationary and independent demand to illustrate the

subtlety of the fill rate performance measurement over a finite horizon. Suppose the intermittent

demand is of unit size with an arrival probability of p= 0.5, with “1” indicating a unit demand

arrival, “0” otherwise. The unfulfilled demand can be satisfied through emergency replenishment

without incurring any additional shortage costs, however, the fill rate performance will be penalized.

We compare the following inventory policies over a finite horizon with n = 3 periods with unit

inventory holding cost of h per unit time:

• Policy A: A constant base stock policy with the order-up-to level of 3/7.
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• Policy B: Instead of replenishing immediately after a demand epoch, this is a “delay ordering”

policy where the replenishment is postponed for one period after a demand epoch, with an order-

up-to level of 1.

Considering all possible demand arrival paths after an arrival (i.e., the initial state of “1”), both

policies A and B achieve the same expected fill rate of 1/2, as shown in Table 3. More impor-

tantly, by delaying the replenishment order, policy B holds less inventory on average, resulting in

a net saving of 1/7h. This is a reduction of more than 20% of policy A’s inventory cost without

compromising on the fill rate performance over a finite horizon of 3 periods.

Table 3 Fill Rate and Cost Comparison of Policy A and Policy B

Initial State Demand Path Probability Fill Rate (A) Fill Rate (B) Cost (A) Cost (B)
1 000 1/8 1 1 9/7h 2h
1 001 1/8 3/7 1 6/7h h
1 010 1/8 3/7 1 6/7h 0
1 100 1/8 3/7 0 6/7h h
1 011 1/8 3/7 1/2 3/7h 0
1 101 1/8 3/7 1/2 3/7h 0
1 110 1/8 3/7 0 3/7h 0
1 111 1/8 3/7 0 0 0

Average 1/2 1/2 9/14h 1/2h

Note: when there is no demand (e.g., path “000”), we define the fill rate of any policy as 1.

Remark 1. Notice that demands are {0,1}, but the base stock level for policy A is 3/7. If the

inventory must be integral, we can interpret this as a randomized policy, with a probability of 3/7

choosing a base stock level of 1, and 0 otherwise.

1.3. Main Contributions

We summarize the main contributions of our paper.

• We extend the analysis of the gambler’s fallacy phenomenon to inventory management in

operations, and derive the closed form expressions for the biased estimates due to the finite horizon

effect. We show theoretically that the effect of the gambler’s fallacy is decreasing in both the demand

occurrence probability and the time horizon, and discuss its implication for the management of long

tail products. To the best of our knowledge, this comparative static result is new to the literature

on the gambler’s fallacy.

• We propose novel staggered base stock (SBS) policies that delay replenishment for products

to optimize several performance metrics, including fill rate, cost per cycle, and EBITDA margin,

measured over a finite horizon. The corresponding optimal inventory policies are obtained using the

biased estimate for demand occurrence, instead of using the underlying (true) demand distribution.
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• We extend the analysis to deal with the design of one-for-one inventory replenishment policies,

for general inventory system with replenishment lead time. We show that the idea of delay ordering

can be suitably incorporated into the one-for-one replenishment policies, and the gambler’s fallacy

phenomenon can be exploited to improve the performance metrics in this setting, both in terms of

inventory cost and space requirement.

While the finite horizon effect is motivated by the observations of Miller and Sanjuro (2018),

our results significantly extend the theoretical implications regarding intermittent demand

management and provide improved inventory policies that are also of practical value in operations

management.

The remainder of this paper starts with a review of related literature in Section 2. In Section 3,

we present the gambler’s fallacy phenomenon in relation to intermittent demand products and the

manner in which it induces bias into the estimation of demand distribution in a finite horizon.

We then introduce the demand model with the inter-arrival-demand joint distribution and propose

the staggered base stock (SBS) policy for general demand arrivals in Section 4. The empirical

validation of our SBS policy compared with other benchmarks is presented in Section 5. Finally,

we provide concluding remarks in Section 6.

2. Related Literature

Our paper has connections with several streams of literature—the modeling of intermittent demand

related to forecasting methods; inventory management with a focus on the long tail items; and the

gambler’s fallacy appears as cognitive bias or as the result of the small sample. We discuss these

streams of literature below.

Intermittent demand forecasting

Almost no analysis can overcome the problem posed by poor input quality. The seminal paper

Croston (1972) addresses the intermittent demand forecasting problem by modifying the tradi-

tional exponential smoothing to produce separate point estimates for nonzero demand size and

inter-arrival time. This approach demonstrated that the “demand rate”, defined as the ratio of

nonzero demand and inter-arrival time, is a parameter that can be predicted more accurately for

sporadic demand. Certain limitations are identified in Croston’s method later, and many papers

improved Croston’s method, e.g., Syntetos and Boylan (2001, 2005). Nevertheless, as pointed out

in Cornacchia and Shamir (2018), improving the forecast accuracy for the demand rate may not

be helpful for any inventory models due to the intrinsic demand variability caused by the low

order frequency. For example, one may produce a highly accurate estimation of the demand arrival

probability, e.g., close to 0.1, for an item with an average sale of one unit every ten days. The issue



8 Authors’ names blinded for peer review

is that knowing the well-intended demand rate does not elicit information regarding when the next

demand will arrive. To address this issue, in this paper, we propose a joint distributional approach

to model the intermittent demand, in terms of both size and inter-arrival time. Our approach is

able to provide a reliable statistical description of the demand behavior leading to a reduction

in perceived demand variability by utilizing information regarding the elapsed time since the last

nonzero demand.

Inventory management of slow-moving items

In the related slow-moving inventory management literature, one line of research considers delayed

replenishment for intermittent demand, as the demand does not occur frequently. Schultz (1989)

revisits the (s,S) policy in a continuous review inventory system, introducing the concept of delayed

replenishment orders. Closely related to our paper, Song and Zipkin (1993) describe the dynamics

with two-state variables: the current inventory level and the state-of-the-world, to derive the opti-

mal inventory policy. Akcay et al. (2015) quantify estimation inaccuracy for intermittent demand

by improving inventory-target estimation, solving the modified newsvendor problem. Although this

method mitigates the issue of estimation errors caused by limited data, an independence assumption

on the demand size and arrival time and the demand distribution assumption is critically imposed.

Syntetos et al. (2009) develop an replenishment policy that relies upon the separate estimates of

the inter-demand intervals and demand sizes. In contrast, our paper does not assume any specific

demand distribution, which is often unavailable due to limited historical data in the intermittent

demand environment. Instead, we directly estimate the joint inter-arrival-demand distribution from

data and show it is the correct input when optimizing for the considered performance metrics in a

finite horizon.

The Gambler’s Fallacy

The gambler’s fallacy, also known as Monte Carlo fallacy or the fallacy of the maturity of chances,

is the mistaken belief that if something happens more frequently than normal in a given time, it

will happen less frequently in the future. The prevalence and magnitude of the gambler’s fallacy

can be extended into many activities of human life. For example, it has been found that gambler’s

playing roulette in casinos tend to guess a different color after a streak of the same color, although

the presence of both colors is independent. Many papers have demonstrated the existence of the

gambler’s fallacy empirically, e.g., Clotfelter and Cook (1993) on lottery games, Terrell (1994) on

horse racing, and Croson and Sundali (2005) on gambling. The above papers primarily focus on

the formation of biased estimations in the presence of probabilities. Kong et al. (2020) examine

how game design can shape the biased beliefs of the gambler’s fallacy and hot-hand phenomenon.
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To analyze the effects of the biased probabilities on decision making, Chen et al. (2016) show

that people underestimate the likelihood of sequential streaks, leading to negatively autocorrelated

decisions. They provide real-world case evidence on refugee asylum court decisions, loan application

reviews, and baseball umpire pitch calls. Rabin and Vayanos (2010) investigate the underlying bias

of the gambler’s fallacy, proposing prediction models under non-i.i.d. settings. It is widely believed

that the decision-makers need to consider the cognitive bias caused by the gambler’s fallacy to

make wise choices. However, Miller and Sanjuro (2018) demonstrated that the gambler’s fallacy

exists in a common measure of the conditional dependence of present outcomes on past outcomes

even for independent Bernoulli trials. This selection bias indicates that the gambler’s fallacy is

not a cognitive illusion. Our paper differs from the above literature on the usage of the gambler’s

fallacy. We show the existence of the gambler’s fallacy in the demand of long tail items and adopt

the presence of biased estimates as the input to solve for optimal inventory policy. Moreover, we

significantly extend the theoretical results of this stream of literature by deriving the exact form

of the general bias generated by the finite horizon, and establishing the comparative statics in the

gambler’s fallacy phenomenon.

3. The Gambler’s Fallacy for Long Tail Items

We first demonstrate the existence of the gambler’s fallacy in a general Markov chain model and the

bias in estimating the inter-arrival time distribution. We then consider the special case of demand

arrival being independent in each period, and present the exact form of the biased estimates.

Some related propositions derived from the exact form are also discussed. We summarize the main

notations in Appendix EC.1.

3.1. The Gambler’s Fallacy from a (truncated) Markov Chain

We consider the order arrival process as a general Markov chain model. Let Z denote the random

demand inter-arrival times of the system. For ease of exposition5, suppose P(Z = j) = pj > 0, for

j = 1,2, . . . , J , and
∑J

j=1 pj = 1. If we sample the random variable Z repeatedly, stopping after the

sum of the values sampled exceeds a threshold n, what is the probability that an event {Z = 1}

has been sampled before the sum of the values exceeded n? We show in the rest of this section

that this probability is actually smaller than P (Z = 1)!

5 More generally, if pk = 0 for k≤m, and pm > 0, then our result applies to the case of E[p̂m(n)]
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We can simulate the random order arrival using the following Markov chain with J states in the

space Ω =

{
{1},{01},{02}, . . . ,{0J−1}

}
, where {1} denotes an immediate arrival and {0j} denotes

no arrival in the past j periods. The transition probabilities are specified as follows:

p({1},{1}) = p1 p({1},{01}) = 1− p1
p({01},{1}) = p2∑

j≥2 pj
p({01},{02}) = 1− p({01},{1})

p({02},{1}) = p3∑
j≥3 pj

p({02},{03}) = 1− p({02},{1})
...

...
p({0J−1},{1}) = 1 0 otherwise

We assume the transition probability p1 is strictly positive. Starting at an state “1”, if we

simulate n steps of the above Markov chain, tabulation of the empirical proportion of times the

transition {1,1} takes place immediately after observing {1} in the simulation, which is denoted

by p̂1(n). The question that we are interested in is: Do we have E[p̂1(n)]< p1 as a generalization

to the gambler’s fallacy phenomenon in Miller and Sanjuro (2018)? The proposition below elicits

an affirmative answer.

Proposition 1. For any general Markov chain starting at state “1”, we have p1(n) :=

E[p̂1(n)]< p1 for all n.

Proof. Let Bn(t) denote the indicator of the event that “1” is generated at the t-th position.

We also define the indicator Gn(t) for the event that there is a transition from the state “1” at

position t to “1” at position t+ 1. Note that Bn(0) = 1 since we start at the initial state “1”. Then

we can write p̂1(n) using the indicators as

p̂1(n) =

∑n−1
i=0 Bn(i)Gn(i)∑n−1

i=0 Bn(i)
.

