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We study the profit maximization problem of a market maker in a spread betting market. In this market, the market maker quotes

cutoff lines for the outcome of a certain future event as “prices,” and bettors bet on whether the event outcome exceeds the cutoff

lines. Anonymous bettors with heterogeneous strategic behavior and information levels participate in the market. The market maker

has limited information on the event outcome distribution, aiming to extract information from the market (i.e., “learning”) while

guarding against an informed bettor’s strategic manipulation (i.e., “bluff-proofing”). We show that Bayesian policies that ignore

bluffing are typically vulnerable to the informed bettor’s strategic manipulation, resulting in exceedingly large profit losses for the

market maker as well as market inefficiency. We develop and analyze a novel family of policies, called inertial policies, that balance

the tradeoff between learning and bluff-proofing. We construct a simple instance of this family which (i) enables the market maker

to achieve a near-optimal profit loss and (ii) eventually yields market efficiency.
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1. Introduction

1.1. Background and Overview

Spread betting markets are a prevalent form of prediction market, where market makers quote cutoff lines

(a.k.a. “spread lines”) for the outcome of an uncertain future event, and participants take sides on whether

the outcome will exceed the spread line. As a salient example, in a point-spread market for sports betting,

a bookie (the market maker) sets a sequence of point spreads (the spread lines), which can be interpreted

as the number of points taken from the favorite side. The players (bettors) then observe and decide whether

to wager on either the favorite side winning with a margin larger than the point spread or the favorite not

winning with such a margin.1

Mostly popular in sports betting, spread betting constitutes a multibillion-dollar industry in the U.S.; see

NGISC (1999), Statista (2018) and Schwartz (2018). For example, Schwartz (2018) reports that the amount

of wagers placed in 2017 in the Nevada regulated sports betting market was worth around $4.9 billion. Due

to the Supreme Court’s recent decision to clear the way for states to legalize sports betting (NYTimes 2019,

CNN 2018), the size of the U.S. sports betting market is expected to grow considerably in the near future

(OE 2017).

1 Other popular examples of spread betting involve the total number of points in a sports game (Moskowitz 2015) as well as the
percentage difference of votes in a political election (Wolfers and Zitzewitz 2004).
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It is of great value to understand the market making problem in this context, i.e., how to set the spread

lines as “prices” on the part of market makers. From a market maker’s perspective, mispriced spread lines

are costly, since the market makers take the opposite side of every bet offered.2 The consequence of mis-

pricing is exacerbated by the fact that professional bettors may systematically exploit the mispricing events;

see Haralabos “Bob” Voulgaris as a vivid example in the National Basketball Association (NBA) betting

market.3 From a market designer’s perspective, an effective spread betting market (as a prediction market)

serves a role in information aggregation. More specifically, the spread line should reveal intrinsic character-

istics of the event outcome distribution (at least in the long run).

Despite its value, understanding of the aforementioned market making problem is limited. Levitt (2004)

provides some guidelines for a clairvoyant market maker, i.e., one who has perfect information about both

the event outcome distribution and the systematic bias of the public.4 However, Gandar et al. (1998) sug-

gest that opening line biases exist in general in the NBA betting market, but the lines change relatively

frequently in a way to eliminate the opening line biases over time. Such empirical evidence indicates that

market makers (sportsbooks) may not necessarily know the “correct” spread lines in the beginning. Rather,

Gandar et al. (1998) imply that the spread lines are influenced by the interplay between sportsbooks and

the bettors: informed bettors—those who can identify the teams undervalued by the sportsbooks—are both

present and influential in this market; while sportsbooks may adjust the spread lines significantly to correct

their prediction errors over time.

Motivated by this empirical evidence, this paper aims to deepen the understanding of the above market

making problem in the following directions:

1. In the presence of sophisticated bettors, how should a (non-omnipotent) market maker move the spread

lines (dynamically) to maximize overall profits?

2. What is the overall cost of the market maker’s lack of information?

3. Can spread lines yield market efficiency (i.e., converge to an unbiased predictor of the event outcome)

in the long run?

We formulate a dynamic learning problem for the market maker (hereafter referred to as “she”). In par-

ticular, we consider an unbiased market where the market maker has a binary prior belief on the correct

spread line. The market maker strives to dynamically extract information from the market. For example, too

many bets on one side of the spread line may be treated as a signal of mispricing and the market maker can

respond to it by moving the spread lines in the opposite direction. We study policies that respond to such

2 See Levitt (2004) for several notorious examples of bookmakers suffering large losses in history.

3 Among the top gamblers in this market (or at least, among the ones who have revealed their identities), Voulgaris reportedly
“routinely wagered a million dollars in a single day,” with his average winning percentage being around 70% (Eden 2013).

4 In particular, in an unbiased betting market where there is no systematic bias of the public, a clairvoyant market maker should
consistently set the spread line at the median of the event outcome distribution, which equalizes the probabilities of bets on both
sides.
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market signals in a profit-maximizing way and characterize the corresponding spread line dynamics in the

market.

Our model incorporates bettors with heterogeneous strategic behaviors and information levels. Specifi-

cally, we consider two types of bettors: a population of myopic bettors and an informed bettor (each here-

after referred to as “he”). The informed bettor has superior knowledge about the event outcome distribution,

and can bet repeatedly and strategically to maximize his expected profit. On the other hand, myopic bettors

do not exhibit the same level of strategic sophistication as the informed bettor. They form idiosyncratic esti-

mates about the event outcome and bet according to their individual estimates in a myopic way. All bets are

anonymous, i.e., the market maker can only base her spread lines on the aggregate statistics of bets rather

than on each individual bettor’s betting history.

To maximize profit, the market maker faces a trade-off between two goals: learning and bluff-proofing.

On one hand, she needs to extract information from the market and incorporate it into her spread lines. We

refer to this goal as learning. On the other hand, if the market maker adjusts spread lines in a particular way,

the informed bettor may strictly prefer to “bluff,” i.e., bet counter to his private information to exacerbate

the market maker’s mispricing. We refer to the market maker’s goal to protect herself from bluffing as

bluff-proofing. A good pricing policy should balance the trade-off between learning and bluff-proofing.5 For

this purpose, we develop a policy that collects information at a judiciously selected rate. We show that our

policy (i) achieves near-optimal profit performance for the market maker, and (ii) eventually yields market

efficiency by pushing the spread line to the median of the event outcome distribution.

1.2. Summary of Results and Main Contributions

In our analysis, we first study Bayesian policies (BPs)—a popular class of pricing policies in the literature

on dynamic pricing with demand learning (see, e.g., Harrison et al. (2012), Chen and Wang (2016) and

references therein). Under a BP, the market maker (i) computes her posterior belief about the event outcome

distribution using Bayes’ rule but ignoring the informed bettor; and (ii) sets the spread line as a time-

invariant function of her posterior belief. The BP family contains various well-studied policies, such as the

myopic Bayesian policy that uses myopic profit maximization to set the spread line (see, e.g., Harrison et al.

2012, Chen and Wang 2016).

