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We study the problem of advance scheduling of ward admission requests in a public hospital, which affects

the usage of critical resources such as operating theaters and hospital beds. Given the stochastic arrivals

of patients and their uncertain usage of resources, it is often infeasible for the planner to devise a risk-free

schedule to meet these requests without violating resource capacity constraints and creating negative effects

that include healthcare overtime, longer patient waiting times, and even bed shortages. The difficulty of

quantifying these costs and the need to safeguard against their overutilization lead us to propose a resource

satisficing framework that renders the violation of resource constraints less likely and also diminishes their

impact whenever they occur. The risk of resource overutilization is captured by our resource satisficing

index (RSI), which is calibrated to reflect a risk-adjusted utilization rate for a better interpretation to the

healthcare planner. Unlike the expected utilization rate, RSI is risk sensitive and serves to better mitigate the

risks of overutilization. Our satisficing approach aims to balance out the overutilization risks by minimizing

the largest RSIs among all resources and time periods, which, under our proposed partial adaptive scheduling

policy, can be formulated and solved via a converging sequence of mixed-integer linear optimization problems.

A computational study establishes that our approach reduces resource overutilization risks to a greater

extent than does the benchmark method using the first fit (FF) heuristic.
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1. Introduction

The scheduling of patient appointment and admission is an integral part of any hospital’s daily

operations. Broadly speaking, the appointment scheduling process includes intraday scheduling

and multiday scheduling. The former involves designing the detailed sequence and start times of

services given a set of patients that need to be served. The latter focuses on the matter of admitting

patients and scheduling them to clinical procedures, possibly in the near future. In this paper

we focus on the advance scheduling of patient admission, which integrates bed management and

multiday scheduling. The advance scheduling process adaptively determines the patients’ admission
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dates subject to such resource constraints as the availability of beds, operating theaters, diagnostic

imaging equipment and manpower. Advance scheduling is an important mechanism for ensuring

a hospital’s smooth operation (Chakraborty et al. 2010), and good scheduling balances resource

utilization and reduces patient dissatisfaction (Lowery and Martin 1989). We describe a general

advance admission scheduling problem where patients are dynamically admitted to different days

and may subsequently go through some clinical procedures such as consultation, surgery, magnetic

resonance imaging, and so on. Admitting patients requires hospital beds, and subsequent clinical

procedures also use a variety of resources. Therefore, advance admission decisions can significantly

influence the usage of different resources on each day. The planner’s problem is to schedule, on

a daily basis, patients to future dates for admission subject to the resource constraints such as

bed availability. In our context, this admission scheduling system has two general objectives: (i) to

schedule all patients on the day of their arrival to future dates subject to a specific waiting time

limit; and (ii) to safeguard the system against overutilization of various relevant resources. These

resources include—but are not limited to—operating theaters, hospital beds and diagnostic imaging

equipment. Overutilization of resources corresponds to exceeding resource capacity, which is often

associated with loss of service for patients and incurring overtime for healthcare workers. In many

situations, patients are routed to non-primary wards or temporary beds when bed shortages happen

(Dai and Shi 2018), which compromizes the quality of the care. In addition, healthcare overtime

can threaten patient safety, nurse turnover, and physician burnout (see e.g., Rogers et al. 2004,

Stimpfel et al. 2012, Shanafelt et al. 2017).

It is difficult, in general, to derive a good scheduling policy for such realistic advance admission

scheduling problems. Challenges persist for two major reasons: the state space is large and the

objectives are hard to quantify. First, scheduling decisions are made online. At the moment when

patients are scheduled, future information (e.g., future arrivals, no-shows) is unobserved. Schedul-

ing decisions amount to firm commitments, and they cannot be modified when future information

becomes available. Problems of this sort typically have a huge state space. A dynamic program-

ming model that minimizes expected costs can be computationally intractable even for very small

instances (Liu et al. 2010). Hence for a general, real-world advance admission scheduling problem, it

is impossible to account for—much less anticipate—all future uncertainties and dynamics. Second,

a clear objective function is hard to define. The healthcare system’s main concerns are the value of

care and operational constraints. The former refers to the trade-offs between the quality and costs

of care, but the quality of overall care cannot be easily translated into monetary values. From this

it follows that the trade-off between quality and cost is elusive. Therefore, we may not have accu-

rate cost information for using traditional approaches such as those in multi-criteria optimization.

As regards the latter concern, we remark that resource constraints associated with the availability
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of shared resources impose restrictions on daily operations. Because of the stochastic nature of

resource usage, it is impossible to deliver a risk-free schedule that precludes any resource overuti-

lization in daily operations. That is, there is always some chance that the capacity of resources

will be exceeded. A good scheduling plan should avoid, to the greatest extent possible, the overuti-

lization of any resource. To safeguard the system from resource overutilization, it is desirable to

consider both the likelihood and the magnitude of overutilization—factors that jointly determine

the risk of overutilization.

In practice, the hospital’s objective is to meet operational targets in its daily operations. More

specifically, they wish to serve all requesting patients while mitigating the risk of overutilization.

On the ground, many hospitals’ current practice is based mainly on a first-come, first-served policy.

This policy resembles the first fit (FF) algorithm, which schedules a patient to the first available

day that fits him. In the context of the online bin packing problems, the FF algorithm also admits

a good competitive ratio (see e.g., Johnson 1973, Johnson et al. 1974). Yet the planner must

expect that its resource capacities will not be exceeded. We aim to improve the current practice

and develop a computationally tractable model that carefully accounts for and mitigates the risk

of resource overutilization. Another cause of resource overutilization risk— besides the stochastic

usage of resources—is the uncertain nature of future arrivals and random no-shows. To some extent,

the model should be able to anticipate these factors.

To address these issues collectively, we propose a resource satisficing framework that reduces

the risk of resource overutilization, which is defined via our resource satisficing index (RSI). The

term “satisficing” is a portmanteau of “satisfy” and “suffice”. This notion, introduced by Simon

(1959), aims to achieve feasibility under conditions of uncertainty. In many real-world problems,

the decision maker may not seek to optimize the profit or the cost. Instead, the goal is to operate—

as much as possible—within particular resource constraints, or to find a solution that “satisfices”

those constraints. Simon (1959) provides an example of selling a house and the agent, after an

exploration phase in which she learns about the climate of her housing market, has identified a

benchmark that would be used as a comparator in her decision making. In the spirit of satisficing,

we use a benchmarked admission heuristic as a comparator, which reflects how the hospital admin-

istrators articulate the trade-offs concerning the risks of overutilization for various resources, and

our goal is to reduce overutilization risks. The satisficing approach fits well in the healthcare con-

text and circumvents the need for the healthcare administrators to accurately extract the various

cost parameters and articulating the trade-offs between monetary and non-monetary outcomes.

To tackle the uncertainty of future events, we propose to anticipate a small number of future

requests; we call these “potential patients”. Along with assigning the actual patients on hand, we

also propose a partial adaptive scheduling policy to anticipate several patients that may arrive in
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the future. These patients are unobserved and their types are (for the moment) unknown. Our

tractable scheduling policy can adapt its solution to the actual realization of patient types and,

more importantly, scale well computationally with respect to the number of the potential patients.

An intuitive benefit of considering some amount of potential patients is that it helps the planner

intentionally leave spaces in the more flexible days (that is compatible with more types of patients)

and also leave spaces for patients with high priority or severe conditions.

Literature review

We refer interested readers to Gupta (2007), Gupta and Denton (2008), Guerriero and Guido

(2011), and May et al. (2011) for comprehensive reviews of appointment scheduling that cover such

topics as intraday scheduling and multi-day scheduling. Our paper focuses on multi-day schedul-

ing, which include allocation scheduling and advance scheduling. Allocation scheduling focuses on

designing each day’s allocation capacity. After observing all the patients on a waiting list, the deci-

sion variable is the number of patients on that list to serve during the day in question. Unattended

patients remain on the waiting list. Gerchak et al. (1996) characterize an optimal policy for allo-

cating capacity to regular and emergency patients, and Min and Yih (2010) extend those results

for multiple patient classes. There are many works in this stream, including Huh et al. (2013), Min

and Yih (2014), and Wang and Truong (2018). Wang and Truong study a multi-priority online

scheduling policy for allocation scheduling problems, where a waiting list can extend over several

days. The appointment system’s capacity can be increased by incurring some overload cost, and the

algorithm balances the waiting cost and the overload cost. Samiedaluie et al. (2017) study patient

admission policies (allocation scheduling) in a neurology ward where there are multiple types of

patients with different medical characteristics. They consider only hospital bed resource, and aim

to reduce disutility from patient waiting.

In our context, appointment requests must be processed on the same day; hence a multi-day

waiting list is unacceptable. Our problem constitutes an advance scheduling problem. Advance

scheduling schedules subjects to future days in response to their requests, and these assignments are

usually irrevocable. Few scholars have considered algorithms or policy related to advance schedul-

ing problems. Some papers in this area include Liu et al. (2010), Liu et al. (2011), Souki and Rebai

(2012), Feldman et al. (2014), and Truong (2015). Patrick et al. (2008) develop heuristics based

on approximate dynamic programming for scheduling patients of different priorities. Liu et al.

(2010) derive heuristics based on Markov Decision Process for scheduling homogeneous consulta-

tion appointments while assuming that the service time is deterministic. The authors are mainly

concerned with time-varying no-shows and cancellation behavior. In our case, most of the risks stem

from the random usage of resources such as service times. Truong (2015) studies an optimal online
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policy for a two-class advance scheduling problem. She uses a dynamic programming approach and

shows that the problem reduces to an allocation scheduling problem for which a structural policy

exists. Yet that paper’s results need not hold when there are more than two patient classes. Liu

et al. (2019) extend the model to a more general setting and incorporate patients’ length-of-stays.

Recently, several works study patient appointment in a multistage and multidisciplinary healthcare

network (see, e.g., Diamant et al. 2018, Wang et al. 2019). Wang et al. study patient appointment

scheduling in a multistage healthcare network, where patients go through a list of stations stochas-

tically. They consider a dynamic programming formulation and schedule patient appointment slots

under a myopic policy.