Note that for each t∈ [1, n− 1], if Ht denote the possible histories up to position t, we have

E

[
Bn(t)Gn(t)∑n−1

i=0 Bn(i)

]
=

∑
h∈Ht−1

E

[
Bn(t)Gn(t)∑t

i=0Bn(i) +
∑n−1

i=t+1Bn(i)

∣∣∣∣h;Bn(t) = 1

]
P[h;Bn(t) = 1]

=
∑

h∈Ht−1

p1×E

[
Bn(t)∑t

i=0Bn(i) + 1 +
∑n−1

i=t+2Bn(i)

∣∣∣∣h;Bn(t) = 1,Bn(t+ 1) = 1

]
P[h;Bn(t) = 1]

<
∑

h∈Ht−1

p1×E

[
Bn(t)∑t

i=0Bn(i) +
∑n−2

i=t+1Bn(i) +Bn(n− 1)

∣∣∣∣h;Bn(t) = 1

]
P[h;Bn(t) = 1]

= p1×E

[
Bn(t)∑n−1
i=0 Bn(i)

]
.

The last inequality holds because conditional on Bn(t) = 1, the event
∑n−1

i=t+1Bn(i) is statistically

equivalent to the event
∑n

i=t+2Bn(i) conditional on Bn(t) = 1 and Bn(t+ 1) = 1, whereas Bn(n−

1)< 1 with non-zero probability.
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The inequality E

[
Bn(t)Gn(t)∑n−1
i=0 Bn(i)

]
< p1×E

[
Bn(t)∑n−1
i=0 Bn(i)

]
above further implies that

p1(n) := E[p̂1(n)] = E

[∑n−1
i=0 Bn(i)Gn(i)∑n−1

i=0 Bn(i)

]
< p1×E

[∑n−1
i=0 Bn(i)∑n−1
i=0 Bn(i)

]
= p1.

Hence, the gambler’s fallacy holds even when the states are generated by the general Markov chain.

Q.E.D.

Proposition 1 establishes the bias in estimating the order arrival probability over a finite horizon.

Suppose we observe t demand arrivals with inter-arrival times Z1, . . . ,Zt. We then have the unbiased

estimate for the arrival probability with a given t as

E

[
χ(Z1 = 1) + · · ·+χ(Zt = 1)

t

]
= p1,

where χ(·) is an indicator function. However, if we consider the order arrivals over a finite horizon

of n periods, the sample path of order arrivals is often truncated after n-periods of observation and

thus the number of arrivals is random. Starting with a demand arrival at time 0, let τ denote the

number of arrivals by period n−1, i.e., τ = max{t :Z1 + · · ·+Zt ≤ n−1}. In this case, the estimate

p1(n) using the n-period observation can be expressed in terms of Zt as follows:

p1(n) = E

[
χ(Z1 = 1) + · · ·+χ(Zτ = 1) +χ(

∑τ

s=1Zs = n− 1)χ(Zτ+1 = 1)

τ + 1

]
< p1.

The last term χ(
∑τ

s=1Zs = n − 1)χ(Zτ+1 = 1) contributes to p1(n) if τ stops at period n − 1,

followed immediately by a demand arrival in period n. From this inequality, we can see the bias of

the estimate is induced by the potential truncation of the (τ + 1)-th arrival beyond the n-period

horizon. p1(n) is the proportion of times with successive arrivals, among τ + 1 arrivals of demand.

More generally, the bias estimate of pj can be represented similarly,

pj(n) := E

[
χ(Z1 = j) + · · ·+χ(Zτ = j) +χ(

∑τ

s=1Zs = n− j)χ(Zτ+1 = j)

τ + 1

]
. (1)

Besides the bias in estimating order arrival probability, the gambler’s fallacy phenomenon actually

holds for other estimates regarding the demand distribution. We next examine the probability of

observing at least k demand arrivals in the next ` periods immediately after a demand arrival. For

any k≤ `≤ n− t, we first define the event

Ek`(t) := {at least k demand arrivals in the next ` periods, following a demand arrival at t}.

The set of events Ek`(t) includes the case of consecutive arrivals and a streak of k arrivals (if

`= k). Then the true theoretical probability of observing at least k demand arrivals in the next

` periods immediately after a demand arrival can be denoted by P [χ(Ek`(0)) = 1]. The estimation

using the n-period sample is p̂Ek`(n). We then establish the estimation bias by showing E[p̂Ek`(n)]<

P [χ(Ek`(0)) = 1] in the next theorem.



12 Authors’ names blinded for peer review

Theorem 1. For any general Markov chain starting at state “1”, over a finite horizon n, we

have

E[p̂Ek`(n)] := E

[∑n−`
i=0 Bn(i)χ(Ek`(i))∑n−`

i=0 Bn(i)

]
<P [χ(Ek`(0)) = 1] , ∀n.

Proof. We first show that for all L> 0, we have

E

[
1

L+Bn(t+ 1) + · · ·+Bn(t+ `)

∣∣∣∣Bn(t) = 1

]
=E

[
1

L+Bn(t+ 1) + · · ·+Bn(t+ `)

∣∣∣∣Bn(t) = 1, χ(Ek`(t)) = 1

]
P

[
χ(Ek`(t)) = 1

∣∣∣∣Bn(t) = 1

]
+ E

[
1

L+Bn(t+ 1) + · · ·+Bn(t+ `)

∣∣∣∣Bn(t) = 1, χ(Ek`(t)) = 0

]
P

[
χ(Ek`(t)) = 0

∣∣∣∣Bn(t) = 1

]
>E

[
1

L+Bn(t+ 1) + · · ·+Bn(t+ `)

∣∣∣∣Bn(t) = 1, χ(Ek`(t)) = 1

]
.

(2)

The last inequality is due to E

[
1

L+Bn(t+ 1) + · · ·+Bn(t+ `)

∣∣∣∣Bn(t) = 1, χ(Ek`(t)) = 0

]
>

E

[
1

L+Bn(t+ 1) + · · ·+Bn(t+ `)

∣∣∣∣Bn(t) = 1, χ(Ek`(t)) = 1

]
, because by definition Bn(t+ 1) + · · ·+

Bn(t+ `)<k if χ(Ek`(t)) = 0 and Bn(t+ 1) + · · ·+Bn(t+ `)≥ k otherwise.

Then for all t∈ [0, n− `], we have

E

[
Bn(t)χ(Ek`(t))∑n−`

i=0 Bn(i)

]
= E

[
Bn(t)χ(Ek`(t))∑n−`

i=0 Bn(i)

∣∣∣∣Bn(t) = 1

]
P

[
Bn(t) = 1

]
= E

[
1∑n−`

i=0 Bn(i)

∣∣∣∣Bn(t) = 1, χ(Ek`(t)) = 1

]
P

[
χ(Ek`(t)) = 1

∣∣∣∣Bn(t) = 1

]
P

[
Bn(t) = 1

]
< E

[
1∑n−`

i=0 Bn(i)

∣∣∣∣Bn(t) = 1

]
P

[
χ(Ek`(t)) = 1

∣∣∣∣Bn(t) = 1

]
P

[
Bn(t) = 1

]
= E

[
Bn(t)∑n−`
i=0 Bn(i)

]
×P

[
χ(Ek`(t)) = 1

]
,

where the inequality holds due to the result in (2) that E

[
1∑n−`

i=0 Bn(i)

∣∣∣∣Bn(t) = 1, χ(Ek`(t)) = 1

]
<

E

[
1∑n−`

i=0 Bn(i)

∣∣∣∣Bn(t) = 1

]
. Therefore, the following holds

E[p̂Ek`(n)] = E

[∑n−`
i=0 Bn(i)χ(Ek`(i))∑n−`

i=0 Bn(i)

]
<

n−∑̀
i=0

P

[
χ(Ek`(i)) = 1

]
×E

[
Bn(i)∑n−`
i=0 Bn(i)

]

=
n−∑̀
i=0

P

[
χ(Ek`(0)) = 1

]
×E

[
Bn(i)∑n−`
i=0 Bn(i)

]
=P

[
χ(Ek`(0)) = 1

]
×E

[∑n−`
i=0 Bn(i)∑n−`
i=0 Bn(i)

]
= P

[
χ(Ek`(0)) = 1

]
.

Q.E.D.
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Theorem 1 indicates that the probability of having at least k demand arrivals in the next `

periods over a finite horizon n is strictly less than the theoretical probability due to the finite

horizon effect. For intermittent demand, this theorem implies that the probability of seeing demand

arrivals over a finite horizon is less than that of the theoretical probability. Therefore, it is wiser

to replenish less inventory for a finite horizon, compared to the inventory solution derived based

on the theoretical probability. This observation sheds light on the inventory planning for long tail

items which will be discussed in Section 4. Before that, we conclude this section by providing

closed-form characterization of the bias estimate for inter-arrival time distribution over a finite

horizon when the arrivals are independent.

3.2. The Gambler’s Fallacy for Independent and Identical Demand

The above exposition confirms that bias exists when estimating the inter-arrival time distribution

in a finite horizon. While it is difficult if not impossible to quantify the bias in the general Markov

chain model, we are able to derive the exact form for the bias estimate when demand arrivals are

independent. Here, we analyze the exact magnitude of the biases for pj(n) defined in (1) under the

finite horizon effect, when the probability of a demand arriving in each time period is p. We find the

exact form of pj(n) using combinatorial arguments, using ideas from Rinott and Bar-Hillel (2015),

who use a similar argument for the gambler’s fallacy phenomenon. Note that pj(n) is simply the

proportion of times, among τ +1 arrivals of demand, that the inter-arrival time between successive

arrivals is j. Different from Rinott and Bar-Hillel (2015), we assume an initial demand arrival at

time 0, which triggers the inter-arrival process.

Theorem 2. The exact form of pj(n) is given by

pj(n) =

n−j∑
i=1

(
n− 1− j
i− 1

)
piqn−1−i

p+ i

i+ 1
.

Theorem 2 provides the exact form of the biased estimates pj(n),∀j, when demand arrivals are

independent. Specifically, when j = 1, we can immediately establish that

p1(n) =
n−1∑
i=1

(
n− 1

i

)
piqn−1−i

[
ip+ i2

(i+ 1)(n− 1)

]

<
n−1∑
i=1

(
n− 1

i

)
piqn−1−i

[
i+ i2

(i+ 1)(n− 1)

]

=
n−1∑
i=1

(
n− 1

i

)
piqn−1−i

[
i

n− 1

]
= p,

which is consistent with the result of the gambler’s fallacy in Proposition 1.

Moreover, with the exact form of the biased estimate, we can characterize the relative bias

defined as
p− p1(n)

p
in the following proposition.
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Proposition 2. The relative bias between p and p1(n), defined as
p− p1(n)

p
, is (i) decreasing

in p for all n, and (ii) decreasing in n for all p.

Recall in Figure 1 we show the relative bias termed as the estimation error in percentage.

Proposition 2 formalizes this observation that the relative bias is non-increasing in p for all n and

decreasing in n when p is small. To the best of our knowledge, this comparative static result is new

to the literature on the gambler’s fallacy.

4. Inventory Control of Long Tail Items

This section illustrates how the gambler’s fallacy affects the control policies for managing slow-

moving items in a finite horizon under different performance metrics, e.g., cost per cycle and

EBITDA margin. We consider a multi-period inventory control problem where the replenishment

lead time is shorter than the review period (i.e., a replenishment order placed will arrive before

the end of the current period). This setting (zero lead time) is practical for considering long tail

items that are not frequently required. An extension with positive lead time will be discussed in

Section 4.3. In each period, we need to determine whether to place an order before the demand

realizes. Let the unit holding and shortage cost be h and b, respectively. To facilitate the exposition,

we normalize the ordering cost to zero and similarly assume that any leftover inventory after a

demand arrival can be disposed of at zero cost.