We find that BPs are weak against the informed bettor. To be more precise, the informed bettor could

earn a profit that is linearly growing in the number of bets (Proposition 1). In general, the market maker’s

regret typically grows linearly when the commission rate is small (Theorem 1), where regret is defined as

the profit loss compared to the clairvoyant in Levitt (2004). We also show that the poor performance of BPs

in our setting is not due to incomplete learning. When the informed bettor is absent in our setting, many

5 See Huddart et al. (2001) and Back and Baruch (2004) for similar ideas of bluffing in the financial market. Chen and Wang (2016)
also consider a trade-off between learning and bluff-proofing in dynamic pricing for a single strategic customer with unknown
valuation.
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simple BPs (including the myopic Bayesian policy) eventually learn the event outcome distribution and

achieve good performance. Specifically, the spread line converges to the optimal one at an exponential rate,

leading to a constant regret independent of the number of bets (Theorem 2). We also show the robustness

of our results by considering two extensions where the informed bettor has restricted ability to place bets

(Theorems 5 and 6).

We develop a policy framework that protects the market maker from strategic manipulation. Our solu-

tion, called the inertial policy (IP), is similar to BP except that IP moves the spread line at a slower rate,

but at the same time makes it more costly for the informed bettor to bluff. IP is based on a different (yet

parsimonious) state variable: the difference between bets on both sides of the spread line. This state variable

resembles the market maker’s log-likelihood ratio process, but it aggregates historical data differently, effec-

tively discounting the statistical power of each single data point. We construct a simple instance of IP that

achieves three goals simultaneously. First, the informed bettor never bluffs and bets according to a threshold

strategy (Theorem 3). Second, the spread line converges to the optimal one almost surely, although at a sub-

exponential rate (Theorem 4). Third, IP achieves a regret that grows logarithmically in the number of bets

(Theorem 4). To gain deeper insights on our design choices for IP, we also provide a generalized analysis

(Propositions K.1 and K.2). Our analysis implies that even if the informed bettor is absent, it is impossible

to improve from logarithmic regret to bounded regret by choosing a different instance of IP under mild

regularity conditions (Theorem 7). Our proof techniques for deriving these results are based on the exact

analysis of a certain Markov chain we construct; this approach differs from the commonly used arguments

in the antecedent dynamic learning literature.

1.3. Literature Review

Our work is related to three streams of literature, which are discussed in detail below.

Dynamic pricing and learning in the presence of strategic customers. The literature on dynamic

pricing and demand learning is vast (see, for instance, Araman and Caldentey 2009, Harrison et al.

2012, Keskin and Zeevi 2014, 2016, 2018, Chen et al. 2015, Ciocan and Farias 2014, Ferreira et al. 2017,

den Boer and Keskin 2017, 2019, Shin and Zeevi 2017, Ban and Keskin 2018, Keskin and Birge 2019).

Within this literature, a handful of studies focus on strategic customers; see Levina et al. (2009),

Kanoria and Nazerzadeh (2019), Devanur et al. (2014), Chen and Wang (2016), and Huang et al. (2018).

Our methodologies and solution concepts are inherently connected to this literature, the closest work being

that of Chen and Wang (2016), which builds on the work of Harrison et al. (2012). Like these authors, we

consider a binary prior belief on the event outcome distribution in our setting. Our work further develops that

of Chen and Wang (2016) in two ways. First, we consider bettors with heterogeneous strategic behaviors

and information levels, whereas Chen and Wang (2016) consider a single strategic customer with unknown

valuation. Second, we propose a different, yet simple policy family to defeat the informed bettor. Our policy
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is deterministic, and therefore it is verifiable whether the market maker deviates from the policy ex-post.

This property is helpful to reinforce the market maker’s policy.

We make two contributions to the literature discussed above. First, our paper expands the boundary of

applications in this literature from online advertising and retail to prediction markets. Second, we hope that

our ideas behind the construction of IP, as well as the proof techniques in characterizing its performance,

will in turn motivate analogous pricing policies in other contexts.

Insider trading in financial markets. Our spread betting market model is akin to the insider trading

literature in securities markets (see, e.g., Kyle 1985, Glosten and Milgrom 1985, Lin and Howe 1990, Back

1992, Back and Baruch 2004, Caldentey and Stacchetti 2010, and Ostrovsky 2012 for related work on finan-

cial markets) but considers the special organization of the spread betting market.6

Mulitple modeling differences distinguish our paper from other studies in this literature. First, a common

characterization of the market maker in this literature is a zero-profit condition, i.e., the market maker’s

expected profit conditional on the current filtration is zero; see Kyle (1985) and Caldentey and Stacchetti

(2010) for more details. Our market maker solves a dynamic learning and profit maximization problem.

Therefore, a simple optimality equation may not be available.7 Second, we impose a “wisdom of crowd”

condition for myopic bettors, who bet according to idiosyncratic but unbiased signals of the event outcome.

That is different from the purely noisy trading condition as in Kyle (1985). Finally, our market model is

closely related to those in Glosten and Milgrom (1985) and Back and Baruch (2004). The main difference

is that our model is fully sequential, i.e., we do not assume any probabilistic structure on the bet arrival

process (such as Poisson arrivals). Thus the market maker cannot rely on detection of abnormalities in the

arrival rate to distinguish the informed bettor from myopic ones.

Spread betting markets. Our paper further develops Levitt’s model (Levitt 2004) by consider-

ing the uninformed market maker’s dynamic profit maximization problem. Ultimately, our paper con-

tributes to a better understanding of market efficiency in spread betting markets (see also Sauer 2005,

Hausch and Ziemba 2008). A spread betting market is statistically efficient if the spread line is an unbi-

ased estimator of the event outcome (Lacey 1990, Golec and Tamarkin 1991). It is economically efficient

if there are no profit-earning betting strategies (Zuber et al. 1985 and Gray and Gray 1997). In general, the

efficiency of this market may depend on multiple factors. Among these are spread line dynamics; in particu-

lar, market inefficiency tends to vanish over time (Gray and Gray 1997, Gandar et al. 1998). Another factor

6 A differentiating feature of a betting market is that there is no inherent value in the outcome for the participants. Hence participants
trade primarily based on their predictions of the event outcome. Moreover, the typical contract structure in a spread betting market is
different from a financial exchange market: in a spread betting market, a typical contract is specified by a spread line and a (usually
fixed) commission rate, instead of the bid/ask prices.

7 Regarding our modeling choice of a profit maximization problem, a common justification for the zero-profit condition is compe-
tition among market makers. In the context of the spread betting markets, the presence of competition would probably drive the
commission rate down to the market maker’s marginal cost of a single bet. In that case, the market maker takes commission rates
as given and the only way for a market maker to avoid a systematic loss is to price the spread line at the median, akin to the profit
maximization problem in our paper.
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is the strategic behavior of bettors; e.g., Golec and Tamarkin (1991) point out that in American football

betting, the college market is more efficient than the National Football League (NFL) market, which is con-

sistent with the fact that there are more professional bettors in the college market than in the NFL market.

Market efficiency is also influenced by bettors’ misconceptions about random events like the “hot hand”

(Camerer 1989) and even corruption, as in point-shaving scandals (Wolfers 2006). Regarding spread betting

market efficiency, our paper conveys the insight that in an unbiased market, even if the market maker is

initially uninformed of the event outcome and there is potential strategic manipulation by informed bettors,

the market maker is still able to drive the spread line to the efficient one using an inertial policy.