Our paper is also related to the bed management and elective admission literature (see e.g., Kao

and Tung 1981) as the advance admission decisions must account for the risk of bed shortages. Helm

and Van Oyen (2014) study the hospital admission scheduling and control problem. They propose

a Poisson-arrival-location model and formulate the strategic planning problem as mixed-integer

linear optimization problem. They develop linearizing approximations to their metrics capturing

patient blocking, where they assume a waiting list and model a repeated admission cycle. Shi et al.

(2016) use the queueing approach and study the inpatient flow problem, and their model fits the

data well. These works typically focus on the planning phase and consider steady state decisions.

This problem is also related to the online bin packing problem. The hospital’s current practice

is based on the first fit algorithm, which has a modest competitive ratio in the context of online

bin packing (see e.g., Johnson et al. 1974, Yao 1980, Seiden 2002). More recently, Gupta and

Bandi (2018) develop a robust online algorithm for scheduling surgery requests that incorporates

historical information of the arrival sequence. Wang et al. (2018) develop an algorithm for online

revenue management problems that resemble, to a large extent, advance scheduling problems. They

assume that a random number of customers of different types will arrive sequentially during the

planning horizon. These customers use a deterministic amount of resources and must be assigned

“on the fly” as they arrive.

Besides the appointment scheduling literature, our research is closely related also to convex

measures of risk used in the area of stochastic finance (see e.g., Foellmer and Schied 2002, Foellmer

and Knispel 2011). Our risk metric is motivated by the satisficing measure (see e.g., Aumann and

Serrano 2008, Brown and Sim 2009, Brown et al. 2012) that reflects the risk of not achieving a

target. The decision maker must specify this target beforehand. In our context, the target can be

easily defined based on resource capacities. The satisficing framework has previously been used to

deal not only with scheduling but also with portfolio selection and vehicle routing (see e.g., Hall

et al. 2015, Jaillet et al. 2016, Qi 2017). Recently, Long et al. (2019) discuss a unifying robustness

optimization framework using the concept of satisficing. Related to our work, Xie et al. (2018)
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develop a new bed shortage index (BSI), a variant of Aumann and Serrano (2008) riskiness index,

which is closely related to the bed occupancy rate but captures more facets of the risk of bed

shortage. Likewise, we are motivated to propose a new variant of the metric that generalizes BSI

that can be applied to different types of resource usage including operating theaters, hospital beds,

diagnostic imaging equipment, among others.

Contributions

Our paper’s main contributions are as follows.

• We propose a satisficing framework that can address the a multidisciplinary advance admis-

sion scheduling problem. Our framework serves to mitigate the overutilization risk of mul-

tiple resources in a real-world advance admission scheduling problem with multiple patient

types. Our proposed satsificing model circumvents the need for clearly defining a trade-off

between monetary and nonmonetary objectives. This crucial practical advantage aligns with

the hospital’s objective. Our satisficing model also delivers new insights into resource satsific-

ing problems. As far as we know, this is the only paper that considers multiple patient types

and stochastic usage of multiple resources in addressing the advance admission scheduling

problem.

• The satisficing objective of the framework is based on our proposed resource satisficing index

(RSI), which generalizes the bed shortage index (BSI) of Xie et al. (2018). While the BSI is

calibrated to coincide with expected utilization when the random usage is Poisson distributed,

RSI has the flexibility of choosing different reference probability distributions that are com-

monly associated with different types of random resource usage. By minimizing the largest

RSIs among all resources and time periods, we effectively mitigate the risk of exceeding the

capacity for each resource. RSI also extends to regions where resources cannot be satisfied in

expectation, which is relevant in the advance admission scheduling problem because of the

need to temporarily overload the system.

• We propose the partial adaptive scheduling policy, which anticipates future uncertainties to

some extent, while keeping the problem computationally tractable in practice. The optimiza-

tion problem can then be formulated and solved via a converging sequence of mixed-integer

optimization problems, which in practice can be solved effortlessly using state-of-the-art com-

mercial solvers. Computation results show that our heuristic mitigates the risk of exceeding

the resource capacities.

The rest of this paper proceeds as follows. In Section 2, we introduce the advance admission

scheduling problem and describe the resource usage associated with different sources of patients.

We also introduce the partial adaptive scheduling policy. In section 3, we propose and motivate
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the resource satisficing index (RSI), which is a satisficing measure. Section 4 begins by formulating

the resource satisficing optimization Problem (4). We then identify the key subproblem (5), and

develop an efficient algorithm for solving it. We also discuss an extension to incorporate distribu-

tional ambiguity. In Section 5 we establish that our heuristic outperforms current practice, and we

conclude by summarizing in Section 6.

Notation. We use the calligraphic font (e.g., A) to denote sets, and vectors are denoted with

boldface lowercase letters (e.g., x). We use [N ] to denote the running index {1,2,3, . . . ,N} for a

known integer N . Random variables are marked with a tilde (e.g., z̃). We adopt the convention that

inf ∅= +∞, where ∅ is the empty set. We use 1 to represent the indicator function; thus 1(C) = 1 if

the set C is nonempty or 1(C) = 0 if C is empty. We use EP to denote the expectation with respect

to a probability measure P. We use G to denote the ambiguity set of probability distributions. We

use P0(Ω) to denote the set of all probability distributions on a set Ω of scenarios. Given a random

variable ν̃ ∼ P and a set W, we denote ν̃ ∈ W to represent P[ν̃ ∈ W] = 1 for all P ∈ G. For two

random variables ṽ.ũ, we use ṽ ≤ ũ to represent state-wise dominance. Similarly, for some given

constant u∈R, we use ν̃ ≤ u to represent P[ν̃ ≤ u] = 1.

2. Advance Admission Scheduling

On any particular day, admission requests are received from a set A of requesting patients, e.g.,

the set of patients that requested for admission through the call center on this particular day. We

wish to schedule them into diffrerent days on a planning horizon with T days in total. We have

K different types of resources, which include operating theater usage and hospital beds, among

others.

We use s̃d`k to denote the random usage of the kth resource, d days after admitting the `th patient.

To illustrate the modeling flexibility, suppose the `th requesting patient would be scheduled for

surgery on the second day of admission and the kth resource corresponds to the operating theatre

usage, then we will set s̃d`k = 0 for d 6= 1 and s̃1
`k denotes the random surgery time performed on

the day after admission. If the resource k corresponds to the bed usage, then s̃d`k takes the value

of one if he is still warded after d days or zero otherwise. The patient must be discharged after d̄

days, hence for all resource k, s̃d`k = 0 when d> d̄. Note that it is easy to embed patient `’s no-show

within s̃d`k for which the realized resource usage would be zero, i.e., {s̃d`k = 0} for all d and k.

Besides the requesting patients in A, there are three other sources of patients, namely, scheduled,

emergency, and potential that would influence the usage of recourses. Scheduled patients are those

who are already admitted or scheduled for admission in the future, while emergency patients are

unscheduled ones who are admitted on arrivals. We use a single random variable w̃tk to denote the
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random usage of the kth resource at day t by scheduled and emergency patients. As a concrete

example, let Dt denote the set of patients who have been admitted or scheduled for admission on

day t, with t≤ 0 referring to patients admitted −t days prior to day zero (i.e., the current day)

who are not discharged at t= 0. Then, for all t∈ [T ], k ∈ [k], we have

w̃tk =
t∑

τ=t−d̄

∑
`∈Dτ

s̃t−τ`k +
t∑

τ=1

ñτ∑
j=1

ṽt−τjk (1)

where ñτ represents the random number of emergency arrivals on day τ and ṽt−τjk denotes the usage

of the kth resource by the jth emergency patient after admitted for t− τ days.

We have discussed how to model the resource usage by requesting patients, scheduled patients,

and emergency patients. Now, it remains to address future elective arrivals and the corresponding

scheduling decisions. The advance scheduling problem is a dynamic one; ideally, one should account

for all future materializations of elective arrivals and the corresponding scheduling decisions. How-

ever, for tractability, people often use approximations. Wang et al. (2019) show in simulation that

myopic policy already performs well in their dynamic scheduling setting. In this paper, we consider

only a fixed number of potential patients to approximate future dynamics. Potential patients are

those who may arrive in the future and will need to be scheduled for admission in some days in [T ].

Since these patients are currently unobserved, we must anticipate possible scenarios, particularly

the types of future arriving patients for which the distributions of respective resource usage could

be determined empirically. A planner is uncertain about the types of potential patients. There is

no restriction on the definition of type, which can be determined based on, inter alia, the discipline

of surgery requested, patient characteristics and patient preferences. The incorporation of poten-

tial patients can serve to account for additional priority among patient types, flexibility among

physicians, etc...

We let R be the total number of possible patients’ types and the discrete random variable r̃i on

support [R] represents the random type of the ith potential patient for i ∈ [I]. The distribution

of this random type can be obtained from historical data. A potential patient is of type r ∈ [R]

with probability pr; that is, P[r̃i = r] = pr for all i ∈ [I] and all r ∈ [R]. We use ũdikr to represent

the random usage of the kth resource by the ith potential patient, d days after his scheduled

admission if his type is r. The distribution of ũdikr can be characterized in a similar fashion as for the

requesting patients. Notice that we do not necessarily consider all patient types, i.e., [R] can be just

a subset of patient types. This is because we only need to anticipate potential patients with higher

priority, who need to be admitted within a short amount of time. We adopt a heuristic approach

and anticipate only a fixed number I of potential patients. The number I should be chosen based

on validation and simulation. Here, we remark that we can let the number of potential patients be

a random variable, Ĩ – we can still attain an exact and tractable reformulation.
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For the purpose of generality, we do not assume a single known probability distribution for

random resource usage. Instead, we incorporate distributional ambiguity and consider a set G of

possible (joint) probability distributions that characterize the system’s random resource usage. In

particular, G would be a singleton if the distribution is unique, which is the case if we know the

underlying probability distribution.