4.1. Application I: Average Cost per Cycle under Unit Demand Model

Cost per cycle is the inventory cost incurred during a cycle between two consecutive demand epochs.

This is a common objective in inventory management, studied for instance in Schultz (1989),

Tripathi and Mishra (2014), and Eftekhar et al. (2022). In particular, Schultz (1989) analyzed

a unit demand system wherein inter-arrival time distribution satisfies the increasing-failure-rate

(IFR) property, and found that delayed ordering is generally optimal. If the inter-arrival time

distribution has a constant failure rate (e.g., exponential distribution), the optimal delay would be

either zero or infinity, and delay ordering is therefore not needed. This is often used to justify the

use of constant base stock policy for these problems. The results are obtained by minimizing the

long run expected cost per cycle, without accounting for the finite horizon effect.

Similar results have been obtained in other settings. For instance, in humanitarian operations,

the inventory positioning problem studied in Eftekhar et al. (2022) can also be viewed as a variant

of intermittent demand management, with the arrival of disasters in a region corresponding to the

arrival of demands of a slow-moving item. The authors used the long run average cost per cycle as

the performance metric for their analysis, and concluded that as long as no additional funding will

be received during the pre-positioning cycle of the relief items, and if the inter-arrival time to the

next disaster is exponentially distributed, then the constant base stock (CBS) policy is optimal.
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However, both results do not hold when the inventory metrics are evaluated over a finite horizon.

In this case, the CBS policy may no longer be optimal, because of the gambler’s fallacy. We establish

this fundamental result in the rest of this section.

4.1.1. Unit Demand Model To investigate how the finite horizon effect influences the inven-

tory control policy, we consider the case in which each arrival only has unit demand. A unit of

inventory will be replenished upon a demand epoch, which consumes a unit of the product. For

ease of exposition, we assume the replenishment lead time is zero. The challenge is to determine

the timing of this replenishment order.

Consider the policy πadp, in which the replenishment is delayed for W periods after a unit demand

has arrived, say at time t. In this policy, the inventory level is kept at 0 from t + 1 to t + W ,

and raised to a level of 1 at time t+W + 1. In essence, this policy exploits the gambler’s fallacy

phenomenon that the next order will not arrive immediately after a demand epoch.

Let Z denote the (random) inter-arrival time of the next unit of demand. With a cycle defined

by the periods between two demand arrivals, the cycle cost is then given by

C(πadp) = b×χ(Z ≤W ) +h×χ(Z =W + 2) + 2h×χ(Z =W + 3) + · · · .

If the inventory metric is about the long-run average cycle cost, i.e., the expected cost per cycle

in the long run, then

E[C(πadp)] = b×
W∑
j=1

pj +h× pW+2 + 2h× pW+3 + · · ·

by utilizing the inter-arrival time distribution with E(χ(Z = j)) = P (Z = j) := pj (e.g., see Schultz,

1989). However, in a finite horizon problem with the cost evaluated over n time periods, the

expected cycle cost defined above does not hold. To see this, let τ = max{t :Z1 + · · ·+Zt ≤ n− 1},

and assume the initial state is immediately after a demand epoch. The expected cost per cycle in

the finite horizon case can be calculated as follows,

E[C(πadp)] = E

[
C1(π

adp) +C2(π
adp) + · · ·+Cτ (π

adp) +Ctail(π
adp)

τ + 1

]
,

where Ct(π
adp) is the cycle cost of the t-th cycle with inter-arrival time Zt, and Ctail(π

adp) is the

cost from the last arrival period
∑τ

t=1Zt + 1 to the end of horizon period n. The term Ctail(π
adp)

is to include the possible inventory cost in the last cycle (i.e., the τ + 1-th cycle) from period∑τ

t=1Zt + 1 to period n.

In the following proposition, we demonstrate that the expected cost per cycle can be formulated

with the biased estimate pj(n) in the unit demand model.



16 Authors’ names blinded for peer review

Proposition 3. In the unit demand model, the expected cost per cycle E[C(πadp)] with the delay

order policy specified by W periods can be expressed as

E[C(πadp)] = b×
∑
j≤W

pj(n) +h
n∑

j=W+2

(j−W − 1)pj(n),

where pj(n) := E

[
χ(Z1 = j) + · · ·+χ(Zτ = j) +χ(

∑τ

s=1Zs = n− j)χ(Zτ+1 = j)

τ + 1

]
is the biased esti-

mates in finite horizon previously defined in (1).

Proof. For the t-th cycle, t∈ [τ ], we have

Ct(π
adp) = b×E

[
χ(Zt ≤W )

]
+h

n∑
j=W+2

(j−W − 1)E

[
χ(Zt = j

]
,

and

Ctail(π
adp) = b×E

[∑
j≤W

χ(

τ∑
s=1

Zs = n− j)χ(Zτ+1 = j)

]
+h

n∑
j=W+2

(j−W − 1)E

[
χ(

τ∑
s=1

Zs = n− j)χ(Zτ+1 = j)

]
.

Following the above analysis, the expected cycle cost is

E[C(πadp)] =E

[
C1(πadp) +C2(πadp) + · · ·+Cτ (πadp) +Ctail(π

adp)

τ + 1

]
=b×E

[
χ(Z1 ≤W ) + · · ·+χ(Zτ ≤W ) +

∑
j≤W χ(

∑τ
s=1Zs = n− j)χ(Zτ+1 = j)

τ + 1

]
+h×E

[
χ(Z1 =W + 2) + · · ·+χ(Zτ =W + 2) +χ(

∑τ
s=1Zs = n−W − 2)χ(Zτ+1 = j)

τ + 1

]
+ · · ·+ (n−W − 2)×h×E

[
χ(Z1 = n− 1) + · · ·+χ(Zτ = n− 1) +χ(

∑τ
s=1Zs = 1)χ(Zτ+1 = j)

τ + 1

]
=b×

∑
j≤W

pj(n) +h

n−1∑
j=W+2

(j−W − 1)pj(n)

This is the expected cost per cycle model with pj(n) in place of pj. Q.E.D.

To obtain the optimal adaptive policy in which the replenishment is delayed for W period, we

need to minimize E[C(πadp)] over W . The optimal solution can be obtained for discrete W by

enumeration. Let W ∗(n) denote the optimal delay for an n-period problem, and W ∗ the optimal

delay policy for a long run average cycle cost model. We next show that the optimal delay in a finite

horizon cost per cycle model is actually longer than the delay in the long run average cycle cost

model, showing that the gambler’s fallacy effect actually leads to longer delay in the replenishment

timing.

Theorem 3. W ∗(n)≥W ∗ for all n.

We note that after accounting for the finite horizon effect, the longer delay in W ∗(n) not only

improves on the performance of the inventory metric, it also saves on warehouse space usage to

hold the inventory. The aggregate savings for a company with a large number of slow-moving items

can be significant using the optimal delay ordering policy.
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4.1.2. Numerical Examples According to Schultz (1989), CBS policy is optimal when the

failure rate of the inter-demand distribution is constant; however, due to the existence of the

gambler’s fallacy, the constant inventory policy fails to be optimal under the objective of cost

per cycle (as well as the expected cycle cost) in a finite horizon, although the inter-arrival time

distribution has a constant failure rate. Indeed, as highlighted by Theorem 3, replenishment should

be delayed longer when the objective is measured in a finite horizon. In the following numerical

example, we demonstrate the benefit of using the biased probability estimate pj(n) provided in

Proposition 3, rather than the true probability pj to identify the optimal delay ordering policy for

inventory control in a finite horizon.

Example 1. We follow the example used for Figure 1 in Section 1 where the unit demand

arrives independently with arrival probability p. Correspondingly, the biased probability p(n) can be

obtained through simulation. We test the performance (cost per cycle) of using the true probability

p and biased probability p(n) for the inventory problem with finite horizon n periods and h =

1, b= 10. Following the true distribution without considering the finite horizon would likely render

the CBS policy optimal. It is not hard to show that when the ratio of h and b is less than 1/p,

then the constant order-up-to level should be 1; otherwise, it should be 0.

In this example, we compare the costs of two ordering policies, one that incorporates the finite

horizon effects and one that does not, for a range of values of the parameters p and n. As shown

in Figure (2a), using the biased estimates p(n) can save up to 10% of the cost per cycle compared

to using the true probability p. Nevertheless, even when the time horizon n is large, the cost

savings remain significant as long as the occurrence probability p is small. We notice that the

cost saving is significant when p is around 0.1, exactly the value of h/b. If the finite horizon is

not considered, h/b is the threshold for a constant ordering policy with unit base stock. The cost

savings are significant around this value due to the sudden switch of base stock level from 0 to 1

for the constant ordering policy. When p deviates from h/b, both policies exhibit similar behavior,

leading to small cost savings. This non-monotonic relationship between cost savings and p for

given time horizon is evident in Figure (2a). We provide more evidence of this phenomenon for

different shortage costs with b= 8 and b= 12 in Appendix EC.4. Moreover, we demonstrate the

corresponding optimal delays using biased estimates p(n) in Figure (2b). The results suggest that

the optimal delay generally decreases with p.

4.2. Application II: Cost per Unit Sold or EBITDA Margin under General Demand

The “Earnings Before Interest, Tax, Depreciation, and Amortization” (EBITDA) margin is the

EBITDA percentage of total revenue earned in a finite horizon. This is an important financial

metric used by analysts and investors to measure and evaluate the ability of a company to gen-

erate income (profit) relative to revenue, balance sheet assets etc. It reveals how well a company
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(b) Delays using biased estimates.
Figure 2 The impact of biased estimates.

utilizes its assets to produce profit and value for shareholders. There are a couple of similar met-

rics capturing the balancing act faced by companies, like ROCE (return on capital employed) and

operating margin, etc.6 They are attached great importance by investors and managers.7 Overall,

the EBITDA margin, ROCE, and operating margin principle are two-dimensional performance

metrics that reveal the trade-off between return and investment. They help to derive more realistic

targets than one-dimensional performance metrics (e.g., total inventory cost) in practice. As noted

in Rogers et al. (2010) and Hançerlioğullan et al. (2017), these metrics are important measures of

organizational profitability.

The EBITDA margin varies in different industries.8 Interestingly, this metric is intimately related

to the “cost per unit of goods sold” (CPUGS) inventory metric. CPUGS can be derived from

the total cost of inventory operations, divided by the total units of goods sold. This cost metric

essentially measures the average cost per unit of goods sold over a finite horizon. The EBITDA

margin and CPUGS are related in the following way:

EBITDA margin=1− CPUGS

price
.

Given a product price, maximizing EBITDA margin is thus equivalent to minimizing CPUGS. In

this section, we minimize the CPUGS alternatively for convenience. Note that under unit demand

setting, the formula of cost per cycle is equivalent to CPUGS.

6 ROCE is defined as the EBITDA generated over the capital employed, and the operating margin is calculated by
dividing a companys operating income by its net sales.

7 For example, the Japanese multinational electronics manufacturing corporation Casio shifted the positioning strategy
based on the objective of increasing the operating margin. The strategic shift is well documented in the Casio annual
report 2008. It states the management strategy is to ensure high profitability, achieving an overall operating income
margin of 10% or more. In its 2016 annual report, Casio claims the company has made a shift with a 12% operating
margin and achieved higher profitability.