By showing the effectiveness of the market maker’s policy, our paper also sheds light on the question of

why the spread betting market usually has a market maker instead of being organized as a pure exchange

market. While Bossaerts et al. (2002) discuss this question from a market thickness perspective, our paper

suggests that the manipulation of informed bettors could also contribute to this phenomenon.8 Thus, a

market maker with commitment power is needed to mitigate informed bettors’ strategic manipulations.

Prediction markets. Our paper also fits into the broad theme of prediction markets and belief aggregation

rules. For example, in a formulation where participants bet on the specific outcomes of an event, different

wagering mechanisms are considered such as the scoring rules (see, e.g., Hanson 2003, Hanson 2007,

Chen and Pennock 2007, Chen and Vaughan 2010, Ban 2018) among others (see, e.g., Agrawal et al. 2011,

Freeman et al. 2017, Freeman and Pennock 2018). Besides the noticeable difference between the market

organization in our paper and those in the common settings in this literature,9 a unique feature of our paper

is that we formulate an online learning problem for the market maker in an environment where a strategic

expert can bet multiple times.

2. Problem Formulation

In this section, we build a sequential model for the spread betting market with a mixture of bettors with

heterogeneous strategic behaviors and information levels. In this market, we formulate a learning-and-

pricing problem for the market maker.

2.1. Universal Notations

Throughout the sequel, we use R, Z, Z+, Z−, N and Q to denote the sets of real numbers, integers, strictly

positive integers, strictly negative integers, natural numbers (including zero), and rational numbers, respec-

tively. For all x, y ∈ R, we use the following notation: x ∧ y := min{x, y}, and x ∨ y := max{x, y}. In

8 For example, consider a pure exchange market where a mixture of strategic (but uninformed) traders with a common prior and
myopic traders participate. The symmetric equilibrium should be that the strategic traders submit the same bid/ask prices (based
on their posterior beliefs) and adjust the prices by learning from the myopic traders. In that case, the strategic traders behave like
the market maker in our paper, and the informed trader may harm the strategic traders in the same way that the informed bettor
harms the market maker in our paper. In this case, the strategic bettors rationally would not enter and the market would not achieve
efficiency.

9 For example, in scoring rules, participants submit their entire belief distributions over outcomes, while in spread betting, partici-

pants only give binary responses to the market maker’s spread lines.

Electronic copy available at: https://ssrn.com/abstract=3283392



Birge et al.: Dynamic Learning and Market Making in Spread Betting Markets with Informed Bettors

Submitted 7

particular, x+ := x ∨ 0 and x− := −(x ∧ 0). For a function f : R→ R, we use f ′ and f ′′ to denote the

derivative and second derivative functions of f , respectively.

2.2. Spread Betting Market

Organization of the market. We consider a betting market for a specific event happening in the future.

We model the event outcome as a continuous random variable X ∈R with cumulative distribution function

(c.d.f.) F (·). Anonymous bets are placed sequentially, and we index them by t∈Z+. (We indistinguishably

use the index t to refer to period t or bet t.) For bet t, the market maker first quotes a spread line st chosen

from a compact interval S := [sL, sH ], where −∞ < sL < sH <∞. The bettor who bets in period t can

then bet on either the event {X > st} (in which case, we denote the bet as dt =+1, or a “positive bet”) or

the event {X < st} (in which case, we denote the bet as dt =−1, or a “negative bet”). The payment to the

bettor is made after the event outcome is realized. Letting c∈ (0,1) denote the commission rate charged by

the market maker, the normalized net payment to the bettor is 1− c if the bettor wins (i.e., (X− st)dt > 0),

and −1 if the bettor loses (i.e., (X − st)dt < 0).

Uncertain event outcome. The event outcome distribution is of either “high type” or “low type.” To

be precise, in our model, X = m + ǫ, where: m ∈ {m0,m1} is the (unknown) median of F (·), ǫ is the

noise term with c.d.f. Fǫ(·), and sL <m0 <m1 < sH . We propose regularization conditions for Fǫ(·) in

Assumption 1 below. We introduce hypothesis i, Hi, to be the hypothesis that m=mi. We also denote by

Fi(·) the event outcome distribution under Hi. We illustrate the event outcome distributions in Figure 1.

m0

H0

m1

event outcome

lik
el
ih
oo
d

(\low type")
H1

(\high type")

Figure 1 Illustration of the event outcome distributions. The bell-shaped curve on the left displays the probability density
function of F0(·) (i.e., the event outcome distribution is of “low type”). The bell-shaped curve on the right displays the prob-
ability density function of F1(·) (i.e., the event outcome distribution is of “high type”). For this graph, m0 = 0, m1 = 1, and
ǫ∼ Normal(0,1).

Myopic bettors. There is a population of myopic bettors who bet according to idiosyncratic signals of

the event. As a whole, they represent the market’s (unbiased) knowledge about the event outcome X . In

our model, the myopic bettor who bets in period t receives a signal xt, which is independently drawn from

the true event outcome distribution F (·). He bets on the side X > st if and only if xt > st. That is, his bet

ϑt := I{xt > st}− I{xt ≤ st} follows a binary distribution that equals +1 with probability F̄i (st) and −1
with probability Fi (st).
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Informed bettor. There is an informed bettor who knows the correct median m and bets in a strategic

way. For brevity, if the median m=mi, then the informed bettor is referred to as the type-i informed bettor.

An admissible strategy ξi of the type-i informed bettor specifies a (possibly randomized) action at ∈A :=

{−1,0,+1}, which can depend on both the market maker’s policy π and the underlying hypothesis Hi.

Here, actions at =+1 and at =−1 correspond to placing the bets dt =+1 and dt =−1, respectively, and

at = 0 corresponds to a “waiting” action. That is, if at = 0, then bet t is placed by a myopic bettor. The

action at is adapted to (i) the (public) transaction history ht−1 := (s1, d1, . . . , st−1, dt−1), (ii) the informed

bettor’s action history At−1 := (a1, . . . , at−1), and (iii) the most recent spread line st. Accordingly, bet t can

be expressed as dt = I{at 6=0}at + I{at =0}ϑt.

Market maker’s policy. An admissible policy for the market maker is any function π that maps the

public transaction history ht−1 to the spread line st ∈ S . To represent the market maker’s knowledge, the

mapping π takes neither {at} nor {ϑt} as arguments. This means that the market maker neither knows nor

observes whether a bet is placed by the informed bettor or a myopic one. Moreover, her pricing function can

depend only on the problem input parameter Ξ := (c,m0,m1, Fǫ), but neither on the correct median m nor

the total number of bets T . In our model, the market maker picks the policy π in the beginning and commits

to her policy afterward. To make the commitment credible, we also require that her pricing function can

be verified ex-post by the market. For example, this condition holds when the market maker’s spread line

decision is a deterministic function of the bet history.