Assumption 1. For any distribution in G associated with the system’s random parameters, we

assume that the random variables r̃1, . . . , r̃I are independent and identically distributed. In addition,

the random variables associated with the usage of resource k at time period t are independently

distributed for different patients and that their moment generation functions exist.

Partially adaptive scheduling policy

There are two sets of decision variables. First, x ∈ {0,1}|A|×T is the here-and-now scheduling

decision for the requesting patients A; here x`t = 1 if we schedule the ith requesting patient to

day t ∈ [T ]. Second, the wait-and-see scheduling policy ȳit : [R]i → {0,1}, for all i ∈ [I], t ∈ [T ],

which is nonanticipative and corresponds to the scheduling decision for the ith potential patients

as a function of the types of patients that have arrived prior to the ith patient. Observe that the

fully adaptive scheduling policy, ȳit would be associated with an exponential number of decision

variables in I. Instead, to circumvent this curse of dimensionality, we propose the partial adaptive

scheduling policy, which can be encoded as the function ŷit : [R]→ {0,1}, for all i ∈ [I], t ∈ [T ] so

that ŷit(r) = 1 if we schedule the ith potential patient to day t when her realized type is r. To

characterize this scheduling policy, we can define the decision variable, y ∈ {0,1}I×T×R so that

ŷit(r̃i) =
∑
r∈[R]

yitr1(r̃i = r),

where yitr = 1 if we schedule the ith potential patient to day t ∈ [T ] if her type is r. This partial

adaptive scheduling policy can also be adopted when there are scheduling decisions associated

with emergency patients. Observe that the number of decision variables associated with the partial

adaptive scheduling policy is polynomial in the sizes of I.

The total random usage ν̃tk of resource k on day t is

ν̃tk = w̃tk +
∑
τ∈[t]

∑
`∈A

s̃t−τ`k x`τ +
∑
τ∈[t]

∑
i∈[I]

∑
r∈[R]

ũt−τikr yiτr1(r̃i = r) ∀k ∈ [K], ∀t∈ [T ]. (2)

Let Γtk be the capacity of resource k ∈ [K] for day t∈ [T ]. In our model, if the usage of any type of

resources ν̃tk exceeds Γtk then we speak of encountering an overutilization in day t for resource k.

For a concrete example, suppose K = 2 and the two resources are operating theater and hospital
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Table 1 Summary of notations

Symbol Description

A Set of requesting patients

T Length of the horizon

I Number of potential patients

R Number of patient types

K Number of resources

ν̃tk Random usage of the kth resource on day t

Γtk Capacity of the kth resource on day t

w̃tk Random usage of the kth resource on day t by admitted and emergency patients

s̃d`k Random usage of the kth resource by the `th patient, d days after his admission

ũdikr
Random usage of the kth resource by the ith potential patient,
d days after his admission, and if his type is r

x`t Admission decision of the `th requesting patient on day t

yitr Admission decision of the ith potential patient on day t if his type is r

φk Benchmark utilization rate of the kth resource

bed. Then, let ν̃t1 represent the total surgery time required in day t, and let ν̃t2 represent the total

number of beds required in day t. Hence, if ν̃t1 exceeds Γt1, then that day encounters overtime.

Likewise, if ν̃t2 exceeds Γt2, then that day encounters a bed shortage.

We summarize the key notations in Table 1.

3. Resource Satisficing Index

Because ν̃tk is random, we do not necessarily restrict ν̃tk ≤ Γtk for all realization of ν̃tk. Hence

this inequality amounts to only a “soft” constraint whereby we must safeguard the system from

overutilization as much as possible. We define a risk metric that makes good use of distributional

information to describe and hedge against the risk of resource overutilization.

Let Z be the set of all random usages (e.g., non-negative real-valued functions) defined on a set

Ω of scenarios. For any risk metric ρ : Z ×R+→R, the term ρ(ν̃,Γ) describes the overutilization

risk associated with the random usages, ν̃ ∈ Z in exceeding the capacity, Γ. Inspired by the the

riskiness index of Aumann and Serrano (2008) and the adversarial impact measure in Long et al.

(2019), we propose the resource satisficing index (RSI) to evaluate overutilization risk of a random

resource usage, ν̃, with respect to its capacity, Γ> 0 for which its value is zero in the absence of

such risk. We introduce the original riskiness index before our resource satisficing index.

Definition 1 (Riskiness Index). The Aumann and Serrano riskiness index ϕ[ξ̃] of a random

variable ξ̃ representing an uncertain monetary loss of a gamble is the reciprocal of the absolute
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risk aversion (ARA) of an individual with constant ARA who is indifferent to taking that gamble.

By extending their definition to incorporate ambiguity aversion, we define the riskiness index as:

ϕ[ξ̃] = inf
{
α≥ 0 :Cα[ξ̃]≤ 0

}
(3)

where

Cα[ξ̃],


inf
{
u
∣∣∣ ξ̃ ≤ u} if α= 0

α log

(
sup
P∈G

EP

[
exp

(
ξ̃/α

)])
if α∈ (0,∞)

sup
P∈G

EP

[
ξ̃
]

if α=∞

denotes the worst-case certainty equivalent under an exponential utility function with risk tolerance

parameter α∈R∪{∞}.

Notably, riskiness index is a class of satisficing measure characterized in Brown and Sim (2009)

and Brown et al. (2012), which provides a performance guarantee on the probability and expectation

of capacity violation. Specifically, for a capacity, Γ, and any magnitude of violation ε > 0:

P
[
ξ̃ ≥ Γ + ε

]
≤ exp

(
− ε

ϕ[ξ̃−Γ]

)
∀P∈ G;

EP

[
(ξ̃− ε)+

]
≤ ϕ[ξ̃−Γ]

e
exp

(
−ε/ϕ

[
ξ̃−Γ

])
∀P∈ G,

indicating that when the riskiness index is smaller, both theoretical bounds decrease much faster

with ε. Although the probability bound is a trivial one when ε= 0, we still have a guarantee on

the expected capacity violation. In addition, the riskiness index belongs to the class of adversarial

impact measures characterized in Long et al. (2019), which admits the following guarantee:

EP

[
ξ̃
]
−Γ≤ϕ

[
ξ̃−Γ

]
DKL(P‖P̂), ∀P∈P0(Ω),∀P̂∈ G,

where DKL(P‖P̂) is the KL-divergence of P from P̂. Therefore, the expected resource overutilization

under any arbitrary distribution is bounded by the riskiness index times the KL-divergence of this

distribution from the ambiguity set.

Due to the potential difficulties of interpretation, we foresee challenges of introducing the riskiness

index in the context of hospital operations. In contrast, the expected utilization rate is ubiquitous

in the healthcare literature, which, despite its limitations, is often used as a proxy to infer the risk

of overutilization. Our goal is to introduce a variant of the riskiness index that can be associated

with expected utilization rate so that it is more interpretable to hospital administrators.

To address interpretability, Xie et al. (2018) develop a new bed shortage index (BSI) to evaluate

the steady-state bed shortage risk via a bijective function mapping of the Aumann and Serrano

(2008) riskiness index that is calibrated to coincide with expected utilization when the random

usage is Poisson distributed, which is a natural probability distribution for characterizing the
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emergency arrivals of patients to be warded. However, this distribution may not be appropriate for

other types of random resource usage, such as the stochasticity of surgical times associated with

operating theaters. Hence, we define the resource satisficing index (RSI), which has the flexibility of

choosing different reference probability distributions that are commonly associated with different

types of random resource usage.

Definition 2 (Resource satisficing index). Given a random usage, ν̃ ∈ Z and capacity

Γ> 0. For a given calibration function ΦΓ : [0,∞] 7→ [0,1], parameterized by Γ and satisfies

1. ΦΓ(0) = 0,

2. ΦΓ(∞) = 1, and

3. ΦΓ(α) is continuous and increasing in α∈ [0,∞],

the resource satisficing index (RSI) ρ : Z ×R+→R, is defined as

ρ(ν̃,Γ),

ΦΓ(ϕ[ν̃−Γ]) if sup
P∈G

EP [ν̃]≤ Γ,

sup
P∈G

EP [ν̃/Γ] otherwise.

In contrast with the riskiness index and BSI, RSI also extends to regions where resources cannot

be satisfied in expectation under ambiguity, i.e., sup
P∈G

EP [ν̃] > Γ. In advance scheduling in a pub-

lic hospital, where it is mandatory to accommodate all the patients, it is sometime necessary to

temporarily overload some of the resources to avoid infeasibility. Under such circumstances, RSI

would coincide with expected utilization and avoid decision indifference whenever resources could

not be met in expectation under ambiguity. When sup
P∈G

EP [ν̃] ≤ Γ, by incorporating a calibration

function, we transform the original riskiness index to a number in domain [0,1]. The calibration

function should be chosen so that the RSI is closely related to the expected utilization rate. Since

different types of resource usage are more naturally associated with different reference probabil-

ity distributions, the calibration function should vary for different reference distributions. In a

multiple-resource setting, different calibration functions can serve to normalize the overutilization

risk associated with different resources. We next propose the calibration functions for some common

families of reference probability distributions. This calibration renders the RSI closely related to

the expected utilization rate, resulting in a more interpretable metric for healthcare administrators.

Theorem 1. For a given type of resource with capacity Γ, let ν̃µ represent a non-negative random

resource usage, whose distribution belongs to a family of probability distributions parameterized by

µ such that

1. C∞ [ν̃µ] = µ,
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2. C0 [ν̃µ]> Γ for all µ> 0, and

3. Cα [ν̃µ] is increasing in µ for given α∈ (0,∞).

Define

gα(µ),Cα [ν̃µ] .

Then, the calibration function ΦΓ : [0,∞] 7→ [0,1],

ΦΓ(α),


0 if α= 0

g−1
α (Γ)/Γ if α∈ (0,∞)

1 if α=∞

is continuous and increasing in α∈ [0,∞]. Moreover,

ρ (ν̃µ,Γ) = sup
P∈G

EP [ν̃µ/Γ] .