8 https://assetsamerica.com/ebitda-margin/

https://assetsamerica.com/ebitda-margin/
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In the remainder of this section, we examine how a general demand model can be incorporated

into our framework to exploit the gambler’s fallacy effect. We use a joint distributional approach

to model the intermittent demand, where the nonzero discrete demand is D ∈ [K] = {1,2, · · · ,K}9.

4.2.1. Intermittent Demand Modeling The size and timing of demand arrival are often

related in the case of intermittent demand products. To better characterize the demand intermit-

tency, the intermittent demand modeling in this paper is simple and practical—we represent the

interaction between the demand size and inter-arrival time using their joint distribution, for which

the empirical counterpart can be directly obtained from historical demand observations. Specifi-

cally, we represent the empirical distribution in a two-dimensional histogram (discrete or continu-

ous). For illustration, we simulate synthetic time series with 200 periods10 (including many zero-

demand periods) in Figure (3a). The pattern between the demand size and inter-arrival time can

be visualized by tabulating the empirical frequencies and representing it using a two-dimensional

histogram as an estimate of the joint distribution in Figure (3b). This intermittent demand mod-

eling approach explicitly captures the dependence between the size and timing of demand arrivals

that often appears in practice.

Let pkj denote the joint probability that demand of size k arrives with inter-arrival time of j

periods, with j ∈ [J ] and k ∈ [K]. We use this joint distribution representation to estimate the

probability of a demand arriving in each time period t, with an initial arrival at time t= 0. To this

end, let zt be the elapsed time since last demand epoch, measured at the beginning of period t.

Let zt+1 = 1 if a nonzero demand arrives in period t, otherwise zt+1 = zt + 1. By conditioning on

the elapsed time zt, the probability of a demand arriving in period t follows the Bayes’ rule:

P(zt+1 = 1|zt) =

∑K

k=1 pkzt∑J

j=zt

∑K

k=1 pkj

The above statistics can be calibrated from the empirical data, e.g., using the historical demand

estimates from the two-dimensional histogram.

4.2.2. Staggered Base Stock Policy The staggered base stock policy gradually builds up

the inventory of slow-moving items, replenishing even if there is no demand arrival at the current

time period. It can be described using the following state-dependent policy πsd: At the beginning

of each period, given the elapsed time j ∈ [J ], raise the inventory level up to Sj. The levels Sj are

predetermined, with Sj−1 ≤ Sj for all j ∈ [J ]. Let S0 = 0, and Sj ≥ 0,∀j ∈ [J ]. We refer to this the

staggered base stock policy, short as SBS policy.

9 The notation [N ] for positive integer N stands for the set {1,2, · · · ,N} throughout the paper.

10 In the simulation, the demand occurrence probability is p= 0.1 and the nonzero demand is Poisson distribution
with mean λ= 5.
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Figure 3 From time series to histogram: an example

Consider the n-period problem, where Xt is the demand in period t, for t = 1, . . . , n. Let τ =

max{t :Z1 + · · ·+Zt ≤ n−1}. It is possible that there is no demand arrival from period
∑τ

t=1Zt+1

to period n when Xn = 0. In this case, it is possible that holding cost occurs without any goods sold

in the last cycle. More generally, when there is no demand in all the n periods, the denominator

of the expected CPUGS is zero. We define the CPUGS as follows:

E[C(πadp)] = E

[
C1(π

adp) +C2(π
adp) + · · ·+Cτ (π

adp) +Ctail(π
adp)

XZ1
+ . . .+XZ1+...+Zτ + max{1,Xn(Z1, . . . ,Zτ )}

]
,

where Ct(π
adp) is the cycle cost of the inter-arrival time Zt, and Ctail(π

adp) is the cost from period∑τ

t=1Zt+1 to period n. Similar to the previous setting, Ctail(π
adp) is added to include the possible

inventory cost in the last cycle. The demand size used to calculate the expected CPUGS in the

last cycle from period
∑τ

t=1Zt + 1 to period n is max{1,Xn(Z1, . . . ,Zτ )} to avoid the denominator

being zero in the case when there are no demand arrival in the n periods, and also to account

for the initial state. Note that Xn(Z1, . . . ,Zτ ) is independent of Z1, . . . ,Zτ if demand quantity is

independent of the inter-arrival times (e.g., the i.i.d. case). In the rest of the paper, we write Xn
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instead and omit the dependence on Z ′s, to simplify the exposition. The following theorem suggests

that the expected CPUGS can also be expressed by the biased estimates p̃kj(n).

Theorem 4. For general demand setting, let Y1, . . . , Yτ ∈ [K] denote the random nonzero

demand sizes at period Z1,Z1 +Z2, . . . ,Z1 + · · ·+Zτ . Starting from an initial state after a nonzero

demand, over a finite horizon of n periods, the expected CPUGS can be expressed by the cycle cost

with the biased estimates p̃kj(n),

E[C(πsd)] =
∑
j∈[J]

∑
k∈[K]

p̃kj(n)

∑j−1
`=1 hS` +h(Sj − k)+ + b(k−Sj)+

k
, (3)

where p̃kj(n) := E

[∑
t∈[τ ]

χ(Zt=j,Yt=k)

(
∑
s∈[τ ]+,s6=t Ys+k)/k

+
χ(

∑τ
s=1 Zs=n−j)χ(Zτ+1=j,Xn=k)

(
∑
s∈[τ ] Ys+k)/k

]
, [τ ]+ = [τ ] ∪ {n} and

Yn = max{1,Xn}11.

Following the discussions above, the joint inter-arrival-demand distribution Q̃ with elements

p̃kj(n) can be represented by a two-dimensional histogram. It can be estimated numerically via

sampling. Based on the results in Theorem 4, our problem reduces to

min
Sj≥0

∑
j∈[J]

∑
k∈[K]

p̃kj(n)

∑j−1
`=1 hS` +h(Sj − k)+ + b(k−Sj)+

k

s.t. Sj−1 ≤ Sj,∀j ∈ [J ]

(4)

If Yt = k is a constant for each demand arrival, then we can approximate p̃kj(n) as

pckj(n) := E

[∑
t∈[τ ]χ(Zt = j,Yt = k) +χ(

∑τ

s=1Zs = n− j)χ(Zτ+1 = j,Xn = k)

τ + 1

]
, (5)

which is the empirical proportion of the event that the inter-arrival time is j and demand size is

k. When the demand size does not vary by much, and when data is scarce as in the intermittent

demand case, we can use pckj(n) as an approximation to p̃kj(n) in the optimization model.

Given the exact value of p̃kj(n), problem (4) is a linear program. The size of constraints and

variables of the linear program is linear in J . Nevertheless, when J and K are too large to deal

with, in practice, we can change the bin size by aggregating values to reduce the problem size. A

similar analysis also applies to continuous demand.

4.2.3. Staggered Base stock Policy for Continuous Demand Our previous development

of the staggered base stock policy is based on the discrete inter-arrival-demand distribution. In this

subsection, we consider a more general case when demand is continuous.

Let D denote the random demand size with probability density function fj(·) conditional on

inter-arrival time j. We have the following theorem on CPUGS for the continuous demand case.

11 We abuse the notation slightly for ease of exposition. Note that Yn � Yt for t ∈ [τ ]. Hence there is a need to split
the calculation of p̃kj(n) into two ratios.
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Theorem 5. For general continuous demand, let Y1, . . . , Yτ denote the random nonzero demand

size at time Z1,Z1 +Z2, . . . ,Z1 + · · ·+Zτ . Starting from an initial state after nonzero demand, over

a finite horizon of n periods, the expected CPUGS can be expressed by the cycle cost with the biased

estimates p̃j(n, θ):

E[C(πsd)] =
∑
j∈[J]

∫
θ

p̃j(n, θ)

∑j−1
`=1 hS` +h(Sj − θ)+ + b(θ−Sj)+

θ
dθ,

where p̃j(n, θ) := E

(∑
t∈[τ ]

χ(Zt=j)

(
∑
s∈[τ ]+,s6=t Ys+θ)/θ

+
χ(

∑τ
s=1 Zs=n−j)

(
∑
s∈[τ ] Ys+θ)/θ

)
fj(θ)

From Theorem 5, we can therefore transform the finite horizon cost model into a single cycle

cost model, by replacing the density function fj(θ) with p̃j(n, θ) to account for the finite horizon

effect. The optimal staggered base stock policy can be obtained by solving the following problem

min
Sj≥0

∑
j∈[J]

∫
θ

p̃j(n, θ)

∑j−1
`=1 hS` +h(Sj − θ)+ + b(θ−Sj)+

θ
dθ

s.t. Sj−1 ≤ Sj,∀j ∈ [J ]

(6)

For both discrete and continuous demand cases, the formulations provided are data-driven, in

the sense that historical samples are direct input in solving for the staggered base stock policy.

4.3. Application III: One-for-One Replenishment with Positive Lead Time

In many spares inventory system with the failures generated by Poisson processes and deterministic

shipment lead times (from the repair depot to each site), a common approach used to replenish

the repairable item at each site following a “one-for-one replenishment” policy. In the case when

inventory metrics are evaluated over a finite horizon, we show that the analysis on the gambler’s

fallacy effect can be extended to this setting.

To this end, we consider the unit demand arrivals in a case with the replenishment lead time

L> 0. We use a one-for-one replenishment policy with a buffer stock of B, i.e., once the inventory

position drops to or below the reorder point B− 1, the system will place an order (of one unit) to

raise the inventory level to B. In other words, the one-for-one policy with a buffer stock of B can

be seen as the (B− 1,B) replenishment policy, a variant of the popular (s,S) inventory policy.

In such a system, each unit of the replenished inventory will be used to satisfy the demand for the

B-th unit demand arrival after the ordering. That is, from the replenishment unit’s perspective, it

faces a unit demand with an inter-arrival time of QB ∼
∑B

s=1Zs, which is similar to our discussion

in Section 4.1. Upon the replenishment ordering, the following B−1 unit demands will be satisfied

with the remaining buffer stock B−1 and the B-th unit demand is met with this replenished unit.

In this case, we will show that it is still beneficial to delay the replenishment timing of each order,

to exploit the gambler’s fallacy effect in the demand process for QB. Therefore, the new delayed
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ordering policy determines not only the optimal buffer stock (also base stock level) B, but also

the optimal delay interval W associated with the replenishment. To facilitate the search for the

optimal parameters for W and B, we make the following assumption about demand distribution.

Definition 1. (Log-Concavity) Let the sample space Ω = {z1, z2, z3, . . .} be a countable subset

of the Euclidean space R, with z1 < z2 < z3 < · · · . Let {pi = P(Z = zi)} be the probability mass

function for Z. A discrete random variable Z is log-concave if

p2i+1 ≥ pipi+2, ∀i. (7)

Examples of discrete log-concave distributions include Poisson distributions, binomial distributions,

negative binomial distributions, and geometric distributions, etc.

Assumption 1. For each t, the distribution of the random variable Zt is log-concave.

Assumption 2. For each t, the distribution of the random variable Zt is concave.

Under Assumption 1, since the sum of log concave functions is log-concave, for every B, the

distribution of random variable QB is also log-concave. The concavity of QB holds similarly by

Assumption 2. While Assumption 2 implies Assumption 1 as the domain is non-negative, we sep-

arate these two assumptions to facilitate our discussion afterwards.

Let QB
t be the t-th total inter-arrival time from Z1 to ZB. Let τQ = max{t :QB

1 + · · ·+QB
t ≤ n−1}.