Informed bettor’s decision problem as a best response strategy. The informed bettor seeks to max-

imize his total expected profit, given his private information about m, as well as the public knowledge of

the market maker’s pricing policy π.10 We introduce some notation to describe the informed bettor’s deci-

sion making problem. Given the event outcome distribution Fi(·) and the market maker’s spread line s, we

denote the type-i informed bettor’s expected profit from a single positive and negative bet as

{

j+i (s) := (1− c)Pi(X > s)+ (−1)Pi(X <s) = (c− 2)Fi (s)+ 1− c,

j−i (s) := (1− c)Pi(X < s)+ (−1)Pi(X >s) = (2− c)Fi (s)− 1,
(2.1)

respectively, where the probabilities are taken over the event outcome X . Throughout the sequel, we refer

to the quantities in (2.1) above as the informed bettor’s one-stage profit function. Furthermore, given the

market maker’s policy π and informed bettor’s response strategy ξ, the informed bettor’s T -period expected

profit function under Hi is

V π,ξ
i (T ) :=E

π,ξ
i

[
T∑

t=1

[
j+i (st) I{at =+1}+ j−i (st) I{at =−1}

]

]

, (2.2)

10 This assumption implies the market maker is able to credibly commit to a policy. In our case, bettors can verify that the market
maker is following the policy, making the commitment assumption reasonable.
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where the expectation is taken over the spread lines {st} and the informed bettor’s (possibly randomized)

actions {at}, which are specified by the market maker’s policy π, informed bettor’s response strategy ξ, and

the underlying hypothesis Hi. Given π and Hi, the informed bettor aims to find a policy ξ that maximizes

his total expected profit, and in case the informed bettor’s profit becomes unbounded, the informed bettor

chooses a policy that maximizes his long-run average profit per bet. Formally speaking, we say that policy

ξ∗i is a best response strategy if it satisfies the following condition:

ξ∗i ∈
{

argmaxξ lim infT→∞

{
V π,ξ
i (T )

}
if supξ lim infT→∞

{
V π,ξ
i (T )

}
<∞,

argmaxξ lim infT→∞

{
1
T
V π,ξ
i (T )

}
if supξ lim infT→∞

{
V π,ξ
i (T )

}
=∞.

(2.3)

We consider an undiscounted formulation because common spread betting markets, including sports betting,

typically have frequent bets within short deadlines (Moskowitz 2015).

2.3. Market Maker’s Decision Problem

The market maker’s goal is to choose a policy π to maximize her T -period profit, given by

T∑

t=1

E
π,ξ
i

[
I{(X − st)dt < 0}
︸ ︷︷ ︸

bettor loses

−(1− c) I{(X− st)dt > 0}
︸ ︷︷ ︸

bettor wins

]
,

where the expectation is taken over the history hT generated by strategy profile (π, ξ). To evaluate a given

policy π, we use as a performance metric the market maker’s regret, which is the profit loss of π relative to

a clairvoyant market maker who knows the underlying event outcome distribution F (·). The clairvoyant’s

optimal policy is to consistently set the spread line at the median of F (·). To see this, let us first consider

a myopic bettor. Let ri(s) be the market maker’s expected profit from a myopic bettor under hypothesis

i∈ {0,1} when the spread line is s; i.e.,

ri(s) := Pi(X >s)
︸ ︷︷ ︸

prob. of positive bet

[Pi(X < s)+ (c− 1)Pi(X > s)]
︸ ︷︷ ︸

market maker’s profit

+ Pi(X < s)
︸ ︷︷ ︸

prob. of negative bet

[Pi(X > s)+ (c− 1)Pi(X < s)]
︸ ︷︷ ︸

market maker’s profit

= (2c− 4)
(
Fi(s)− 1

2

)2
+ c

2
. (2.4)

According to Equation (2.4), the clairvoyant earns the optimal expected profit c
2

if and only if Fi(s) =
1
2
.

Meanwhile, the same pricing policy drives the informed bettor out of the market because of the commission

cost c. That is, if Fi(s) =
1
2
, the informed bettor’s profit from betting, j+i (s) = j−i (s) = − c

2
, is strictly

negative; hence, the informed bettor is incentivized to refrain from betting. For every i∈ {0,1} and T ∈Z+,

the market maker’s regret is her T -period profit loss relative to the clairvoyant under hypothesis Hi; that is,

∆π,ξ
i (T ) := cT

2
−

T∑

t=1

E
π,ξ
i

[
I{(X − st)dt < 0}− (1− c)I{(X− st)dt > 0}

]
. (2.5)

We also let ∆π(T ) := max
{
∆

π,ξ∗0
0 (T ),∆

π,ξ∗1
1 (T )

}
be the worst-case regret of policy π. Throughout the

sequel, we study how ∆π(T ) increases in T under certain classes of policies. Specifically, we use the

following Big O notation in our asymptotic performance evaluations.
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DEFINITION 1. For every pair of functions f(·), g(·) :Z+→R, we say that:

• f(T ) =O(g(T )) if there exists M <∞ and T0 ∈Z+ such that |f(T )| ≤Mg(T ) for all T ≥ T0;

• f(T ) = Ω(g(T )) if there exists δ > 0 and T0 ∈Z+ such that f(T )≥ δ|g(T )| for all T ≥ T0;

• f(T ) =Θ(g(T )) if both f(T ) =O(g(T )) and f(T ) = Ω(g(T )).

2.4. Assumptions and Discussions

ASSUMPTION 1. The noise distribution Fǫ(·) satisfies the following properties:

(A1:1) Fǫ(·) has a continuously differentiable probability density function (p.d.f.) fǫ(·).
(A1:2) fǫ(·) is symmetric around zero; i.e., fǫ(x) = fǫ(−x) for all x∈R.
(A1:3) fǫ(x)> 0 for all x satisfying |x| ≤max{sH −m0,m1− sL}.

Statement (A1:1) implies that, for each i∈ {0,1}, Fi(·) has a smooth p.d.f., which we denote as fi(·). This

continuous distribution assumption is a reasonable approximation when the event outcome is continuous

(e.g., majority vote percentages) or when the number of possible event outcomes is large (e.g., basketball

games). This modeling choice grants us greater analytical tractability to provide insights into the market

maker’s problem. Statement (A1:2) implies that the noise term ǫ is symmetrically distributed around zero.

In particular, ǫ has zero mean. This symmetric distribution assumption is supported by empirical tests on

sports betting for American football games (Stern 1991) as well as basketball and baseball games (Stern

1994). The last assumption, Statement (A1:3), has two implications: (i) both f0(·) and f1(·) are strictly

positive on the feasible region S = [sL, sH ], and (ii) F1(sL) > 0 and F0(sH) < 1. The first implication

ensures that F0(·) and F1(·) are separable, while the second implication rules out the degenerate case of

instant learning. For a more detailed discussion on Assumption 1, we refer readers to Appendix A.

Informed bettor. Besides superior information about F (·), there are several implicit assumptions about

the informed bettor in our model. First, we treat each bet as anonymous. The reason is that the informed

bettor may find agencies or proxies to place the bet for him. As a consequence, the market maker cannot

differentiate the informed bettor from myopic ones based on their identities. This anonymity accommodates

market manipulation in the spirit of Allen and Gale (1992). Second, the informed bettor can repeatedly bet

without budget constraints and can also bet an arbitrarily large amount of money before any myopic bettor

(while maintaining anonymity). Since bettors make profits at the cost of the market maker, our assumption

of a powerful, informed bettor imposes a “stress test” for the market maker’s pricing policy. Specifically, the

bet arrival model of our paper can be viewed as a combination of an adversarial model (when the informed

bettor bets) and a stochastic model (when the myopic bettors bet), where the informed bettor has the power

to choose between these two models to maximize his profit. In practice, we believe that such a “stress test”

is relevant because the sizes of game-specific sports betting markets are relatively small. In Section 4, we

propose a pricing policy, IP, that passes this stress test. That is, it defeats the informed bettor by allowing
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him to extract at most a constant profit (Lemmas 1 and 2). In Section 5, we also consider more restricted

versions of the informed bettor to understand better the robustness of our findings.