Proof. The proof can be found in Appendix A. �

By Theorem 1, we can derive the calibration functions based on common distributions, such that

the RSI of a random variable from these family of distributions would coincide with its expectation.

For illustration, we provide some of these calibration functions in Table 2, and the derivation can

be found in Appendix B.

Table 2 Calibrating functions for common distribution families.

Probability distribution of random usage, ν̃µ Calibration function, ΦΓ(α)

Exponential distribution α
Γ

(1− exp(−Γ/α))

Gamma distribution with shape parameter κ ακ
Γ

(1− exp(−Γ/(ακ)))

Poisson distribution 1
α(exp(1/α)−1)

Binomial distribution with parameter N , N > Γ N(exp(Γ/(αN))−1)

Γ(exp(1/α)−1)

Ambiguous distribution with mean µ and support parameter, D> Γ D(exp(Γ/α)−1)

Γ(exp(D/α)−1)

For illustration, we plot calibration functions based on three reference distributions in Fig-

ure 1(a). As we can see, for the same value of riskiness parameter α, the calibration function based

on Poisson distribution gives the lowest RSI value. This is because the Poisson distribution is

“riskier” than Binomial distribution with parameter N = 2,3, in terms of the moment generating

function, when they all have the same mean. In fact, the moment generating function of a Poisson
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Figure 1 Comparison of calibration functions and moment generating functions for three reference distributions.

distribution is always above that of a Binomial distribution with the same mean. For example,

in Figure 1(b), we plot the moment generating functions for the three distributions, fixing the

expected values to be the same (µ = 0.5 in this instance). Therefore, when one chooses Poisson

distribution as the reference distribution (i.e., benchmarking on the Poisson distribution), any

overutilization risk will appear to be more acceptable, compared to benchmarking on a Binomial

distribution.

In practice, the distribution of a random usage does not necessarily belong to a common family

of distributions as described in Theorem 1, e.g., a summation of exponentially distributed random

variables with different means does not belong to any such common family. In these cases, we will

not be able to calibrate the RSI so that it coincides with the expected utilization rate. Neverthe-

less, we can still calibrate the RSI using an appropriate reference distribution and interpret the

RSI as a “risk-adjusted” utilization rate, benchmarking on the reference distribution. Intuitively

speaking, the RSI of a random variable would exceed or fall below its expected utilization rate

depending on whether its distribution is “riskier” or “safer” than the reference distribution in

terms of moment generating function. As a concrete example, let’s consider a resource capacity

Γ = 1 and a random resource usage, ν̃µ, which follows a Poisson distribution with rate µ≤ 1. By

Theorem 1, we can calculate the riskiness index associated with any rate µ, and this allows us to

calculate the RSI under different calibration function. Figure 2 illustrates the RSI of this Poisson

random variable under three different calibration functions based on Binomial distribution and

Poisson distribution. By Theorem 1, the RSI calibrated with Poisson distribution coincide with the

expected utilization rate. For the same mean value µ, the RSI is the highest when calibrated using

a Binomial distribution with N = 2. As we have discussed, this is because the Binomial distribution

with parameter N = 2 is the “safest” among the three in terms of moment generating function;
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Figure 2 RSI calibrated with different reference distributions when the true distribution is a Poisson

distribution.

therefore, the overutilization risk appears to be high. In the simulation study, we will discuss how

to choose appropriate calibration functions in a data-driven way, benchmarking on the empirical

distributions of resource usage.

Theorem 2. The RSI is a lower semi-continuous measure that has the following properties. For

any Γ> 0, and random usages, ν̃, ν̃1, ν̃2, we have

1. Monotonicity: ρ(ν̃1,Γ)≥ ρ(ν̃2,Γ) if ν̃1 ≥ ν̃2.

2. Quasi-convexity: ρ(λν̃1 + (1−λ)ν̃2,Γ)≤max{ρ(ν̃1,Γ), ρ(ν̃2,Γ)}.

3. Excess utilization: if supP∈G EP[ν̃]> Γ, then ρ(ν̃,Γ) = supP∈G EP[ν̃/Γ]> 1.

4. Risk-free: if ν̃ ≤ Γ, then ρ(ν̃,Γ) = 0.

Proof. The proof of Theorem 2 can be found in Appendix A. �

Monotonicity states that if a random usage is less than another, then the former would be more

preferred. Quasi-convexity is a common property that is consistent with preference under risk

aversion, and also enables the underlying decision problem to be solved more efficiently. Note that

quasi-convexity is preserved when we define the RSI to coincide with the expected utilization rate

whenever the latter exceeds one, which is the third property. In contrast, the BSI of Xie et al.

(2018) is indifferent to all random usages that are overutilized in expectation. In advance admission
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scheduling, especially in a public hospital, the planner may temporarily overutilize resources to

accommodate all requesting (arriving) patients instead of turning them away. For instance, more

than 20% of the days in our simulation study have overutilized resources. Hence, as a decision

criterion, RSI, which is sensitive the degree of overutilization, is more effective than BSI to address

the advance admission scheduling problem. The last property states that the RSI is zero (i.e.,

the most preferred) when the resource capacity will not be violated. The property rules out the

expected resource utilization rate as a coherent metric for evaluating the risk of its overutilization.

An illustration of the RSI contours is shown in Figure 3. Each point in the figure represents a

different surgery with a random surgery time ν̃ that follows a two-point distribution. The actual

surgery time is outcome 1 (the x-axis) with probability 0.7 and outcome 2 (the y-axis) with

probability 0.3. Suppose the operating theater can only operate for Γ = 1 hour and the RSI is

calibrated with exponential distribution. The solid lines are the RSI contours. The dashed line

represents all random usages with an expected usage of 0.7. Consider all random usages along the

dashed line, which have the same mean. The expected utilization rate cannot distinguish them,

although it is clear that it is more risky towards the top left-hand corner (along the dashed line)

because variance increases in that direction. The RSI, on the other hand, prefers those having lower

variance, as the value is increasing toward the top left-hand corner (along the dashed line). Even

though the distribution here is not an exponential distribution, the RSI is still closely related to the

expected utilization rate – they are on a similar scale. The former deviates from the latter because

it accounts for risks based on distributional information, as we can see the RSI increases with the

variance in this example. This figure also illustrates the various properties listed in Theorem 2.

Before formally spelling out our satisficing model, we illustrate how the RSI can improve schedul-

ing decisions. The only resource we consider in this example is the operating theater (i.e., the

maximum number of hours an operating theater can operate daily is Γ = 10 hours). Suppose there

are two days into which we want to schedule four patients, and only one operating theater can be

used on each day. Suppose further that the surgery times are

ν̃1 ∼

{
6 w.p. 0.5,

4 w.p. 0.5;
ν̃2 ∼

{
5 w.p. 0.5,

1 w.p. 0.5;
ν3 = 4; ν4 = 3.5.

We consider two models for scheduling four patients to these two days. The first model minimizes

the largest expected utilization rate among the two days, whereas the second model minimizes

the largest RSI among those days. The respective optimal scheduling decisions can be derived. In

the first model, we assign patients 1 and 2 to one day and assign patients 3 and 4 to the other

day. The probability that this arrangement will result in overtime is 0.25. In the second model,

we assign patients 1 and 4 to one day and patients 2 and 3 to the other. In this scenario, we will

never encounter overtime even in the worst case. So by considering our proposed risk metric, we

can improve scheduling efficiency.
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Figure 3 The actual usage is either outcome 1 with probability 0.7 or outcome 2 with probability 0.3.

4. Resource Satisficing Optimizing Problem

Admission schedule can significantly impact on the usage of resources over the planning horizon.

Since all requesting patients must be served, a reasonable approach is to optimize the admission

schedule that will spread out the risks of overutilization by minimizing the peak utilization rate

over the planning horizon and for all resources (see e.g., Teow et al. 2007, Meng et al. 2015).

To capture the overtilization risk, we minimize the maximum weight adjusted RSI over the

planning horizon and for all resources as follows:

max

{
ρ1(ν̃11,Γ11)

φ1

, . . . ,
ρK(ν̃TK ,ΓTK)

φK

}
,

where ρk is the RSI associated with resource k, which has its own calibration function, and φk is the

corresponding normalization parameter. We should not treat all resource usage uniformly, because

some resource usages are inherently riskier than the others. Therefore, the flexibility of using

different calibration functions is necessary when dealing with multiple resources. In our simulation

study, we use a data driven approach to calibrate the RSI based on the benchmarked admission

heuristic. This criterion ensures an equitable distribution of overutilization risks among all days

and for all types of resources, hence reducing risk concentrations that may have severe negative

impact on treatment outcomes. At the same time, the normalization parameters provide additional

flexibility for the planner to vary the tradeoffs among different resources. Observe that if all random
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resource usages have the same distributions associated with the corresponding RSIs’ calibration

functions, then ρk(ν̃tk,Γtk) = EP [ν̃tk/Γtk] and the objective would become one that minimizes the

maximum normalized expected utilization rate. Hence, speaking intuitively, these normalization

parameters may be selected to align with the hospital’s desired expected utilization rates for the

different resources.

MIP formulation, bisection search and Benders’ decomposition

We model our resource satisficing advance admission scheduling problem as follows:

β∗ = min β

s.t. ρk(ν̃tk,Γtk)≤ βφk ∀t∈ [T ], ∀k ∈ [K],

(x,y)∈X ,

(4)

where

X =


(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
t∈[T ]

x`t = 1 ∀`∈A,

x`t ∈ {0,1} ∀`∈A, ∀t∈ [T ],∑
t∈[T ]

yitr = 1 ∀i∈ [I], ∀r ∈ [R],

yitr ∈ {0,1} ∀i∈ [I], ∀t∈ [T ], ∀r ∈ [R],

other mixed-integer constraints on x,y


.

Apart from the assignment constraints in X , we could include, among other things, patient avail-

ability on different dates, patient preferences to physicians, and the compatibility between patients

and physicians. For potential patients with unknown type, we can also incorporate type-specific

constraints, such as type-r patients can be admitted only on particular days. These constraints are

practically important, because some types are high priority patients, i.e., they can only wait for

much fewer days than T .