Similar to the previous argument in Section 3, we define the biased estimate of P(QB = j) on

account of the finite horizon as

pj(n,B) := E

[
χ(QB

1 = j) + . . .+χ(QB
τQ

= j) +χ(
∑τQ

s=1Q
B
s = n− j)χ(QB

τQ+1 = j)

τQ + 1

]
. (8)

While assumption 1 ensures that P(QB = j) is log-concave, we need the stronger assumption 2 to

ensure that the biased version pj(n,B) is log-concave.

Let W ∗(n,B) denote the optimal delay ordering policy with B, the buffer stock needed. The

problem here is to jointly determine the optimal choice of B and W ∗(n,B) to minimize the expected

cost per cycle given the finite horizon n and the lead time L. Note that, here, a cycle is the time

interval between the ordering of a replenishment unit and the moment it is used to satisfy the

demand. If W is the delay ordering period and B is the buffer stock, by Proposition 3, we can

write the expected cost per cycle C̃(W,B) associated with a replenishment unit as

C̃(W,B) :=b
∑

j≤W+L

pj(n,B) +h
n∑

j=W+L+1

(j−W − 1−L)pj(n,B). (9)

For expositional clarity, we denote

f(W,B)≡ C̃(W + 1,B)− C̃(W,B) = bpW+L+1(n,B)−h
n∑

j=W+L+2

pj(n,B),
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and

g(W,B)≡ pW+L+1(n,B)∑n

j=W+L+2 pj(n,B)
=

pW+L+1(n,B)∑n

j=W+L+1 pj(n,B)− pW+L+1(n,B)
.

Notably, the objective function cost per cycle (9) is affected by the biased distribution of QB.

Lemma 1. Under Assumption 2, the biased distribution of QB defined in (8) is also log-concave.

This allows us to streamline the search for the optimal delay with given buffer stock B in the

following way:

Proposition 4. Under Assumption 2, for each given B, (a) if there exists a finite W such that

g(W − 1,B) ≤ h/b, g(W,B) > h/b, then C̃(W,B) is minimized at W ∗(n,B) = max{W : g(W −

1,B)≤ h/b, g(W,B)>h/b};

(b) if g(W,B)≤ h/b for all W , then C̃(W,B) is minimized at W ∗(n,B) =∞;

(c) if g(W,B)≥ h/b for all W , the C̃(W,B) is minimized at W ∗(n,B) = 0.

Given this relationship between the optimal delay W ∗(n,B) and B, the optimal buffer stock B can

be obtained with a simple line search procedure.

Proposition 4 implies that when g(W,B) is less than a threshold h/b for all W , then the optimal

policy is to delay forever; when the probability ratio is greater than a threshold h/b for all W , then

the optimal policy is to avoid delaying; otherwise, the optimal delay ordering period is a positive

integer. Note that g(W,B) is simply the probability ratio of the B-th unit demand arriving at period

W +L+ 1 and arriving after period W +L+ 2. We also notice that the optimal delay W ∗(n,B) is

a function of B. The following proposition identifies a monotonicity property of W ∗(n,B).

Proposition 5. The optimal delay W ∗(n,B) is non-decreasing in B.

We note that assumption 2 is more restrictive compared to assumption 1. If it is not satisfied,

the approach described in Proposition 4 can be used as a heuristic algorithm to find the optimal

delay and buffer stock. The following numerical examples shows that even if this assumption does

not hold, delaying the replenishment according to the approach provided by Proposition 4 can still

help to lower the cost compared to immediate replenishment.

4.3.1. Numerical Examples Consider an example where we let n= 50, h= 1, and b= 1.5,

with different lead time L = 0,4,8,12. We assume the distribution of Zt is Poisson with arrival

rate λ= 1/4. The optimal buffer stock and optimal delay can be easily found through search along

C̃(W,B). Figures 4a and 4b show how they change as the lead time increases from 0 to 12. In

general, the optimal12 buffer stock increases with lead time, with B∗ = 1 up till lead time of 7,

12 Note that under the current setting, Assumption 2 is not satisfied. The optimal delay and optimal buffer stock
obtained through Proposition 4 are near optimal in this example. The term “optimal” in the remaining of this section
refers to the optimal solution by Proposition 4.
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and then increases to 2 when lead time increases further. Interestingly, the optimal delay interval

decreases when the lead time increases from 0 to 3, ensuring that a replenishment order is always

received exactly 3 time periods after the preceding demand epoch. The optimal solution reverts to

the standard one-for-one replenishment system with B = 1, when lead time is between 4 to 7, after

which the base stock increases to 2, and the optimal delay is such that the replenishment will be

received exactly 10 time periods after the preceding demand epoch, until lead time increases to 10

or more.
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Figure 4 Optimal buffer stock and optimal delay with different lead time
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Figure 5 Cost comparison between the replenishment policy with and without delaying

Figure 5 shows that the cost per cycle for one-for-one replenishment without delay smallest when

the lead time is 4, which is the mean inter-arrival time for a unit of demand. However, due to

the finite horizon effects, delay ordering can play a significant role when the lead time is smaller

than mean inter-arrival time, but with minimal impact when lead time is longer. This example

demonstrates that the gambler’s fallacy effect can also be leveraged, even if the replenishment lead

time is positive, and suitably delaying the replenishment timing can help to lower the cost of a

one-for-one replenishment policy for this class of inventory problems.
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5. Staggered Base Stock Policy: Computational Results

To empirically validate our methods, we test the performance using a heavy machinery parts

industry dataset, where the demand is intermittent. The company, which operates as a distributor

of heavy machinery parts and diesel engine components, provided monthly sales data for M = 31

products over a 38-month time period. The selected products those that had at least one recorded

demand during the horizon. The time series of demand arrivals for these products are shown in

Figure 6, where the x-axis represents the time periods, the y-axis represents the individual products,

and the bubble size represents the demand size, if any, in a given month. There is no demand

arrival in nearly 77.8% of the months (i.e., time periods) with an average inter-arrival time of 4.08

months. The demand occurrence probabilities in each month for all the products are less than

0.6. The mean and variance of the positive (monthly) demand size are 5.4 and 33.1, respectively.

Moreover, Figure 6 indicates that the demand arrival patterns vary across products.
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Figure 6 Demand arrivals and demand size

5.1. Demand Modeling and Data Generation

This rather small data set for each product prohibits a reliable performance evaluation using

standard validation techniques such as training and test split. Moreover, using real data (i.e., one

sample path) to test the performance of any algorithm will not be convincing, and the outcomes may

not be reproducible. In order to overcome this challenge, we first construct demand distributions

based on the real data and then regenerate sample paths from these demand distributions for

computation and performance evaluation. As such, while the actual data did not serve as direct

input to the inventory control and numerical experiments, the findings presented in the subsequent

results remain largely grounded in real demand patterns.

Specifically, we set the Gaussian kernel smoothing of the empirical distribution (from the real

data) as the ground truth distribution where both the training and test data sets are sampled. The
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inter-arrival-demand distributions for two products are presented in Figure 7. For each product, we

generate a single sample path with a length of 500 periods from the product’s inter-arrival-demand

distribution as the training data. We then generate from the same distribution Ntest = 100 sample

paths with n= 38 periods of observations as the test data. It is worth noting that the chosen length

of n= 38 is the length of the finite horizon in the considered setting.
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Figure 7 Two examples of inter-arrival-demand distributions.

In order to derive inventory control policies, we need to estimate p̃kj(n), the probability of having

a nonzero demand of size k and inter-arrival time j in a finite horizon with n periods. To this end, we

transform the sample path with 500 periods of training data, into a two-dimensional histogram by

partitioning it into non-overlapping intervals with n= 38 periods to account for the finite horizon

effect. This partitioning process is illustrated in Figure 8 where a sample path of 20 periods can

be partitioned into 3 non-overlapping intervals with a horizon of n = 5 periods. Note that each

interval begins after a demand arrival such that we can regard each interval as a sample run of

our inventory control setting with the n-period horizon. Then p̂kj(n), the estimation of p̃kj(n), are

obtained from the realizations in these n-period sample intervals and then used as inputs for the

optimization for the inventory control policies. For simplicity, we use the estimate pckj(n) defined

in Equation (5) for the calculation in part because the demand size does not vary much in our

dataset.

5.2. Implementation and Benchmarks

To obtain the SBS policy, we solve the discrete demand formulation provided in equation (4),

because of the relatively small demand range observed in the data. There are also two related

benchmarks used for comparison, i.e., the ITE policy (Akcay et al., 2015) and the approach by

Croston(Croston, 1972), developed specifically for inventory problems with intermittent demand.

The ITE policy considers a single-period inventory problem with an adjusted newsvendor quantity
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Figure 8 This sample path with 20 periods of training data is partitioned into 3 non-overlapping intervals with

n= 5 periods.

hedging against both demand uncertainty and parameter uncertainty. To account for the estimation

error of the parameters, Akcay et al. (2015) quantify the expected cost of incorrectly estimating the

parameters of an intermittent demand process as a function of critical fractile. On the other hand,

the Croston policy uses exponential smoothing to produce separate point estimates for nonzero

demand size and inter-arrival time. The rules for replenishment of Croston policy are based upon

a linear combination of the estimates of average demand, and the mean absolute deviation of

one period ahead forecasting. The details for the construction of these policies are provided in

Appendix EC.3.

We evaluate the CPUGS under different inventory control policies using the test data. In our

calculation of CPUGS, we also account for the carryover inventory between successive cycles to

reflect the actual inventory cost over the planning horizon in practice. This setting is not exactly

identical to our theoretical model in Section 4.2 where we assume the leftover inventory in each

cycle can be disposed of at zero cost. Nevertheless, we will demonstrate that the SBS policy still

outperforms both benchmarks that do not consider the finite horizon effect, despite the slightly

unrealistic assumption. Note that both the ITE and Croston policy remain static during each

demand cycle. Their order-up-to levels will only be updated when a new demand arrives. On

the other hand, the SBS policy will change the order-up-to level according to the elapsed time,

even within a demand cycle. In a sense, the SBS policy is more dynamic and can adapt to new

information in the operating environment, even when there is no demand arrival in the ensuing

period. Finally, throughout the experiments, we fix the holding cost at h= 1, and vary the shortage

cost b∈ {6,14,22,30} across four scenarios. Additional numerical results for more values of shortage

cost are available in Appendix EC.5.

5.3. Average performance

For each product, we evaluate the average CPUGS based on Ntest = 100 sample paths for each

inventory control policy respectively and present the results as a boxplot in Figure 9. The plot

reveals that the SBS policy has the smallest mean compared to other benchmarks. We also notice

that as the unit shortage cost b becomes larger, the gap between SBS and Croston reduces, but

the gap between SBS and ITE widens. That is because, when b is small, both SBS and ITE do
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not hold excessive inventory to prevent high inventory costs, resulting in similar performances. As

b increases, both SBS and ITE policy will increase the base stock levels. Unlike the constant base

stock level of ITE, the SBS policy gradually increases the inventory level, saving inventory holding

cost at the beginning and still achieving a lower CPUGS. Regarding the Croston policy, because

the cost parameters do not directly affect its base stock levels as well as due to the lags and stability

of exponential smoothing, the average CPUGS changes the least among all the policies. Among all

the cases with different shortage costs, the SBS policy achieves smaller CPUGS than the Croston

policy in 85.5% of products, and smaller than the ITE policy in 94.4% of products.
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Figure 9 Average CPUGS of the 31 products.