In connection to the broader literature on stochastic bandit problems with adversarial opponents, it

is worth noting that we show the existence of a pricing policy whose performance does not deteriorate

infinitely in the opponent’s budget.11 In part, this is due to the informed bettor’s outside option of withdraw-

ing the bets. Recall that the profit benchmark for the market maker is cT
2

. If there is a bluffing strategy under

which the market maker’s profit is cT
4

and the informed bettor’s loss is cT
4

, the informed bettor would prefer

to quit (with a profit of 0) even though he could have caused a regret of Ω(T ) for the market maker.

Market maker’s decision problem. There is some debate over whether market makers maximize

expected profit, or minimize risk by setting the spread line to balance the wagers on both sides

(Paul and Weinbach 2012). In our model, since the market is unbiased, these two spread lines are equal, and

there is no ambiguity regarding what the “ideal” spread line is for the market maker. In a biased market, it

is still possible to study the market making problem under a profit maximization framework. For example,

if the systematic bias is known to the market maker (or can be empirically estimated), we can generalize

our current formulation by adding a bias term to the market maker’s objective function.

3. Failure (and Success) of Bayesian Policies

This section studies Bayesian policies, a fairly general class of simple and intuitive policies for the market

maker. A Bayesian policy (BP) consists of two components: a belief state and a pricing function. Under

such a policy, the market maker updates her belief about the (unknown) event outcome distribution, but

assuming that there is no informed bettor. To be more precise, we denote bt as the market maker’s posterior

probability that m=m1 in period t. The market maker’s spread line depends exclusively on her belief state

through a time-invariant pricing function sπB (·); see Algorithm 1 in Appendix B for details. We find it

convenient to equivalently express the market maker’s belief state bt using the log-likelihood ratio between

F1 and F0; i.e., bt+1 =
b1

b1+(1−b1) exp(−Lt)
, where

Lt =
t∑

ℓ=1

[

I{dℓ = 1} log
(

F̄1(sℓ)

F̄0(sℓ)

)

+ I{dℓ =−1} log
(

F1(sℓ)

F0(sℓ)

)]

. (3.1)

Note that Lt is a linear aggregation of the betting sequence {dt}with weights
{

log F̄1(st)

F̄0(st)

}

and log
{

F1(st)

F0(st)

}

.

To avoid pathological cases, we restrict our analysis to the case where both sπB (0+) := limb↓0 s
πB(b) and

sπB(1−) := limb↑1 s
πB(b) exist; that is, the spread line st converges to a certain level as the market maker’s

belief state bt converges to 0 or 1. This is a fairly mild condition and useful in our asymptotic analysis

below.

11 Apart from imposing exogenous budget constraints (Lykouris et al. 2018, Jun et al. 2018), there are other ways to restrict the

opponent that we do not require in our analysis, such as focusing on oblivious strategies (Slivkins 2019) and restricting the infor-

mation structure (Jun et al. 2018).
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3.1. Performance of Bayesian Policies

In this subsection, we evaluate the performance of Bayesian policies. We find that when the commission

rate c is low, the informed bettor is able to earn a constant amount from the market maker per bet on average,

and the price does not converge to the median of the event outcome distribution. For ease of notation, we

let dt := |st−mi| denote the distance between the spread line st and the correct median mi. In particular,

st converges to mi if and only if dt vanishes. Our main finding in this subsection is in Theorem 1 below.

The proof of this theorem is in Appendix C.

THEOREM 1. Suppose that the market maker uses a Bayesian policy πB with pricing function sπB(·). Then,

for every initial belief b1 ∈ (0,1) and sufficiently small c > 0, we have the following:

(T1:1) (non-convergence) For some hypothesis i ∈ {0,1}, with strictly positive P
πB,ξ∗i
i -probability, dt

does not converge to zero.

(T1:2) (linearly growing regret) ∆πB (T ) = Ω(T ).

Theorem 1 states that, under a BP, the spread line does not converge to the correct median, and the market

maker’s regret grows linearly in T .

The key step in deriving Theorem 1 is identifying profitable strategies for the informed bettor if the market

maker uses a BP. Among all possible cases for sπB(0+) and sπB(1−), the most relevant one is perhaps

when the market maker is asymptotically myopic, i.e., sπB (0+) = m0 and sπB(1−) = m1. In this case,

the market maker learns from the bet history and asymptotically moves the spread line to one of the two

possible medians as the market maker becomes almost certain about the event outcome distribution under

a BP. (We also study all other cases of BPs in Appendix C.) We find in this case, the informed bettor may

earn a constant amount of profit per bet on average, by betting on both sides proportionally. We formalize

this finding in Proposition 1 below. We briefly discuss the intuition behind Proposition 1 in Section 3.2 and

present its proof in Appendix C.4.

PROPOSITION 1. Suppose that the market maker uses a Bayesian policy πB with a pricing function sπB (·)
such that sπB(0+) =m0 and sπB(1−) =m1. Then, for every initial belief b1 ∈ (0,1), hypothesis i∈ {0,1},
and sufficiently small commission rate c, the type-i informed bettor has a “bluffing” policy ξb satisfying the

following:

(P1:1) (belief and spread line dynamics) The posterior belief bt converges to (1− i) and the spread line

st converges to m1−i almost surely under P
πB,ξb
i .

(P1:2) (linearly growing profit of the informed bettor) V
πB ,ξb
i (T ) = Ω(T ).

Proposition 1 is the key result in characterizing the performance of BPs. It demonstrates that when the

market maker learns from market signals, the informed bettor earns a systematic profit by driving the spread

line away from the correct median.
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3.2. On the Informed Bettor’s Profitable Manipulation Strategy (Proposition 1)

In this subsection, we provide some intuition behind Proposition 1, i.e., how the informed bettor can obtain

a linearly growing profit from the market maker when the market maker is learning. In brief, the informed

bettor gains from exploiting the constant learning rate of BPs (formally defined as the strictly positive drift

of the log-likelihood process). For ease of illustration, let us focus on hypothesis H1. (The intuition for the

analysis under the other hypothesis is the same.)

The informed bettor faces a trade-off between two effects. On one hand, bluffing (i.e., placing a negative

bet) means betting on the losing side, which is costly. On the other hand, an honest (i.e. positive) bet

pushes the market maker’s belief bt towards 1, which corrects her spread lines in the future. Our question

is the following: is there a balance between bluffing and honest betting for the informed bettor in order to

confuse the market maker while maintaining overall profitability? The informed bettor can make a profit

by betting honestly more often than he bluffs (in the limit). To see why, suppose that c = 0, and observe

that j+1 (s) =−j−1 (s)> 0 for every s <m1. That is, the one-stage cost of bluffing is offset by the profit of

honest betting. Thus in the limit where c→ 0 and st converges to some s∞ <m1, the informed bettor gains

a linearly growing profit if the average fraction of honest betting is strictly larger than one half.