We derive a solution method that solve Problem (4) via a sequence of mixed-integer optimization

problems (MIPs), which can be applied using commercial solvers. This solution framework mainly

uses bisection search and Benders decomposition. An important subroutine is checking whether

there exists some feasible solution (x,y)∈X to Problem (4) for a fixed β. This feasibility problem

is derived in the following theorem.
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Theorem 3. There exists some feasible solution (x,y) ∈X to Problem (4) for a fixed β if and

only if the optimal solution γ∗ to Problem (5) satisfies γ∗ ≤ 0.

min γ

s.t. wtk(∞) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (∞) +

∑
i∈[I]

∑
τ∈[t]

∑
r∈[R]

yiτru
t−τ
itrk(∞)−Γtkβφk ≤ γ ∀k ∈K1, t∈ [T ],

wtk(αtk) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (αtk) +

∑
i∈[I]

fitk(αtk,yi)−Γtk ≤ γ ∀k ∈K2, t∈ [T ],

(x,y)∈X ,

(5)

where K1 = {k : βφk ≥ 1}, K2 = {k : βφk < 1}, yi = (yi11, . . . , yiTR)′; in addition,

αtk ,Φ−1
Γtk

(βφk), wtk(α),Cα [w̃tk] , s
d
`k(α),Cα

[
s̃d`tk
]
, uditrk(α),Cα

[
ũdikr

]
,

and

fitk(α,yi), α log

∑
r∈[R]

pr exp

∑
τ∈[t]

yiτr
ut−τitrk(α)

α

 .

Proof. The proof of Theorem 3 can be found in Appendix A. �

Theorem 3 identifies a convex reformulation of the subproblem we need to solve within each

iteration of a bisection search. The first set of T |K1| constraints in Problem (5) are affine, and the

second set of T |K2| constraints are affine in x and convex in y. This facilitates using a subgradient

method to evaluate it. Observe that, unlike the conventional robust optimization models, the worst

case distributions in G does not depend on the decisions x,y – it only appears in the functional Cα.

In other words, we can calculate the worst-case certainty equivalent, e.g., wtk(α), before optimizing

over the scheduling decisions, which greatly simplifies the problem. Interested readers can further

refer to, e.g., Ben-Tal et al. (2013), Wiesemann et al. (2014), Esfahani and Kuhn (2018).

The solution to Problem (5) guides the bisection search. Recall that β∗ is the true optimal

solution to Problem (4). If γ∗ ≤ 0 in Problem (5) for fixed β, then β ≥ β∗ and we can further reduce

β; otherwise, β < β∗ and we must increase β. Hence, it follows that we can conduct a bisection

search to solve Problem (4) as long as we can devise a subroutine that solves Problem (5) efficiently.

Note that Problem (5) is a mixed-integer optimization problem with non-linear convex constraints.

We invoke the following subgradient result.

Proposition 1. For any y ∈RT×R,

fitk(α,y) = max
v∈RT×R

fitk(α,v) +
∑
r∈[R]

∑
τ∈[t]

gτitrk(α,v) (yτr− vτr)

 (6)
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where

gτitrk(α,v) =

pru
t−τ
itrk(α) exp

( ∑
τ1∈[t]

vτ1ru
t−τ1
itrk (α)/α

)
∑

m∈[R]

pm exp

( ∑
τ2∈[t]

vτ2mu
t−τ2
itmk(α)/α

)
is the first order derivative of fitk(α,v) with respect to vτr. The worst-case of Problem (6) occurs

when v = y.

Proof of Proposition 1. The proof follows trivially from the convexity of fitk(α,y) with respect

to y. �

Therefore, Problem (5) can be equivalently represented with only affine constraints. We then

solve this problem by way of the Benders decomposition (BD) algorithm described next.

BD Algorithm.

1. Initialize Y = ∅ and input fixed β.

2. Solve the following subproblem:

min γ

s.t. wtk(∞) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (∞) +

∑
i∈[I]

∑
τ∈[t]

∑
r∈[R]

yiτru
t−τ
itrk(∞)−Γtkβφk ≤ γ ∀k ∈K1, t∈ [T ],

wtk(αtk) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (αtk) +

∑
i∈[I]

fitk(αtk,vi)

+
∑
i∈[I]

∑
τ∈[t]

∑
r∈[R]

gτitrk(αk,vi) (yiτr− viτr)−Γtk ≤ γ ∀k ∈K2, t∈ [T ],v ∈Y,

(x,y)∈X .
(7)

If γ∗ ≤ 0, then record the optimal decisions (x∗,y∗) and go to the next step. Otherwise, we

can conclude that β < β∗, and we terminate this Benders decomposition procedure.

3. Check if

wtk(αk) +
∑
`∈A

∑
τ∈[t]

x∗`τs
t−τ
`k (αk) +

∑
i∈[I]

fitk(αk,y
∗
i )−Γtk ≤ 0 ∀k ∈K2, t∈ [T ].

If it is true, go to the next step. Otherwise, include y∗ in Y and return to step 2.

4. We conclude that β ≥ β∗ and terminate this procedure.

There are two reasons why the BD algorithm will terminate within a finite number of iterations.

First, the set X is finite. Second, the optimal decision (x∗,y∗) from any BD iteration is always

a new member to Y. To see this, suppose the optimal decision (x∗,y∗) from any BD iteration is
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already in Y. Then, by Proposition 1, it just means (x∗,y∗) must be feasible in Problem (5), which

is a contradiction because the BD algorithm would have already terminated before this iteration.

We have devised a subroutine above that solves Problem (5) efficiently for any fixed β. Then it

follows from the preceding discussion that we can conduct the bisection search and finally evaluate

β∗ at any level of accuracy. In Appendix C, we discuss the MIP formulation when the number of

potential patients, Ĩ, is random.

5. Simulation Study

In this section, we conduct a simulation study on our model (4), focusing on two resources, namely,

operating theater (OT) and hospital beds usages. We first illustrate how to determine the calibra-

tion functions for different resources in a data-driven way. Then, we run simulations and illustrate

that our model can reduce overutilization for multiple resources altogether without compromizing

the number of patients served.

The setting and data

We collaborate with a public hospital in Singapore who seeks to optimize the OT usage, e.g.,

balance the overall operating theater utiliztaion and reduce overtime. Improving OT usage requires

improving the allocation of patient surgeries to different operating theaters and different days. For

example, allocating several surgeries with high variance on surgery duration into one session can

lead to high variance in utilization rate and severe overtime. To characterize OT resource usage,

we obtain the empirical distribution on surgery duration of 16 different surgery disciplines. For

illustration, we plot histograms for several disciplines in Figure 4.

To illustrate our model in an advance admission scheduling context, we focus on both the OT

resource (i.e., total surgery duration) and the bed availability, which is subject to patients’ random

length of stay. More specifically, we consider a setting where patients stay in the hospital for a

random number of days after admission, and they go through a surgery on the day of admission.

In our study, we consider four patient types (disciplines), each with Poisson distributed arrivals,

truncated lognormal distributed (six hours maximum) surgery times and geometric distributed

length-of-stays. The parameters are summarized in Table 3. The choice of lognormal distribution

is guided by the empirical surgery duration distributions, and the associated parameters, µ and

σ, are directly obtained from the data. The arrival probability is also obtained from the data,

which is effectively the proportion of each patient type among the four chosen disciplines. We

do not have data on the distributions of length-of-stay. For conveniency, we assume they follow

geometric distributions. In addition, the arrivals of emergency patients on any day follow a Poisson

distribution and the rates on different days are shown in Table 4, which is motivated by empirical

evidence that there are more emergency patients on Mondays and Tuesdays, and fewer on Sundays.
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Figure 4 A sample of empirical distributions of surgery duration.

Table 3 Summary of the distributional information

Type

Statistic 1 2 3 4

Surgery time parameter eµ 1.83 2.13 0.84 1.31

Surgery time parameter σ 0.57 0.74 0.99 0.74

Hazard rate of length of stay 0.5 0.55 0.35 0.45

Probability of type 0.228 0.236 0.356 0.180

Table 4 Setup: Rate of emergency patients

Weekday

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Rate of emergency patients 0.8 0.8 0.6 0.6 0.7 0.5 0.4

We set the bed capacity as Γ1 = 8 beds and the daily operation theater duration as Γ2 = 8

hours. Let λt denote the arrival rate of emergency patients on day t, the certainty equivalent of

Electronic copy available at: https://ssrn.com/abstract=3394845



Zhou, Sim and Lam: Advance Admission Scheduling

Article submitted; 23

the resource usage (1) by admitted and emergency patients can be written as:

Cα[w̃tk] =
t∑

τ=t−d̄

∑
`∈Dτ

Cα
[
s̃t−τ`k

]
+

t∑
τ=1

Cα

[
ñτ∑
j=1

ṽt−τjk

]

=
t∑

τ=t−d̄

∑
`∈Dτ

Cα
[
s̃t−τ`k

]
+

t∑
τ=1

αλτ
(
exp(vt−τk )− 1

)
,

where

vdk = log

∑
r∈[R]

pr exp

(
Cα[ũdrk]

α

) .

The inner certainty equivalent Cα[ũdrk] can be calculated because the random usage term ũdrk has

a known distribution. For instance, for bed usage, ũd11 ∼Bernoulli(0.5d).

To derive a steady-state result, in all following instances, we simulate the hospital’s operations

over one thousand days and then calculate average statistics for eight hundred days in the middle

of that time span. In all comparisons, we use the same sample path to generate all arrivals and

resource usages. In addition, every patient must be scheduled, i.e., we do not reject any admission

request.