Furthermore, we investigate the total inventory levels of all 31 products combined over 38 periods

in Figure 10. Overall, the ITE and Croston policy tend to hold more inventory than the SBS policy.

Notably, the total inventory levels of Croston remain the same when the shortage cost changes.

This phenomenon coincides with the Croston policy’s inability to adapt to cost parameters. While

more inventory will be held under higher shortage costs for both SBS and ITE, it is evident that

ITE is more sensitive to the increase in shortage costs. In the SBS policy, the inventory levels

of the first few periods are significantly smaller than those of the later periods. It ensures the

avoidance of unnecessary inventory in the beginning but gradually raises the inventory level. Again,

this observation explains the cost saving advantage of the SBS policy indicated in Figure 9 above.

Moreover, keeping a low inventory level and eliminating any items deemed unnecessary will not

only save warehouse space but will also improve capital utilization.

In addition to the average CPUGS, we also extend the performance metric to the total cost, which

is prevalent in the inventory management literature. Figure 11 demonstrates that the SBS policy
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(c) Shortage cost=22
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(d) Shortage cost=30
Figure 10 Total inventory levels of 31 products over time under different shortage costs

achieves lower total costs than both the Croston and ITE policy. The reason for such performance

is similar to the above discussion that the SBS policy prevents unnecessary inventory and shortages

by gradually raising the inventory levels.

Note that, in the implementation, we use the empirical estimate p̂kj from the single training

sample path in place of the bias estimate p̃kj. Therefore, we are also interested in how this estimation

error (i.e., the difference between p̂kj and p̃kj) would result in deviation from the optimal inventory

policy. To quantify the optimality gap, we compare the performance of the SBS policy using p̂kj

and p̃kj, respectively. The result in Figure 12 shows that using the estimation will not deviate from

the optimal inventory policy too much, suggesting that the gambler’s fallacy is significant even

when the demand distribution is estimated based on data. Furthermore, as the number of data

points increases, the optimality gap caused by the empirical estimation error would vanish.

5.4. The performance on a randomly selected sample path

The results above for each product are calculated based on the average performance of the Ntest =

100 sample paths. In this experiment, we extract two randomly selected sample paths as examples,

showing the CPUGS for all 31 products in the boxplots in Figure 13. The performance comparisons
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Figure 11 Total costs of the 31 products
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Figure 12 Optimality gap between the true p̃kj and the empirical one p̂kj for n= 38 when calibrated from the

single training sample path with ntraining = 500 data points.

in the two sample paths are consistent with the observation of the average performance. Therefore,

the SBS policy not only performs well on average but can also outperform the benchmarks in

individual sample paths. If we compare the performance on each sample path in terms of the total

CPUGS of all 31 products, then the SBS policy outperforms the Croston policy and ITE policy in

66.1% and 83.1% of the test sample paths, respectively.

So far, we have evaluated the inventory policies using abundant test data generated from the

calibrated inter-arrival-demand distributions. Note that the original data contain one sample path
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Figure 13 CPUGS of the 31 products evaluated in a single sample path.

of n= 38 periods for each product. To further explore the performance, we evaluate CPUGS by

testing each policy under the original data and show the comparison in Figure 14. Similar to the

average performance, the SBS policy outperforms the Croston and ITE policy in all the cases with

different shortage costs. This establishes additional evidence to support the efficacy of the SBS

policy.
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Figure 14 CPUGS tested on the original data for the 31 products.

6. Concluding Remarks

It is common to formulate models based on some cost performance metrics to obtain a recommended

solution to a problem. However, the fact that such performance metrics are calculated based on

data collected over a finite horizon is often disregarded. This induces a truncation effect on our

observations, introducing biases into calculations. The recommended solution to the problem needs
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to anticipate such issues, and correct for the biases. This is the basis of the emergence of the

gambler’s fallacy in a finite sequence of coin tosses.

This paper investigates the effects of the finite horizon and the gambler’s fallacy on inventory

models to obtain the optimal SBS policy. Our performance metric is based on fill rate, cost per

cycle, and the average cost per unit sold or cost per cycle measurements. These challenges are

exceedingly difficult to address for products in the long tail, because of infrequent demand arrivals,

and the difficulty of obtaining the true demand distribution. Instead, we use a biased version of the

joint distribution between demand and inter-arrival time, as the input of our optimization model,

demonstrating how this addresses the finite horizon effect in the traditional inventory control

approach for intermittent demand products. The SBS policy we propose is supported by the gam-

bler’s fallacy phenomenon, which analyzes the impact of statistical biases and provides justification

for both the use of replenishment-delay policies and biased estimation based on empirical distribu-

tion, obtained from finite-horizon data. We implement the SBS policy and other benchmarks on

real data, finding that the SBS policy outperforms the benchmarks in all of our experiments.

There are several managerial insights that we can draw from this work:

• Do not ignore the finite horizon effect, especially if the performance metric is measured from

data collected over a finite interval. This paper analyzed the case in which the performance metric

is measured by the fill rate, cost per unit sold, and cost per cycle. These metrics are routinely

reported by companies based on data collected over a fixed interval. Other inventory metrics that

need to account for the finite horizon effect include: inventory turnover ratio, gross margin percent,

return on investment, etc.

• Biased estimation of the demand probability distribution can perform better than true distri-

bution, when used as inputs in the performance metric optimization model. This brings a new

twist to the relentless efforts of companies to estimate the true demand distribution—based on the

performance metric used, it may be more advantageous for companies to use the biased demand

distribution instead!

• In the management of intermittent demand products, delayed ordering and staggered base

stock policy generally perform better than constant base stock policy with immediate replenishment,

when the performance metric is measured over a finite horizon. This holds even in cases in which

demands are identical and independent across time.

Last but not least, there are several future research directions that are interesting yet challenging.

A natural extension is to manage inventory with a continuous time dimension, compared to the

discrete-time setting in this paper. Calculating the effect of the finite horizon in this setting appears

to be difficult. Another possible research direction is to consider cases in which demand is not

stationary, so that the joint distribution may change accordingly over time. In such instance,
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we would need to use a feature-based demand model, and the challenge lies in uncovering the

underlying base demand model while accounting for the effects due to the features. It is unclear

how the finite horizon effect would skew the base demand model and the associated effects due

to the features. We can also investigate the inventory management problem for multiple slow-

moving items. The presence of multiple items brings opportunities to consider risk-pooling strategy

and data aggregation methods to mitigate stock-outs and excess supply, and explore the demand

correlation between products.

References

Akcay, Alp, Bahar Biller, Sridhar R Tayur. 2015. Managing inventory with limited history of intermittent

demand. Available at SSRN 2710282 .

An, Mark Yuying. 1997. Log-concave probability distributions: Theory and statistical testing. Duke Univer-

sity Dept of Economics Working Paper (95-03).

Chen, Daniel L, Tobias J Moskowitz, Kelly Shue. 2016. Decision making under the gambler’s fallacy: Evidence

from asylum judges, loan officers, and baseball umpires. The Quarterly Journal of Economics 131(3)

1181–1242.

Chen, Jiahua, Dennis KJ Lin, Douglas J Thomas. 2003. On the single item fill rate for a finite horizon.

Operations Research Letters 31(2) 119–123.

Clotfelter, Charles T, Philip J Cook. 1993. The gambler’s fallacy in lottery play. Management Science 39(12)

1521–1525.

Cornacchia, Eugenio, Joseph Shamir. 2018. Forecasting the long tail and intermittent demand. URL https:

//www.toolsgroup.com/resources/white-papers/forecasting-long-tail/.

Croson, Rachel, James Sundali. 2005. The gambler’s fallacy and the hot hand: Empirical data from casinos.

Journal of risk and uncertainty 30(3) 195–209.

Croston, John D. 1972. Forecasting and stock control for intermittent demands. Journal of the Operational

Research Society 23(3) 289–303.

Eftekhar, Mahyar, Jing-Sheng Jeannette Song, Scott Webster. 2022. Prepositioning and local purchasing

for emergency operations under budget, demand, and supply uncertainty. Manufacturing & Service

Operations Management 24(1) 315–332.
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Appendix – Taming the Long Tail: The Gambler’s Fallacy in
Intermittent Demand Management

EC.1. List of Notations

Table EC.1 List of notations

Notation Definition
h Unit holding cost.
b Unit shortage cost.

p̂j(n) The empirical proportion of transition {1,01, . . . ,0j−1,1} in n-sample 0-1
sequence.

p1(n) := E[p̂1(n)] The expected empirical proportion of transition {1,1} in n-sample 0-1
sequence.

pj(n) := E[p̂j(n)] The expected empirical proportion of transition {1,01, . . . ,0j−1,1} in n-sample
0-1 sequence.

Bn(t) The indicator of the event that “1” is generated at the t-th position.
Gn(t) The event that there is a transition from “1” at position t to “1” at position

t+ 1.
Ek`(t) The event that at least k demand arrivals in the next ` periods, following a

demand arrival at t.
W The replenishment is delayed for W periods after a unit demand has arrived

in the delay ordering policy.
Zj The random inter-arrival time of j-th nonzero demand.
Yj The random demand size of j-th nonzero demand.

EC.2. Proofs of Statements
EC.2.1. Proof of Theorem 2

Let m= n− 1. With probability
(
m
i

)
piqm−i, there are i nonzero demands arriving in m periods.

Choose one of the i unit demands randomly. We consider the following three events:

• Event Aij is a unit demand falls in the (n− j)th position and it will be followed by j − 1

successive 0’s and a 1 in the nth position, illustrated in the following figure.

Event Aij happens with probability
1

m
× p×

(
m−j
i−1

)
/
(
m−1
i−1

)
, i.e.,

P(Aij) =


p

m
j = 1

p

m
× (m− i)(m− i− 1) · · · (m− i− j+ 2)

(m− 1) · · · (m− j+ 1)
j ≥ 2
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• Event Bij denotes the case when this unit falls in one of the first m− j positions and it will

be followed by j− 1 successive 0’s and a 1.

Event Bij happens with probability
m− j
m
×
(
m−j−1
i−2

)
/
(
m−1
i−1

)
, i.e.,

P(Bij) =


m− 1

m
× i− 1

m− 1
j = 1

m− j
m
× (m− i) · · · (m− i− j+ 2)(i− 1)

(m− 1)(m− 2) · · · (m− j)
j ≥ 2

• Event Cij denotes the case when the unit arrives at period 0 and Z1 = j.

Event Cij happens with probability
(
m−j
i−1

)
/
(
m
i

)
, i.e.,

P(Cij) =


i

m
j = 1

(m− i) · · · (m− i− j+ 2)i

m(m− 1) · · · (m− j+ 1)
j ≥ 2

Note that when calculating pj(n), according to the pigeonhole principle, we have i≤m− j+ 1;

otherwise, there is no probability of a 1 following j− 1 successive 0’s, i.e., the events Aij, Bij and

Cij would not happen.

With the initial nonzero demand, there are i+1 nonzero demand periods in total. Among these

periods, event Aij and Bij can be chosen from any from 2nd to (i+ 1)-th nonzero demand periods,
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and event Cij can only choose the initial one. Therefore, we have

pj(n) =

m−j+1∑
i=1

(
m

i

)
piqm−i

(
i

i+ 1
P(Aij) +

i

i+ 1
P(Bij) +

1

i+ 1
P(Cij)

)

=

m−j+1∑
i=1

(
m

i

)
piqm−i

(
i

i+ 1

1

m
× p×

(
m−j
i−1

)(
m−1
i−1

) +
i

i+ 1

m− j
m
×
(
m−j−1
i−2

)(
m−1
i−1

) +
1

i+ 1

(
m−j
i−1

)(
m
i

) )

=

m−j+1∑
i=1

(
m

i

)
piqm−i

[
i(m− j)! (m− i)! (p+ i)

(i+ 1)(m− j− i+ 1)!m!