Using honest bets more often than bluffing, the informed bettor may still push bt down to 0 (in the limit).

To see that, first suppose that st =m0 for all t. Then the probability of a positive bet is F̄0(m0) =
1
2

under

H0 and F̄1(m0) >
1
2

under H1. With the fraction of positive bets exactly equal to one half, Lt diverges

(linearly) in favor of H0; that is Lt→−∞.12 Since Lt is a linear aggregation of the bet sequence, the drift

of Lt remains negative if the informed bettor perturbs the fraction of honest (i.e., positive) bets by ε. That

is, there exists ε > 0 such that Lt→−∞ (i.e., bt→ 0), even if the average fraction of honest bets is 1
2
+ ε.

We have thus identified an opportunity for the informed bettor to obtain a linearly growing profit. The

informed bettor may first bet negatively consecutively to drive the market maker’s posterior belief close

to zero. Even though this is costly for the informed bettor, once the market maker’s posterior belief is

sufficiently close to zero, he gains a strictly positive net profit per average bet by (i) betting honestly with an

average ratio of 1
2
+ ε, and (ii) keeping ε sufficiently small, so as to drive the market maker’s belief further

closer to zero.

3.3. Informed Bettor’s Manipulation versus Incomplete Learning

This subsection shows that the impact of the informed bettor on the market maker’s profit is distinct from

the impact of incomplete learning. We do so by evaluating the performance of BPs in an environment with

no informed bettors. Under a mild regularity condition, we find that a BP performs well in our setting when

the informed bettor is absent. This finding follows from a separability condition regarding hypotheses H0

and H1.

12 In fact, the average increment of Lt per bet is the negative of the Kullback-Leibler divergence between two Bernoulli random

variables with success rates F̄0(m0) and F̄1(m0), which is strictly negative.
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For notational simplicity, we introduce a vacuous policy ξ∅ for the informed bettor, under

which his action at = 0 for all t.13 We say that a pricing function sπB(·) is regular, if

max
{

limsupb↓0
|sπB (b)−m0|

b
, limsupb↑1

|sπB (b)−m1|
1−b

}

<∞. This regularity condition is stronger than than

saying that sπB(·) is asymptotically myopic, i.e., sπB (0+) = m0 and sπB(1−) = m1, because it also

requires a certain speed of convergence. However, this regularity condition is still mild. In fact, it subsumes

many intuitive policies as special cases, for example, the myopic Bayesian policy, as well as the linear inter-

polation pricing function, sπB(b) = bm0 + (1− b)m1 (see Appendix D.3 for a more detailed discussion on

the myopic Bayesian policy).

Theorem 2 below characterizes the performance of a Bayesian policy when the informed bettor is absent.

We defer the proof of this theorem to Appendix D.

THEOREM 2. Suppose that the market maker uses a Bayesian policy πB with a regular pricing function

sπB(·). Then for every initial belief b1 ∈ (0,1) and hypothesis i∈ {0,1}, we have the following:

(T2:1) (convergence of spread lines) dt converges to zero almost surely under P
πB ,ξ∅
i .

(T2:2) (exponential convergence) E
πB,ξ∅
i [dt] =O

(
e−λt

)
for some constant λ> 0.

(T2:3) (bounded regret) ∆
πB ,ξ∅
i (T ) =O(1).

Theorem 2 implies that (statistical) incomplete learning does not happen in our context and many simple

Bayesian policies exhibit remarkably good profit performance when there is no informed bettor (for the

antecedent work on incomplete learning, see, e.g., McLennan 1984, Harrison et al. 2012, Keskin and Zeevi

2018). Thus, the informed bettor’s strategic manipulation, instead of incomplete learning, is the market

maker’s major challenge in the context of our problem formulation. The main intuition behind Theorem 2

is that in our setting, a BP satisfies a separability condition similar to being a δ-discriminative policy as in

Harrison et al. (2012) (see Lemma A.3 in Appendix A for more details).

4. Defeating the Informed Bettor with an Inertial Policy

In this section, we construct a simple policy, called the inertial policy (IP), that allows the market maker to

combat the informed bettor. We find that no matter how small the commission rate is, IP is immune to the

strategic manipulation of the informed bettor while guaranteeing that the market maker’s regret grows at

most logarithmically in the number of bets.

4.1. Preliminaries

Definition of the inertial policy. IP employs a univariate state variable that represents the evidence in sup-

port of m=m1, as well as a pricing function. The aforementioned state variable is the difference between

the number of positive and negative bets before period t, given by

Zt :=
t−1∑

ℓ=1

dℓ. (4.1)

13 Equivalently, we could interpret ξ∅ as the informed bettor’s best response strategy if the commission is sufficiently high. See

Appendix D.2 for a discussion.
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Intuitively, we may interpret the new state variable Zt as an “unweighted” version of the log-likelihood

ratio process Lt in (3.1). On one hand, both Zt and Lt are linear aggregations of the betting sequence

{dt}. As a result, an intuitive property that Zt inherits from Lt is that a high value of Zt corresponds to

strong evidence in support of H1. On the other hand, however, Zt differs from Lt in how bet outcomes

are aggregated. Given a spread line st, Lt gives the weight of log F̄1(st)

F̄0(st)
to a positive bet observation and

the weight of log F1(st)

F0(st)
to a negative one. In comparison, Zt weighs these observations with weights +1

and −1. Such difference in weights effectively adjusts the statistical power of each data point observed. As

shown below, we construct Zt so that it accounts for the informed bettor’s incentives, while maintaining

tractability in both policy implementation and performance evaluation.

Similar to BPs, IP specifies the market maker’s spread line through a time-invariant pricing function s̃(·)
of state variable Zt. That is, given Zt = z ∈Z, the market maker’s spread line is st = s̃(z).

Representing IP via residual probabilities. For notational simplicity and interpretability, we use a

sequence of numbers called residual probabilities to provide an alternative representation of the pricing

function s̃(·). The idea behind the residual probabilities is to represent a spread line s by the quantity

|Fi(s)− 1
2
|, which captures how far s is from the median mi. Letting α := F1(m0), we explain in Proposi-

tion 2 below how we can represent s̃(·) by residual probabilities. The proof of this result is in Appendix E.

PROPOSITION 2. (residual probability) For all ρ(·) :Z+→
(
0, 1

2
−α
)
, there uniquely exist a pricing func-

tion s̃(·) :Z→ [m0,m1] and an extension of ρ(·) from Z+ to Z such that for all z ∈Z,

F0

(
s̃(−z)

)
= 1

2
+ ρ(z) and F1

(
s̃(z)

)
= 1

2
− ρ(z). (4.2)

The closed-form expression for s̃(·) is given by:

s̃(z) =







F−1
1

(
1
2
− ρ(z)

)
if z ∈Z+,

m0+m1
2

if z = 0,

F−1
0

(
1
2
+ ρ(−z)

)
if z ∈Z−.

(4.3)

The closed-form expression for the extension of ρ(·) is given by (E.1) in Appendix E.