Benchmarking against an admission heuristic

In the spirit of satisficing, we use a benchmarked admission heuristic as a comparator, and reduce

the risk of resource overutilization of this comparator. Our benchmark in this study is the FF algo-

rithm, which assigns patients in a first-come, first-served fashion while ensuring that the expected

resource utilization rate does not exceed one. When overutilization is inevitable, we permit higher

expected utilization rate to accommodate all requests in the FF algorithm. Though we focus on the

FF algorithm, which is ubiquitous owing to its practicality, in general, we can use other admission

heuristics adopted by the hospital.

We first implement FF algorithm and analyze the resulting usage of hospital beds and OT

resource. In the first instance, we let the arrival rate of admission request be 2.7 and implement

FF algorithm over one thousand days to obtain the empirical distributions of the daily usage of

both resources. We provide the histograms of the empirical usage distributions in Figure 5 and

Figure 6. The average utilization rate of OT resource is 74.5% and that of bed resource is 75.1%.

The empirical distributions describe resource overutilization risks under FF algorithm. The goal

is to reduce overutilization risks of all resources simultaneously while referencing the empirical

resource usage distributions. In other words, we do not treat bed usage and OT usage uniformly;

instead, the RSIs would depend on their empirical usage distributions under the benchmark policy.

However, we cannot directly use empirical distributions as reference distributions because they do

not have corresponding calibration functions. For each resource, we choose a common reference
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Figure 5 Histogram of daily surgery time (FF algorithm)
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Figure 6 Histogram of daily bed usage (FF algorithm)
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distribution from Table 2, which best matches its empirical usage distribution in terms of riskiness.

The random bed usage is a counting process and hence, we use the Binomial distribution with

parameter N as the reference distribution. The OT usage is associated with surgery time and we

use Gamma distribution, with parameter κ as the reference distribution. We next describe how to

choose appropriate parameters N and κ to match the empirical usage distributions.

By Equation (3), we calculate the riskiness index of the empirical bed usage under FF algorithm.

We want to find a Binomial distribution that has the same mean and riskiness index as the empirical

bed usage. In other words, we choose the parameter N such that the Binomial distribution with

parameters N and p= 0.751/N would have the same riskiness index as the empirical bed usage. By

the result in Table 2, the calibrating parameter is set to N = 28.7. Similarly, we calibrate the daily

surgery time with Gamma distribution. The calibrating parameter is set to κ = 3.4 so that the
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Gamma distribution with shape parameter κ = 3.4 and scale parameter θ = 0.745/κ would have

the same mean and riskiness index as the empirical OT usage. In Figure 5 and Figure 6, we also

plot the corresponding reference distributions used in the calibrations. As we have expected, since

the empirical and reference distributions have the same riskiness indices and expected utilization

rates, their distributions also match well.

We solve Problem (4) by using the respective calibration functions and setting the reference

utilization rates φ1, φ2 to be the average utilization rates under FF algorithm, so that the weight

adjusted RSIs are at unit levels under the FF algorithm. Table 5 summarizes the performance

comparison under this case.

Table 5 Performance comparison: Advance admission with bed management. Case 1.

Satisficing

Method FF I = 0 I = 1 I = 2

Average overtime per day 43.5 min 35.3 min 33.4 min 32.9 min

Prob. of overtime 28.2% 24.3% 22.9% 21.8%

Prob. of overtime > 1 hr 19.2% 16.7% 15.8% 15.8%

Prob. of overtime > 2 hr 14.4% 10.3% 11.0% 10.1%

Prob. of overtime > 3 hr 9.7% 7.3% 7.7% 7.1%

Proportion of days with bed shortage 13.7% 10.8% 9.6% 9.7%

Proportion of days with bed shortage ≥ 2 beds 7.7% 4.8% 3.9% 4.8%

As we can see in Table 5, we provide significant improvements in all metrics compared to the FF

algorithm. In addition, considering some potential patients provides additional benefits. In practice,

the number of potential patients, I should be chosen based on validation through simulations. In

this instance, the overall performance on the variety of metrics when I = 2 is better compared to

I = 0. However, we observed in our simulation study that larger values of I may not necessary

lead to greater improvement. It helps to have smaller values of I because, as shown in Table 6, the

computation time increases rapidly as I increases.

We vary the patient arrival rate slightly to verify the performance under different traffic intensity.

For each case, the calibration functions are chosen according to our preceding discussion. The

Table 6 Average computation time for I = 0,1,2,3,4.

I = 0 I = 1 I = 2 I = 3 I = 4

Computational time (in seconds) 0.3 0.9 1.7 3.4 7.4
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performance comparison is summarized in Table 7 when the average utilization rates of OT resource

and bed are 68.0% and 66.2% respectively. The performance comparison is summarized in Table 8

when the average utilization rates of OT resource and bed are 83.4% and 83.3% respectively. From

these cases, we find that anticipating more potential patients is not necessarily helpful when the

average utilization is very high or very low, and when there is no difference in the priority of

patients.

Table 7 Performance comparison: Advance admission with bed management. Case 1 (lighter).

Satisficing

Method FF I = 0 I = 1 I = 2

Average overtime per day 38.3 min 27.2 min 24.8 min 25.7 min

Prob. of overtime 24.2% 18.5% 18.4% 17.8%

Prob. of overtime > 1 hr 18.5% 13.3% 13.1% 11.6%

Prob. of overtime > 2 hr 12.8% 8.4% 7.6% 8.4%

Prob. of overtime > 3 hr 8.1% 4.8% 4.5% 5.5%

Proportion of days with bed shortage 6.8% 4.4% 4.7% 5.4%

Proportion of days with bed shortage ≥ 2 beds 2.2% 1.3% 1.1 % 1.1%

Table 8 Performance comparison: Advance admission with bed management. Case 1 (heavier).

Satisficing

Method FF I = 0 I = 1 I = 2

Average overtime per day 52.8 min 44.2 min 43.6 min 45.4 min

Prob. of overtime 30.4% 30.0% 27.6% 30.2%

Prob. of overtime > 1 hr 22.9% 22.4% 20.7% 21.9%

Prob. of overtime > 2 hr 15.9% 14.5% 14.4% 14.4%

Prob. of overtime > 3 hr 10.7% 9.3% 10.0% 9.6%

Proportion of days with bed shortage 17.8% 14.0% 14.2% 14.5%

Proportion of days with bed shortage ≥ 2 beds 8.0% 6.7% 6.9 % 5.8%

We also consider another setup where different days are compatible with different types of

patients as shown in Table 9. Table 10 summarizes the performance comparison where the average

utilization rates of OT resource and bed are 72.6% and 71.8% respectively. As we can see in

Table 10, our performance is the best when I = 2. Compared to the FF algorithm, we see significant

improvements in all metrics.
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Table 9 Setup: Acceptable patient types (case 2)

Weekday

Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Compatible types 1,2,3,4 1,3,4 1,2,3,4 1,3,4 1,2,3,4 1,3,4 1,3,4

Table 10 Performance comparison: Advance admission with bed management. Case 2.

Satisficing

Method FF I = 0 I = 1 I = 2

Average overtime per day 44.8 min 37.3 min 35.7 min 34.2 min

Prob. of overtime 25.5% 24.6% 24.2% 23.2%

Prob. of overtime > 1 hr 18.9% 17.7% 16.8% 15.5%

Prob. of overtime > 2 hr 13.5% 10.3% 10.9% 9.9%

Prob. of overtime > 3 hr 9.5% 6.8% 6.8% 6.6%

Proportion of days with bed shortage 12.9% 8.4% 9.4% 7.7%

Proportion of days with bed shortage ≥ 2 beds 5.1% 3.8% 3.8% 2.7%

6. Conclusion

Advance admission scheduling in general, and especially when the usage of relevant resources is

stochastic, presents a difficult challenge. Past theoretical results do not directly apply to a realistic

advance admission scheduling problem such as the one we describe. Given a public hospital’s real-

world problem, we propose a resource satisficing framework for the advance scheduling of patient

admission and appointment. After developing a resource satisficing index, we use it to safeguard

the system from the risk—in terms of both likelihood and magnitude—of resource overutilization.

Because our approach incorporates multiple patient types, we can cluster patients beforehand in a

data-driven way. Patient types can be clustered based on arbitrary characteristics: patients’ demo-

graphic information, the discipline of surgery requested, patients’ preferences for or compatibility

with physicians or dates, and the condition (severity) of patients. Hence, we can better distin-

guish among differences (e.g., arrival pattern, surgery time distribution, no-show behavior) among

different patient types. By considering a certain number of potential patients of uncertain type,

we aim to replace myopic scheduling decisions with more forward-looking decisions that account

for the different characteristics among days, if there is any, and also reserve spaces for high pri-

ority patients. Our heuristic approach is computationally accessible and well suited to addressing

realistic advance scheduling problems.
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Appendix

A. Proof of Results

Proof of Theorem 1. For a given Γ and a non-negative random resource usage ν̃µ whose dis-

tribution belongs to a family of distributions parameterized by the mean µ, the riskiness index

ϕ[ν̃µ−Γ] can be written as:

ϕ[ν̃µ−Γ] = min α

s.t. gα (µ)≤ Γ,

α≥ 0,

(8)

where gα(µ),Cα [ν̃µ] is as stated in the theorem. By the property of the certainty equivalent Cα,

we have lim
α→∞

gα(µ) = µ and lim
α→0

gα(µ) =C0[ν̃µ]> Γ.

By the conditions in the theorem, it is easy to see that gα(µ) is continuous, decreasing in α ∈
(0,+∞), and increasing in µ. Then, for any α∈ (0,∞), there exists some µ< Γ such that gα(µ) = Γ,

and we have α=ϕ[ν̃µ−Γ].

Let g−1
α (Γ) denote the inverse function of gα(µ) with respect to µ for α ∈ (0,∞), which is also

continuous for α ∈ (0,∞). We define the calibration function ΦΓ(α), g−1
α (Γ)

Γ
for α ∈ (0,∞). Then,

for ν̃µ such that ϕ[ν̃µ−Γ]∈ (0,∞), which indicates 0<µ< Γ, it follows that:

EP [ν̃µ/Γ] = ΦΓ(ϕ[ν̃µ−Γ]). (9)

Since lim
α→+∞

gα(Γ) = Γ and g−1
α (Γ) is increasing in α ∈ (0,∞), we have g−1

α (Γ)< Γ for α<∞. In

addition, lim
α→∞

g−1
α (Γ) = Γ. We define g−1

∞ (Γ) = Γ, which leads to ΦΓ(∞) = 1 and ΦΓ(α)< 1 for any

α<∞. By the properties of the riskiness index, we know ϕ[ν̃Γ−Γ] =∞. Hence, after defining this

limiting case Φ(∞), 1, equation (9) holds when µ= Γ.