]

=

m−j+1∑
i=1

piqm−i
[

(m− j)!
(i− 1)! (m− j− i+ 1)!

p+ i

i+ 1

]

=

m−j+1∑
i=1

(
m− j
i− 1

)
piqm−i

p+ i

i+ 1

Q.E.D.

EC.2.2. Proof of Proposition 2

(i) According to the form of p1(n) given in Theorem 2, we have

p1(n)

p
=

m∑
i=1

(
m− 1

i− 1

)
pi−1qm−i

p+ i

i+ 1
.

Let f(p) = p1(n)

p
, the first order derivatives is

f ′(p) =
m∑
i=1

(
m− 1

i− 1

)
pi−2(1− p)m−i−1−mp

2 + (2i−mi)p+ i2− i
i+ 1

=
m∑
i=1

(
m− 1

i− 1

)
pi−2(1− p)m−i−1 p(i+ 1) + (i− 1)(i+ 1)−mp(p+ i)− q(i− 1)

i+ 1

= p−1q−1

(
p+ (m− 1)p+

m∑
i=1

(
m− 1

i− 1

)
pi−1(1− p)m−i−mp(p+ i)− q(i− 1)

i+ 1

)

= p−1q−1

(
mp

m∑
i=1

(
m− 1

i− 1

)
pi−1(1− p)m−i +

m∑
i=1

(
m− 1

i− 1

)
pi−1(1− p)m−i−mp(p+ i)− q(i− 1)

i+ 1

)

= p−1q−1

(
m∑
i=1

(
m− 1

i− 1

)
pi−1(1− p)m−imp(i+ 1)−mp(p+ i)− q(i− 1)

i+ 1

)

= p−1

(
m∑
i=1

(
m− 1

i− 1

)
pi−1(1− p)m−imp− (i− 1)

i+ 1

)

= p−1

(
m∑
i=1

(
m− 1

i− 1

)
pi−1(1− p)m−imp+ 2

i+ 1
− 1

)

Here, the third, fourth, and last equality are due to
∑m

i=1

(
m−1
i−1

)
pi−1(1 − p)m−i = 1 and∑m

i=1

(
m−1
i−1

)
pi−1(1− p)m−i(i− 1) = (m− 1)p from Binomial distribution B(m− 1, p). With slight
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abuse of notation, we denote ρi =
(
m−1
i−1

)
pi−1(1− p)m−i as the probability in the Binomial distri-

bution B(m− 1, p) with
∑m

i=1 ρi = 1 and
∑m

i=1(i− 1)ρi = (m− 1)p. Then we show f ′(p) > 0 by∑m

i=1

(
m−1
i−1

)
pi−1(1− p)m−i mp+2

i+1
= (mp+ 2)

∑m

i=1 ρi
1
i+1

> 1 as follows:

(mp+ 2)
m∑
i=1

ρi
1

i+ 1
> [(m− 1)p+ 2]

m∑
i=1

ρi
1

i+ 1

=

(
m∑
i=1

ρi(i+ 1)

)(
m∑
i=1

ρi
1

i+ 1

)

=
m∑
i=1

m∑
j=1

ρiρj
i+ 1

j+ 1

=
1

2

m∑
i=1

m∑
j=1

ρiρj

(
i+ 1

j+ 1
+
j+ 1

i+ 1

)

≥
m∑
i=1

m∑
j=1

ρiρj =

(
m∑
i=1

ρi

)2

= 1.

(EC.1)

Hence, for a given n, f ′(p)> 0 and
p1(n)

p
is increasing in p, and

p− p1(n)

p
is decreasing in p.

(ii) According to the form of p1(n), we have

p1(n+ 1)− p1(n) =
m+1∑
i=1

(
m

i− 1

)
piqm−i+1 p+ i

i+ 1
−

m∑
i=1

(
m− 1

i− 1

)
piqm−i

p+ i

i+ 1

=
m∑
i=0

(
m

i

)
pi+1qm−i

p+ i+ 1

i+ 2
−
m−1∑
i=0

(
m− 1

i

)
pi+1qm−i−1

p+ i+ 1

i+ 2

>
m∑
i=0

(
m

i

)
pi+1qm−i

p+ i+ 1

i+ 2

(
1− m− i

mq

)
=

p

mq

m∑
i=0

(
m

i

)
piqm−i

(
1− q

i+ 2

)
(i−mp)

=
p

mq

m∑
i=0

(
m

i

)
piqm−i

q(mp− i)
i+ 2

(EC.2)

=
pq

mq

m∑
i=0

(
m

i

)
piqm−i

mp− i− 2 + 2

i+ 2

=
pq

mq

m∑
i=0

(
m

i

)
piqm−i

(
mp+ 2

i+ 2
− 1

)

=
pq

mq

[
m∑
i=0

(
m

i

)
piqm−i

mp+ 2

i+ 2
− 1

]
(EC.3)

≥0.

The equality (EC.2) is due to
∑m

i=0

(
m
i

)
piqm−ii = mp and

∑m

i=0

(
m
i

)
piqm−i = 1 from the Bino-

mial distribution B(m,p). Again, the equality (EC.3) is due to
∑m

i=0

(
m
i

)
piqm−i = 1. For the last
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inequality, we use the same result from (EC.1) above such that

m∑
i=0

(
m

i

)
piqm−i

mp+ 2

i+ 2
= (mp+ 2)

m∑
i=0

(
m

i

)
piqm−i

1

i+ 2

=

[
m∑
i=0

(
m

i

)
piqm−i(i+ 2)

][
m∑
i=0

(
m

i

)
piqm−i

1

i+ 2

]
≥ 1.

Thus, we have
p− p1(n+ 1)

p
<
p− p1(n)

p
, which indicates

p− p1(n)

p
is decreasing in n for all p.

Q.E.D.

EC.2.3. Proof of Theorem 3

Let k= 1 and `=W in the definition of the event Ek`(t) in the proof of Theorem 1, i.e. having at

least one demand in the next W periods, conditional on a demand arrival in the current period t.

By definition, we have

E[p̂E1W (n)] =
W∑
j=1

pj(n), and P

[
χ(E1W (0)) = 1

]
=

W∑
j=1

pj.

Note that the long run average model uses the true probability pj while the finite horizon model

uses the biased estimate pj(n). In the following, we compare the cost components in both models

given the same delay W . From Theorem 1, we also have the comparison between the backorder

costs

b
W∑
j=1

pj(n)< b
W∑
j=1

pj, for all W ≥ 1.

Furthermore, the comparison between the inventory holding costs

h
n−1∑

j=W+2

(j−W − 1)pj(n) = h
n−1∑

j=W+2

∑
k≥j

pk(n)>h
n−1∑

j=W+2

∑
k≥j

pk = h
n−1∑

j=W+2

(j−W − 1)pj.

From the comparison, we see that the back order cost has more weight in the long run average

model compared to the finite horizon model when the delay W is fixed. Therefore, in the trade-off

between the back order cost and the inventory holding cost, the long run average model tends to

choose a smaller delay W ∗ compared to the delay W ∗(n) chosen by the finite horizon model.

Q.E.D.

EC.2.4. Proof of Theorem 4

For the t-th (t∈ [τ ]) cycle, when Zt = j and Yt = k, i.e., χ(Zt = j,Yt = k) = 1, we have

Ct(π
sd) =Ckj := h

[
(Sj − k)+ +

j−1∑
`=1

S`

]
+ b(k−Sj)+.
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Similarly, when χ(
∑τ

s=1Zs = n− j)χ(Zτ+1 = j,Xn = k) = 1, we also have Ctail(π
sd) =Ckj.

E[C(πsd)] =E

[
C1(π

sd) + · · ·+Cτ (π
sd) +Ctail(π

sd)

Y1 + · · ·+Yτ + max{1,Xn}

]
=E

∑
j∈[J]

∑
k∈[K]

(∑
t∈[τ ]

χ(Zt = j,Yt = k)∑
s∈[τ ]+,s 6=t Ys + k

+
χ(
∑τ

s=1Zs = n− j)χ(Zτ+1 = j,Xn = k)∑
s∈[τ ] Ys + k

)
Ckj

=
∑
j∈[J]

∑
k∈[K]

Ckj
k
×E

∑
t∈[τ ]

χ(Zt = j,Yt = k)

(
∑

s∈[τ ]+,s 6=t Ys + k)/k
+
χ(
∑τ

s=1Zs = n− j)χ(Zτ+1 = j,Xn = k)

(
∑

s∈[τ ] Ys + k)/k


=
∑
j∈[J]

∑
k∈[K]

p̃kj(n)

∑j−1
`=1 hS` +h(Sj − k)+ + b(k−Sj)+

k

where p̃kj(n) := E

[∑
t∈[τ ]

χ(Zt=j,Yt=k)

(
∑
s∈[τ ]+,s6=t Ys+k)/k

+
χ(

∑τ
s=1 Zs=n−j)χ(Zτ+1=j,Xn=k)

(
∑
s∈[τ ] Ys+k)/k

]
. Q.E.D.

EC.2.5. Proof of Theorem 5

For the t-th cycle, when Zt = j and Yt = θ with conditional density function fj, we have the realized

cycle cost

Ct(π
sd) =Cθj :=

j−1∑
`=1

hS` +h(Sj − θ)+ + b(θ−Sj)+.

Similarly, when
∑τ

s=1Zs = n− j and Xn = θ with conditional density function fj, we also have

Ctail(π
sd) =Cθj.

E[C(πsd)] =E

[
C1(π

sd) + · · ·+Cτ (π
sd) +Ctail(π

sd)

Y1 + · · ·+Yτ +Yn

]

=E

∑
j∈[J]

∫
θ

∑
t∈[τ ]

χ(Zt = j)∑
s∈[τ ]+,s 6=t Ys + θ

Cθj +
χ(
∑τ

s=1Zs = n− j)∑
s∈[τ ] Ys + θ

Cθj

fj(θ)dθ


=E

∑
j∈[J]

∫
θ

∑
t∈[τ ]

χ(Zt = j)

(
∑

s∈[τ ]+,s6=t Ys + θ)/θ
+
χ(
∑τ

s=1Zs = n− j)
(
∑

s∈[τ ] Ys + θ)/θ

fj(θ)
Cθj
θ
dθ


=
∑
j∈[J]

∫
θ

E

∑
t∈[τ ]

χ(Zt = j)

(
∑

s∈[τ ]+,s 6=t Ys + θ)/θ
+
χ(
∑τ

s=1Zs = n− j)
(
∑

s∈[τ ] Ys + θ)/θ

fj(θ)
Cθj
θ
dθ

=
∑
j∈[J]

∫
θ

p̃j(n, θ)

∑j−1
`=1 hS` +h(Sj − θ)+ + b(θ−Sj)+

θ
dθ,

where p̃j(n, θ) := E

(∑
t∈[τ ]

χ(Zt=j)

(
∑
s∈[τ ]+,s6=t Ys+θ)/θ

+
χ(

∑τ
s=1 Zs=n−j)

(
∑
s∈[τ ] Ys+θ)/θ

)
fj(θ), [τ ]+ = [τ ] ∪ {n} and Yn =

max{1,Xn}. Q.E.D.