The function ρ(·) quantifies how much the policy incorporates historical information into the next spread

line.14 For example, if Zt ∈ Z+, a small ρ(Zt) means that s̃(Zt) is close to m1; while if Zt ∈ Z−, a small

ρ(Zt) means that s̃(Zt) is close to m0. We illustrate the correspondence between s̃(·) and ρ(·) in Figure 2;

see also Algorithm 2 in Appendix B for details.

Constructing a candidate for the residual probability sequence. Noting that IP is broadly defined for

a generic function ρ(·), we propose a simple candidate for ρ(·). Let ρ(z) = 1
r0+rz

for z ∈ Z+. Here, we

choose r0 :=
[
1
2
−F1

(
m0+m1

2

)]−1
so that ρ(0) = 1

r0
, where ρ(0) is defined in the sense of Proposition 2.

In this construction, the only tuning parameter is r > 0, which controls the rate of convergence of ρ(z) as

z ↑+∞. A larger value of r means that ρ(z) converges to 0 faster.

14 Because ρ(·) is a function of integers, we also refer to ρ= {ρ(z), z ∈Z+} as a residual probability sequence.
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Figure 2 Illustration of the residual probabilities. For every z ∈ Z+, s̃(z) and s̃(−z) are chosen such that each of the two
shaded regions has an area equal to ρ(z). For this graph, m0 = 0, m1 = 1, ǫ∼ Normal(0,0.7), s̃(−z) = 0.3, and s̃(z) = 0.7.

Discussion on the inertial policy. Our construction of IP possesses several desirable properties. First, it

is simple to implement. To be specific, the update of the state variable Zt, the evaluation of ρ(·), and the

calculation of the spread line st all require direct function evaluations only.

Second, the market dynamics under IP are tractable from an analytical point of view. Observe that Zt is

a stationary Markov chain that represents the whole market. To see why, note that IP is a stationary Markov

policy that exclusively depends on the state variable Zt. Therefore, it is sufficient to consider stationary

Markov policies for the informed bettor as well. In fact, if we fix the market maker’s inertial policy πI and

the informed bettor’s policy ξ, then Zt becomes a birth and death chain under P
πI ,ξ
i .

Third, IP makes makes manipulation more difficult. Recall from Section 3.2 that we described a simple

manipulation strategy where the informed bettor mixes bluffing and honest betting to gain a linearly growing

profit from BP. It is straightforward to check that IP guards the market maker from the same manipulation

strategy. For example, suppose that H1 is correct while the spread line is near m0. The informed bettor may

push Lt to −∞ by betting a
(
1
2
+ ε
)

fraction of honest (i.e. positive) bets. However, the same strategy only

pushes Zt to ∞, which means that the spread line will be corrected eventually.15 In Theorem 3, we show

that IP guards the market maker against all bluffing behaviors in general.

4.2. Performance of the Inertial Policy

In this subsection, we quantify the performance of IP. We find that under IP, (i) the informed bettor never

bluffs and bets under a threshold strategy (Theorem 3), (ii) the uninformed market maker’s regret grows at

most logarithmically in the number of bets T (Theorem 4), and (iii) the spread line converges to the median

of the event outcome distribution with probability one (Theorem 4).

We first characterize the informed bettor’s best response policy ξ∗i as well as his total profit. Recall that

the market state is encoded by Zt defined in (4.1). With a slight abuse of notation, we specify the type-i

informed bettor’s optimal strategy ξ∗i by a function of the state z ∈ Z. We also introduce the value function

15 Thus, no matter how small the commission rate c > 0 is, the informed bettor does not have an incentive to bluff, at least when the
spread line is close to either of the medians mi.
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J i (·) :Z→R∪{+∞} such that J i (z) is the type-i informed bettor’s maximum total expected continuation

profit given that the market maker uses IP and the current market state is z. In particular, J i (0) is the type-i

informed bettor’s best total profit, because the market starts with state Z1 =0. Note that conceptually, J i (z)

is possibly infinite if the market maker’s policy is not carefully designed. But IP rules out this possibility as

shown in Theorem 3 below. This theorem characterizes the informed bettor’s profit and best response to the

market maker’s inertial policy πI . We relegate the proof of of Theorem 3 to Appendix G, and discuss our

key proof approach in Section 4.3.

THEOREM 3. There exists r̄ > 0 such that for every policy parameter r ∈ (0, r̄), we have the following:

(T3:1) (informed bettor’s bounded profit) For every hypothesis i∈ {0,1} and z ∈ Z, J i (z)<+∞.

(T3:2) (informed bettor’s best response strategy) For every hypothesis i ∈ {0,1}, the informed bettor’s

optimal strategy ξ∗i (·) is a threshold strategy; i.e., there exists z̄ ∈Z∪{−∞} such that

ξ∗1(z) = I{z < z̄} and ξ∗0(z) =−I{z >−z̄} for every z ∈ Z. (4.4)

The expressions of r̄ and z̄ depend only on the problem input parameter Ξ and are given in Appendix G.2.

To interpret Theorem 3, let us say that the market state Zt changes in the “right” direction if it increases

under H1 and decreases under H0, and in the “wrong” direction otherwise. Theorem 3 means that under

IP (with a sufficiently small r), the informed bettor will bet honestly if and only if the market state evolves

sufficiently far in the wrong direction. Because the market maker’s spread line st is a function of the market

state Zt through the pricing function s̃(·) defined in (4.3), it is equivalent to say that the informed bettor

bets if and only if the market maker’s spread line is sufficiently close to the wrong median. Otherwise,

the informed bettor chooses not to bet on either side because of the transaction cost (in the form of the

market maker’s commission rate). In either case, the informed bettor does not have an incentive to bluff. To

illustrate our inertial policy as well as the informed bettor’s best response, we show in Figure 3 a sample

path of {Zt} in a numerical example. Under IP, the total profit that the informed bettor gains from the market

maker is finite.

Finally, Theorem 4 below characterizes the performance of our inertial policy πI with the residual prob-

ability sequence {ρ(z) = 1
r0+rz

, z ∈Z+}. We relegate the proof of this result to Section 4.4.

THEOREM 4. For every commission rate c ∈ (0,1), hypothesis i ∈ {0,1}, and policy parameter r ∈ (0, r̄),
we have the following:

(T4:1) (convergence of spread lines) Zt→∞ (resp. Zt→−∞) almost surely under P
πI ,ξ

∗
1

1 (resp. P
πI ,ξ

∗
0

0 ).

As a result, dt converges to zero almost surely under P
πI ,ξ

∗
i

i .

(T4:2) (sub-exponential convergence)
∑

tE
πI ,ξ

∗
i

i [dt] diverges at a rate satisfying
∑T

t=1E
πI ,ξ

∗
i

i [dt] =

O(
√
T logT ).

(T4:3) (logarithmic regret) ∆πI (T ) =O(logT ).
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Figure 3 Sample path illustration for the inertial policy under hypothesis H1. The solid curve displays a sample path of
{Zt} whereas the dashed line displays the informed bettor’s betting threshold z̄. When the market state Zt is in Region I (i.e., above
the dashed line), the informed bettor is inactive and only myopic bettors bet. In comparison, when Zt is in Region II (i.e., below
the dashed line), the informed bettor actively exploits his inside information by betting honestly. In this graph, m0 = 0, m1 = 1,
ǫ∼ Normal(0,1), c= 0.1, and r= 0.99r̄, where r̄=0.1667 is calculated as in Appendix G.2.