On the other hand, g0(µ) =C0 [ν̃µ]> Γ for all µ > 0, which indicates that there does not exists

µ> 0 such that g0(µ) = Γ. Moreover, for any arbitrarily small α> 0, there exists some µ> 0 such

that gα(µ) = Γ because the measure Cα is continuous and greater than or equals to the expectation.

Therefore, lim
α→0

g−1
α (Γ) = 0 and g−1

α (Γ)> 0 for α ∈ (0,∞). To this end, we define g−1
0 (Γ), 0, which

leads to Φ(0) = 0 and Φ(α)> 0 for α> 0.

By this construction, the calibration function Φ : [0,∞] 7→ [0,1],

Φ(α),


0 if α= 0

g−1
α (Γ)/Γ if α∈ (0,∞)

1 if α=∞

is continuous and increasing in α ∈ [0,∞]. Moreover, when µ ≤ 1, then ρ (ν̃µ,Γ) = EP [ν̃µ] follows

from equation (9). When µ> 1, ρ (ν̃µ,Γ) =EP [ν̃µ] follows by definition.

�
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Proof of Theorem 2. The proof follows from the proof in Xie et al. (2018). Here we briefly talk

about the proof idea. Readers can refer to Xie et al. (2018) for more details.

Define the set H[ν̃] = {α≥ 0 : Cα[ν̃]≤ Γ}. We have infH[ν̃] = ϕ [ν̃−Γ]. Observe that H(ν̃) 6= ∅

if supP∈G EP [ν̃] ≤ Γ. This claim follows because Cα[ν̃] is continuous in α ∈ (0,∞) and C∞[ν̃] =

supP∈G EP [ν̃]. In addition, by definition, ρ (ν̃,Γ)> 1 if supP∈G EP[ν̃]> Γ; otherwise ρ (ν̃,Γ)≤ 1.

1. Monotonicity. Suppose ν̃1 ≥ ν̃2. If supP∈G EP [ν̃2] > Γ, then the monotonicity follows because

the RSI becomes the expected utilization rate for both ν̃1, ν̃2. If supP∈G EP [ν̃1] > Γ and

supP∈G EP [ν̃2]≤ Γ, the result is trivially true by definition. Now we focus on the case where

supP∈G EP [ν̃1]≤ Γ. For any α ∈H [ν̃1], we must have α ∈H [ν̃2]. This indicates H [ν̃1]⊆H [ν̃2].

The result then follows by taking the infimum and observing that ΦΓ is increasing in α∈ [0,∞].

2. Quasi-convexity. First we show that ΦΓ (ϕ [ν̃−Γ]) is quasi-convex in ν̃. For any α ∈ H[ν̃1]∩

H[ν̃2], by the convexity of Cα[·], we must have α ∈ H[λν̃1 + (1− λ)ν̃2]. Taking the infimum

then gives us the quasi-convexity of ϕ [ν̃−Γ] with respect to ν̃. Then, by the monotonicity of

ΦΓ, we can conclude that ΦΓ (ϕ [ν̃−Γ]) is quasi-convex in ν̃. Then, it is easy to analyze that

ρ[·] is quasi-convex, because the expectation measure is also quasi-convex.

3. Excess utilization. This follows from definition.

4. Risk-free. If ν̃ ≤ Γ, then C0(ν̃)≤ Γ. Hence, ρ (ν̃,Γ) = 0.

5. Lower semi-continuity. To show that lower semi-continuity holds, we consider any converging

sequence such that lim
n→∞

ν̃n = ν̃. We need to show that for any a ∈ R, if ρ (ν̃n,Γ) ≤ a for all

n, then ρ (ν̃,Γ)≤ a. When supP∈G EP [ν̃]> Γ, any converging sequence contains a converging

sequence such that supP∈G EP [ν̃n]> Γ for all n. Then, it’s easy to see that lower semi-continuity

holds in this piece. When supP∈G EP [ν̃]< Γ, the lower semi-continuity follows from the lower

semi-continuity of the riskiness index (see e.g., Xie et al. 2018). In addition, the boundary

case supP∈G EP [ν̃] = 1 is contained in the lower piece where ρ (ν̃,Γ)≤ 1. It is straightforward

to see that lower semi-continuity holds at this boundary as well.

�

Proof of Theorem 3. First observe that we can solve 4 by using a bisection search on β. For

any fixed β, we need to solve the following feasibility problem:

min 0

s.t. ρk (ν̃tk,Γtk)≤ βφk ∀t∈ [T ], ∀k ∈ [K],

(x,y)∈X .

(10)

For any t ∈ [T ], k ∈ [K], we first need to express the constraint ρk (ν̃tk,Γtk) ≤ βφk explicitly.

Observe that when βφk > 1, the constraint ρk (ν̃tk,Γtk) ≤ βφk becomes EP [ν̃tk/Γtk] ≤ βφk. When
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βφk = 1, the constraint ρk (ν̃tk,Γtk) ≤ 1 is equivalent to EP [ν̃tk/Γtk] ≤ 1 by definition. When

βφk < 1, the constraint ρk (ν̃tk,Γtk)≤ βφk becomes ϕ [ν̃tk−Γtk]≤Φ−1
Γtk

(βφk), which is equivalent to

CΦ−1
Γtk

(βφk) [ν̃tk−Γtk]≤ 0. As stated in the theorem, we define

αtk ,Φ−1
Γtk

(βφk),wtk(α),Cα [w̃tk] , s
d
`k(α),Cα

[
s̃d`k
]
, uditrk(α),Cα

[
ũdikr

]
.

To distinguish different values of βφk, we split the index set [K] into two sets: K1 = {k : βφk ≥ 1}

and K2 = {k : βφk < 1}. Then, for any k ∈ K1 and t ∈ [T ], the constraint ρk (ν̃tk,Γtk) ≤ βφk is

equivalent to

wtk(∞) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (∞) +

∑
i∈[I]

∑
τ∈[t]

∑
r∈[R]

yiτru
t−τ
itrk(∞)≤ Γtkβφk. (11)

By the independence assumption, for any t ∈ [T ], k ∈ K2, the constraint ρk (ν̃tk,Γtk) ≤ βφk is

equivalent to

wtk(αtk) +
∑
`∈A

Cαtk

∑
τ∈[t]

s̃t−τ`k x`τ

+
∑
i∈[I]

Cαtk

∑
r∈[R]

∑
τ∈[t]

ũt−τikr yiτr1(r̃i = r)

≤ Γtk. (12)

We need to reformulate constraint (17) further. For any ` ∈ A, t ∈ [T ], k ∈ K2, and τ ∈ [t], the

term Cα

[∑
τ∈[t] s̃

t−τ
`k x`τ

]
can be equivalently represented as

∑
τ∈[t] x`τs

t−τ
lk (α). This claim follows

because:

Cα

∑
τ∈[t]

s̃t−τ`k x`τ

= α log

sup
P∈G

EP

exp

∑
τ∈[t]

s̃t−τ`k x`τ/α


=
∑
τ∈[t]

x`τα log

(
sup
P∈G

EP

[
exp

(
s̃t−τ`k

α

)])
=
∑
τ∈[t]

x`τs
t−τ
lk (α).

The second equality follows from the binary nature of x`τ for all ` ∈ A, τ ∈ [T ] and the fact that∑
τ∈[t] x`τ ≤ 1 for all t∈ [T ].

Then, for any i∈ [I], t∈ [T ], k ∈K2, the term

Cα

∑
r∈[R]

∑
τ∈[t]

ũt−τikr yiτr1(r̃i = r)


can be equivalently represented as fitk(α,yi), where yi = (yi11, . . . , yitR)′ and fitk(α,yi) is defined

in Theorem 3 as:

fitk(α,yi), α log

∑
r∈[R]

pr exp

∑
τ∈[t]

yiτr
ut−τitrk(α)

α

 .
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This claim follows from the structure of the partial adaptive scheduling function together with

the binary nature of yitr. To see this:

Cα

∑
r∈[R]

∑
τ∈[t]

ũt−τikr yiτr1(r̃i = r)


= α log

∑
r∈[R]

pr sup
P∈G

EP

[
exp

(∑
τ∈[t] ũ

t−τ
ikr yiτr

α

)]
= α log

∑
r∈[R]

pr exp

∑
τ∈[t]

yiτr log

(
sup
P∈G

EP

[
exp

(
ũt−τikr

α

)])
= α log

∑
r∈[R]

pr exp

∑
τ∈[t]

yiτr
ut−τitrk(α)

α


= fitk(α,yi).

The second equality follows because yiτr ∈ {0,1} for all i∈ [I], τ ∈ [T ], r ∈ [R] and
∑
τ∈[t]

yiτr ≤ 1 for

all i∈ [I], r ∈ [R]. Therefore, by constraint (11) and constraint (12), for any fixed β, Problem (10)

if feasible if and only if γ∗ ≤ 0, where

γ∗ = min γ

s.t. wtk(∞) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (∞) +

∑
i∈[I]

∑
τ∈[t]

∑
r∈[R]

yiτru
t−τ
itrk(∞)−Γtkβφk ≤ γ ∀k ∈K1, t∈ [T ],

wtk(αtk) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (αtk) +

∑
i∈[I]

fitk(αtk,yi)−Γtk ≤ γ ∀k ∈K2, t∈ [T ],

(x,y)∈X .

Therefore, the result follows. �
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B. Derivation of Calibration Functions in Table 2

Recall that the riskiness index can be written as Problem (8). We need to find the inverse function

g−1
α (Γ).