EC.2.6. Proof of Lemma 1

The following proofs rely on the established results below.



e-companion to Author: The Gambler’s Fallacy in Intermittent Demand Management ec7

Lemma EC.1. (i) (Saumard and Wellner, 2014) If two random variables X and Y are log-

concave, then the product of the two random variables XY is also log-concave.

(ii) (Saumard and Wellner, 2014) If two independent random variables X and Y are log-concave,

then the summation of the two random variables X +Y is also log-concave.

(iii) (An, 1997) If the distribution of a random variable X is log-concave, then the hazard rate

function hα ≡
P(X = α)

P(X ≥ α)
is non-decreasing in α.

The biased estimate in Equation (8) can be rewrite as

pj(n,B) = E

[
χ(QB

1 = j) + . . .+χ(QB
τQ

= j) +χ(
∑τQ

s=1Q
B
s = n− j)χ(QB

τQ+1 = j)

τQ + 1

]
= E

[
P(QB

1 = j) + . . .+ P(QB
τQ

= j) + P(
∑τQ

s=1Q
B
s = n− j)P(QB

τQ+1 = j)

τQ + 1

] (EC.4)

By the log-concavity of inter-arrival time Z1, . . . ,ZB, their sums QB
1 , . . . ,Q

B
τQ
,QB

τQ+1 are also

log-concave. Note that QB
1 , . . . ,Q

B
τQ
,QB

τQ+1 are independent and identically distributed following a

log-concave distribution. By Lemma EC.1 (i) and (ii), the product P(
∑τQ

s=1Q
B
s = n− j)P(QB

τQ+1 =

j) is also log-concave. Based on these results, we can show that the following four inequalities hold.

(i) For any t ∈ [1, . . . , τQ], we have P(QB
t = j + 1)2 ≥ P(QB

t = j)P(QB
t = j + 1) because the

distribution of Qt is log-concave;

(ii) For any s, t ∈ [1, . . . , τQ], we have P(QB
s = j + 1)P(QB

t = j + 1)≥P(QB
s = j)P(QB

t = j + 2)

because the distributions of Qs and Qt are identical and log-concave;

(iii) The inequality P(
∑τQ

s=1Q
B
s = n− j−1)2P(QB

τQ+1 = j+1)2 ≥P(
∑τQ

s=1Q
B
s = n− j)P(QB

τQ+1 =

j)P(
∑τQ

s=1Q
B
s = n − j − 2)P(QB

τQ+1 = j + 2) holds because P(
∑τQ

s=1Q
B
s = n − j)P(QB

τQ+1 = j) is

log-concave;

(iv) Note that the distribution of
∑τQ

s=1Q
B
s is concave by Assumption 2, i.e., 2P(

∑τQ
s=1Q

B
s =

n− j− 1)≥P(
∑τQ

s=1Q
B
s = n− j) + P(

∑τQ
s=1Q

B
s = n− j− 2). For any t∈ [1, . . . , τQ], we have

2P(
∑τQ

s=1Q
B
s = n − j − 1)P(QB

τQ+1 = j + 1)P(QB
t = j + 1) ≥ P(

∑τQ
s=1Q

B
s = n − j)P(QB

τQ+1 =

j)P(QB
t = j + 2) + P(

∑τQ
s=1Q

B
s = n− j − 2)P(QB

τQ+1 = j + 2)P(QB
t = j) because the distributions

of QB
τQ+1 and QB

t are identical and log-concave.

We can show that pj(n,B) satisfies the log-concave condition p2j+1(n,B) ≥ pj(n,B)pj+2(n,B)

using the Definition 1 and the summation of the above inequalities in the four cases. Thus, the

biased distribution defined in (8) is also log-concave. Q.E.D.

EC.2.7. Proof of Proposition 4

According to Assumption 1 and Lemma EC.1 (iii), the hazard rate function hα(B) =

pα(n,B)/
∑

j≥α pj(n,B) is non-decreasing in α. Then, the function g(W,B) =
1

1/hW+L+1(B)− 1
is

also non-decreasing in W . Note that the cost difference f(W,B)> 0 if and only if g(W,B)> h
b
.

The optimal W ∗(n,B) is identified when f(W − 1,B)≤ 0 and f(W,B)> 0, i.e., g(W − 1,B)≤ h/b
and g(W,B)>h/b. The results in Proposition 4 hold. Q.E.D.
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EC.2.8. Proof of Proposition 5

We first show that g(W,B) is non-increasing in B. According the definition of g(W,B), we have

g(W,B) =
pW+L+1(n,B)∑n

j=W+L+1 pj(n,B)− pW+L+1(n,B)
=

1

1/hW+L+1(B)− 1
,

and

g(W,B+ 1) =
1

1/hW+L+1(B+ 1)− 1
.

Recall that hα(B + 1) = pα(n,B + 1)/
∑

j≥α pj(n,B + 1), where pj(n,B + 1) =

E

[
χ(QB1 =j−ZB+1)+...+χ(Q

B
τQ

=j−ZB+1)+χ(
∑τQ
s=1Q

B
s =n−j−ZB+1)χ(Q

B
τQ+1=j−ZB+1)

τQ+1

]
. Comparing with the form

of pj(n,B), we note that pj(n,B + 1) = pj′(n,B) for some j′ ≤ j. Therefore, hα(B + 1) = hα′(B)

with α′ ≤ α which further implies that hα(B) is non-increasing in B by the non-decreasing haz-

ard rate property in Lemma EC.1 (iii). As a result, we have hW+L+1(B + 1)≤ hW+L+1(B). Thus

g(W,B+ 1)≤ g(W,B), which indicates g(W,B) is non-increasing in B.

Now we prove W ∗(n,B) is non-decreasing in B by contradiction. Let W ∗(n,B) and W ∗(n,B+1)

be the optimal delay given the buffer stock B and B + 1, respectively. Suppose there exists a B

such that W ∗(n,B+ 1)<W ∗(n,B).

Due to the optimality of W ∗(n,B+ 1) and W ∗(n,B), the following results hold,

g(W ∗(n,B)− 1,B)≤ h/b, g(W ∗(n,B),B)>h/b;

g(W ∗(n,B+ 1)− 1,B+ 1)≤ h/b, g(W ∗(n,B+ 1),B+ 1)>h/b.

Because g(W,B) is non-increasing in B and non-decreasing in W , we have

g(W ∗(n,B)− 1,B+ 1)≤ g(W ∗(n,B)− 1,B)≤ h/b

g(W ∗(n,B),B+ 1)≥ g(W ∗(n,B+ 1),B+ 1)>h/b,

which indicates that W ∗(n,B) also satisfy the optimality condition. However, we know W ∗(n,B+

1)<W ∗(n,B), then W ∗(n,B + 1) can not be the optimal delay given the buffer stock as B + 1,

as the definition of optimal delay is W ∗(n,B) = max{W : g(W −1,B)≤ h/b, g(W,B)>h/b}. This

result contradicts the fact that W ∗(n,B+ 1) is the optimal delay. Therefore, for every B, we have

W ∗(n,B+ 1)≥W ∗(n,B). Q.E.D.

EC.3. Benchmarks
EC.3.1. The Croston Policy

Croston’s method counts nonzero demand arrivals η and uses two separate forecasts—ŷt for the

inter-arrival time, i.e., from period t to next nonzero demand arrival, and ẑη for the size of η-th

nonzero demand. Both are estimated by the exponential weighted moving average method.

Let dt be the observed demand in period t, ŷ′η be the forecast inter-arrival time between η-th

and (η+ 1)-th nonzero demand arrivals, and τt be the elapsed time since the last nonzero demand.

With the smoothing coefficient α, the updating procedure is as follows:
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• When dt 6= 0, η← η+ 1, 
ẑη = (1−α)ẑη−1 +αdt
ŷ′η = (1−α)ŷ′η−1 +ατt
ŷt = ŷ′η
τt = 1

• When dt = 0, η and ẑη remain unchanged,{
τt+1← τt + 1
ŷt = ŷt−1

In period t, the demand rate, i.e., the expected demand per period, is given by ẑη/ŷt.

The stock replenishment is a linear combination of the estimates of expected demand, and the

mean absolute deviation of the one period ahead forecasting.

EC.3.2. The ITE Policy

They consider a discrete-time model with inventory review periods that are often shorter than

the times between successive demand arrivals. Therefore, there are periods in which no demand is

received. They model the randomness in demand arrivals by a Bernoulli process with parameter

p; i.e., the probability of a positive demand is equal to p in any period. Let the distribution of

positive demand size, denoted by X, be a member of the location-scale family of distributions with

location parameter τ and scale parameter θ with cdf F (x; τ, θ).

If the distribution is known, the problem is a classic newsvendor problem. Let γ0 denote h/(h+b).

For p > γ0, the optimal inventory target q∗ is given by τ + η (p, γ0)θ, where η (p, γ0) is equal to

F−1 (1− γ0/p; 0,1) For p≤ γ0, q∗ is zero and it is optimal not to carry any inventory.

However, if we need to estimate the parameters p̂, τ̂ , θ̂ through historical data, then the resulting

inventory-target estimator is

Q̂ (p̂, γo) =

{
τ̂ + η (p̂, γ0) θ̂ if p̂ > γ0,
0 if p̂≤ γ0.

Next, they quantify the expected cost of incorrectly estimating the parameters in inventory-target

estimation, i.e., C
(
Q̂ (p̂, γo) ;p, τ, θ

)
− C (q∗;p, τ, θ). The expected cost of incorrectly estimating

the unknown parameters p, τ , and θ, which is given by E
(
∆τ̂ ,θ̂(γ;p, τ, θ)

)
, can be written as

θE (∆U,V (γ;p,0,1)), where ∆U,V (·;p,0,1) is a function of the random variables U := (τ̂ − τ)/θ and

V := θ̂/θ, and the demand-occurrence probability p.

For example, for threshold γ and exponentially distributed positive demand with mean θ,

E (∆θ̂(γ;p, τ, θ)) corresponding to the expected cost of incorrectly estimating the parameters p and

θ is given by

θ
∑
w>γ

{
h log

(
w

γ

)
+ p(h+ b)(`(n,γ,w)− 1)

}
P (p̂=w).
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The decision maker solves the optimization problem

min
γ∈[0,1]

max
p∈P

E
(
∆τ̂ ,θ̂(γ;p, τ, θ)

)
,

where P :=

[
max

(
0, p̂− v1−α2

√
p̂(1−p̂)
n

)
,min

(
1, p̂+ v1−α2

√
p̂(1−p̂)
n

)]
.

EC.4. The impact of biased estimates under different shortage costs
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(a) The cost savings using biased estimates (b= 8).

p

0.060.080.100.120.14 Tim
e h

ori
zon

50
60

70
80

90
100

De
la

ys

0
20
40
60
80

(b) Delays using biased estimates (b= 8).
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(c) The cost savings using biased estimates (b =

12).
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(d) Delays using biased estimates (b= 12).

Figure EC.1 The impact of biased estimates.

EC.5. Additional numerical results under different shortage costs
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Figure EC.2 Average CPUGS of the 31 products.
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(a) Shortage cost=10
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(b) Shortage cost=18
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(c) Shortage cost=26
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(d) Shortage cost=34
Figure EC.3 Total inventory levels of 31 products over time under different shortage costs
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