1. Exponential distribution: the certainty equivalent can be written as:

gα(µ) = α log

(
1

1−µ/α

)
,

for which the inverse function is g−1
α (Γ) = α(1− exp(−Γ/α)).

2. Gamma distribution with shape parameter N : Let µ = Nθ for some scale parameter θ, the

certainty equivalent can be written as:

gα(µ) =−αN log (1−µ/(αN)) ,

for which the inverse function is g−1
α (Γ) = αN(1− exp(−Γ/(αN))).

3. Poisson distribution: the certainty equivalent can be written as:

gα(µ) = αµ (exp(1/α)− 1) ,

for which the inverse function is g−1
α (Γ) = Γ

α(exp(1/α)−1)
.

4. Binomial distribution with N independent trials, N > Γ: the certainty equivalent can be

written as:

gα(µ) = αN log
(

1− µ

N
+
µ

N
exp(1/α)

)
,

for which the inverse function is g−1
α (Γ) = N(exp(Γ/(αN))−1)

(exp(1/α)−1)
.

5. Ambiguous distribution with mean µ and support [0,D], D > Γ: To express gα(µ), we first

find the worst-case moment generating function

sup
P∈G

EP

[
exp

(
ν̃

α

)]
.

By duality, it is equivalent to:

inf s0 + s1µ

s.t. s0 + s1ν− exp
(
ν
α

)
≥ 0 ∀ν ∈ [0,D],

which is a robust optimization problem. Using standard robust optimization techniques, we

get:

sup
P∈G

EP

[
exp

(
ν̃

α

)]
= 1− µ

D
+
µ

D
exp (1/α) .

It indicates

gα(µ) = α log
(

1− µ

D
+
µ

D
exp (D/α)

)
,

for which the inverse function is g−1
α (Γ) = D(exp(Γ/α)−1)

exp(D/α)−1
.

Then, the respective calibration functions are g−1
α (Γ)/Γ.
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C. Considering a Random Number of Potential Patients

When we only consider a deterministic number of potential patients, I, the total random usage ν̃tk

of resource k on day t is given by (2). Now, if we let the number of potential patients be a random

variable, Ĩ, then the total random usage ν̃tk of resource k on day t becomes

ν̃tk = w̃tk +
∑
τ∈[t]

∑
`∈A

s̃t−τ`k x`τ +
∑
τ∈[t]

∑
i∈[Ĩ]

∑
r∈[R]

ũt−τikr yiτr1(r̃i = r) ∀k ∈ [K], ∀t∈ [T ].

The only difference here is that we have a summation over i ∈ [Ĩ]. Here, we assume the support

of Ĩ is finite. In particular, we assume the support is I =
{

1, . . . , Ī
}

, and we let δj := P
[
Ĩ = j

]
for

j ∈ I. We model our resource satisficing advance admission scheduling problem as follows:

β∗ = min β

s.t. ρk(ν̃tk,Γtk)≤ βφk ∀t∈ [T ], ∀k ∈ [K],

(x,y)∈X ,

(13)

where

X =


(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
t∈[T ]

x`t = 1 ∀`∈A,

x`t ∈ {0,1} ∀`∈A, ∀t∈ [T ],∑
t∈[T ]

yitr = 1 ∀i∈ [Ī], ∀r ∈ [R],

yitr ∈ {0,1} ∀i∈ [Ī], ∀t∈ [T ], ∀r ∈ [R],

other mixed-integer constraints on x,y


.

Theorem 4. There exists some feasible solution (x,y)∈X to Problem (13) for a fixed β if and

only if the optimal solution γ∗ to Problem (14) satisfies γ∗ ≤ 0.

min γ

s.t. wtk(∞) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (∞) +

∑
i∈[I]

∑
τ∈[t]

∑
r∈[R]

yiτru
t−τ
itrk(∞)−Γtkβφk ≤ γ ∀k ∈K1, t∈ [T ],

wtk(αtk) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (αtk) +htk(αtk,y)−Γtk ≤ γ ∀k ∈K2, t∈ [T ],

(x,y)∈X ,

(14)

where the notations are as defined in Theorem 3. In addition,

htk(α,y) := α log

∑
j∈[Ī]

δj exp

∑
i∈[j]

fitk(α,yi)

α

 , (15)

where y = (y′1,y
′
2, . . . ,y

′
Ī
)′.
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Proof of Theorem 4. The proof is similar to the proof of Theorem 3. We define

αtk ,Φ−1
Γtk

(βφk),wtk(α),Cα [w̃tk] , s
d
`k(α),Cα

[
s̃d`k
]
, uditrk(α),Cα

[
ũdikr

]
,

and K1 = {k : βφk ≥ 1}, K2 = {k : βφk < 1}. Then, for any k ∈ K1 and t ∈ [T ], the constraint

ρk (ν̃tk,Γtk)≤ βφk is equivalent to

wtk(∞) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (∞) +

∑
j∈I

∑
i∈[j]

∑
τ∈[t]

∑
r∈[R]

δjyiτru
t−τ
itrk(∞)≤ Γtkβφk. (16)

By the independence assumption, for any t∈ [T ], k ∈K2, the constraint ρk (ν̃tk,Γtk)≤ βφk is

wtk(αtk) +
∑
`∈A

Cαtk

∑
τ∈[t]

s̃t−τ`k x`τ

+Cαtk

∑
i∈[Ĩ]

∑
r∈[R]

∑
τ∈[t]

ũt−τikr yiτr1(r̃i = r)

≤ Γtk. (17)

By the proof of Theorem 3, for any `∈A, t∈ [T ], k ∈K2, and τ ∈ [t], the term Cα

[∑
τ∈[t] s̃

t−τ
`k x`τ

]
can be equivalently represented as

∑
τ∈[t] x`τs

t−τ
lk (α). Then, for any t∈ [T ], k ∈K2, the term

Cα

∑
i∈[Ĩ]

∑
r∈[R]

∑
τ∈[t]

ũt−τikr yiτr1(r̃i = r)


can be equivalently written as

htk(α,y) := α log

∑
j∈[Ī]

δj exp

∑
i∈[j]

fitk(α,yi)

α

 ,

where y = (y′1,y
′
2, . . . ,y

′
Ī
)′, yi = (yi11, . . . , yitR)′ and fitk(α,yi) is defined in Theorem 3. This claim

follows from the structure of the partial adaptive scheduling function together with the binary

nature of yitr. To see this:

Cα

∑
i∈[Ĩ]

∑
r∈[R]

∑
τ∈[t]

ũt−τikr yiτr1(r̃i = r)


= α log

∑
j∈[Ī]

δj sup
P∈G

EP

[
exp

(∑
i∈[j]

∑
r∈[R]

∑
τ∈[t] ũ

t−τ
ikr yiτr1(r̃i = r)

α

)]
= α log

∑
j∈[Ī]

δj exp

∑
i∈[j]

log

(
sup
P∈G

EP

[
exp

(∑
r∈[R]

∑
τ∈[t] ũ

t−τ
ikr yiτr1(r̃i = r)

α

)])
= α log

∑
j∈[Ī]

δj exp

∑
i∈[j]

log

∑
r∈[R]

pr sup
P∈G

EP

[
exp

(∑
τ∈[t] ũ

t−τ
ikr yiτr

α

)]
= α log

∑
j∈[Ī]

δj exp

∑
i∈[j]

log

∑
r∈[R]

pr exp

∑
τ∈[t]

yiτr log

(
sup
P∈G

EP

[
exp

(
ũt−τikr

α

)])
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= α log

∑
j∈[Ī]

δj exp

∑
i∈[j]

log

∑
r∈[R]

pr exp

∑
τ∈[t]

yiτr
ut−τitrk(α)

α


= α log

∑
j∈[Ī]

δj exp

∑
i∈[j]

fitk(α,yi)

α

 .

The second equality follows from the independence assumption. The fourth equality follows

because yiτr ∈ {0,1} for all i ∈ [Ī], τ ∈ [T ], r ∈ [R] and
∑
τ∈[t]

yiτr ≤ 1 for all i ∈ [Ī], r ∈ [R]. Therefore,

by constraint (16) and constraint (17), a fixed β is feasible if and only if γ∗ ≤ 0, where

γ∗ = min γ

s.t. wtk(∞) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (∞) +

∑
i∈[I]

∑
τ∈[t]

∑
r∈[R]

yiτru
t−τ
itrk(∞)−Γtkβφk ≤ γ ∀k ∈K1, t∈ [T ],

wtk(αtk) +
∑
`∈A

∑
τ∈[t]

x`τs
t−τ
`k (αtk) +htk(αtk,y)−Γtk ≤ γ ∀k ∈K2, t∈ [T ],

(x,y)∈X .

�

Theorem 4 identifies a convex reformulation of the subproblem we need to solve within each

iteration of a bisection search. The first set of T |K1| constraints in Problem (14) are affine, and

the second set of T |K2| constraints are affine in x and convex in y. Similar to Proposition 2, we

can implement a subgradient method to evaluate Problem (14).

Proposition 2. For any y ∈RĪ×T×R,

htk(α,y) = max
v∈RĪ×T×R

htk(α,v) +
∑
i∈[Ī]

∑
r∈[R]

∑
τ∈[t]

Hτ
itrk(α,v) (yiτr− viτr)

 , (18)

where

Hτ
itrk(α,v) :=

dhtk(α,v)

dviτr
=

Ī∑
j=i

δj exp

(∑
i∈[j]

fitk(α,vi)/α

)
gτitrk(α,vi)

∑
j∈[Ī]

δj exp

(∑
i∈[j]

fitk(α,vi)/α

)
is the first order derivative of htk(α,v) with respect to viτr. The worst-case of Problem (18) occurs

when v = y.

Proof of Proposition 2. The proof follows trivially from the convexity of htk(α,y) with respect

to y ∈RĪ×T×R. �

Therefore, Problem (14) can be equivalently represented with only affine constraints. We then

solve this problem by way of the Benders decomposition (BD) algorithm as described in the main

text.
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