Theorem 4 implies that IP asymptotically sets the spread line st at the correct median. Since the informed

bettor’s best response policy is of threshold type (as shown in Theorem 3), Theorem 4 also implies that IP

eventually drives the informed bettor out of the market with probability one. Consequently, under IP, the

market maker’s T -period regret is at most in the order of logT . Together with Theorem 3, Theorem 4 gives

a comprehensive characterization of IP.

Noticeably, if the commission rate is sufficiently high, the informed bettor’s best response strategy is to

never bet at all; see Appendix D.2 for more details. As a result, in connection with Theorem 2, our analysis

in Theorems 3 and 4 subsumes the environment with no informed bettors as a special case. Corollary 1

below formally states this result, which characterizes the performance of IP with the residual probability

sequence {ρ(z) = 1
r0+rz

, z ∈ Z+} when the informed bettor is absent.

COROLLARY 1. For every hypothesis i∈ {0,1} and policy parameter r ∈ (0, r̄), we have the following:

(C1:1) (convergence of spread lines) Zt→∞ (resp. Zt→−∞) almost surely under P
πI ,ξ∅
1 (resp. P

πI ,ξ∅
0 ).

As a result, dt converges to zero almost surely under P
πI ,ξ∅
i .

(C1:2) (sub-exponential convergence)
∑

tE
πI ,ξ∅
i [dt] diverges at a rate satisfying

∑T

t=1E
πI ,ξ∅
i [dt] =

O(
√
T logT ).

(C1:3) (logarithmic regret) ∆
πI ,ξ∅
i (T ) =O(logT ).

From a managerial standpoint, IP stands in stark contrast to the Bayesian policies in Section 3. On one

hand, IP effectively protects the market maker against the informed bettor’s strategic manipulation. On

the other hand, this protection is at a cost: IP learns (from myopic bettors) more slowly than BPs do. For

example, suppose there are no informed bettors. Under hypothesis H1, the drift (i.e., expected one-stage

increment) of Zt equals 2ρ(z), which converges to zero as z grows to infinity, while the drift of Lt is

bounded away from zero. Roughly speaking, this means Zt has a sublinear growth rate, which leads to a
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sub-exponential convergence rate of st and logarithmic regret under IP. In contrast, Lt has a linear growth

rate, which leads to an exponential convergence rate of st and constant regret under BP. The related results

are formally stated in Theorems 2 and 4 as well as Corollary 1. Moreover, we also discuss how to intuitively

understand the dynamics of {Zt} in Section 4.4.

4.3. On the Informed Bettor’s Optimal Strategy and Profit (Theorem 3)

This subsection summarizes our proof approach for Theorem 3, explaining why the informed bettor never

bluffs and gains a finite total profit under IP. In a nutshell, IP pushes the market state Zt in the right direction.

Meanwhile, IP judiciously controls the growth rate of Zt: the drift of Zt vanishes as Zt grows (so that the

informed bettor finds it costly to bluff), but slowly (so that the informed bettor cannot gain an infinite profit

from simply waiting for mispricing events).

Market state as a birth and death Markov chain. As alluded to earlier, we represent the market by

Zt, which is a birth and death Markov chain. That is, Zt increases or decreases by one after each bet,

and its transition rule is determined by the market participants’ stationary Markovian policies. Based on

the informed bettor’s best response strategy ξ∗i (·) described in Theorem 3, the transition rule of Zt can

be described by two cases. In the first case, Zt is sufficiently far in the right direction (i.e., Zt ≥ z̄ under

hypothesis H1 and Zt ≤−z̄ under hypothesis H0), the informed bettor is inactive and only myopic bettors

participate. As a result, Zt increases (resp. decreases) with probability 1
2
+ρ(Zt)

(
resp. 1

2
+ρ(−Zt)

)
under

hypothesis H1 (resp. hypothesis H0). In the second case, our informed bettor actively exploits his inside

information by betting honestly. Hence Zt moves in the right direction with probability one. As a result, the

birth and death Markov chain Zt has a reflecting boundary point z̄− 1 (resp. −z̄+1) under hypothesis H1

(resp. hypothesis H0) after a finitely many of steps.

To formally describe the dynamics of Zt, it is convenient to use the following notation:

Pz
i (·) := P

πI ,ξ
∗
i

i (· |Z1 = z) and Ez
i [·] :=E

πI ,ξ
∗
i

i [· |Z1 = z] for all i∈ {0,1} and z ∈ Z. (4.5)

In short, Pz
i (·) (resp. Ez

i [·]) is a translated version of P
πI ,ξ

∗
i

i (resp. E
πI ,ξ

∗
i

i ), under which Zt starts with z

almost surely. Moreover, in the context of Theorems 3 and 4, it is clear that the market maker implements

the inertial policy πI , and the type-i informed bettor implements the threshold strategy ξ∗i . Hence we drop

the superscript (πI , ξ
∗
i ) for notational brevity. In particular, since the market starts with state Z1 = 0, we

have P0
i = P

πI ,ξ
∗
i

i . We explicitly write out the transition matrix Pi
z,z̆ := Pz

i (Z2 = z̆) in Equation (4.6) and

illustrate the dynamics of Zt under Pz
i in Figure 4.







P0
z,z̆ = 1 if z ≥−z̄+1 and z̆ = z− 1,

P0
z,z̆ =

1
2
+ ρ(−z) if z ≤−z̄ and z̆ = z− 1,

P0
z,z̆ =

1
2
− ρ(−z) if z ≤−z̄ and z̆ = z+1,

and







P1
z,z̆ =1 if z ≤ z̄− 1 and z̆ = z+1,

P1
z,z̆ =

1
2
+ ρ(z) if z ≥ z̄ and z̆ = z+1,

P1
z,z̆ =

1
2
− ρ(z) if z ≥ z̄ and z̆ = z− 1.

(4.6)
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−z̄ −z̄ + 1 −z̄ + 2 −z̄ + 3−z̄ − 1−z̄ − 2
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2
+ ρ(z̄ + 1) 1
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+ ρ(z̄) 1 1 1

1

2
− ρ(z̄)1

2
− ρ(z̄ + 1)1

2
− ρ(z̄ + 2)

· · · · · ·

(a) dynamics of Zt under Pz
0

z̄ − 1 z̄ z̄ + 1 z̄ + 2z̄ − 2z̄ − 3

1

2
− ρ(z̄) 1

2
− ρ(z̄ + 1) 1

2
− ρ(z̄ + 2)

111

· · · · · ·

1

2
+ ρ(z̄) 1

2
+ ρ(z̄ + 1)

(b) dynamics of Zt under Pz
1

Figure 4 Illustration of the Markov chain {Zt}. The nodes represent the set of integers, Z, as the state space. The numbers
associated with the arrows display the transition probabilities.

Informed bettor’s one-stage profit function. We introduce a compact representation of the informed

bettor’s one-stage profit functions as follows. Invoking (2.1) and (4.2), we use use j+i (z) and j−i (z) in place

of j+i
(
s̃(z)

)
and j−i

(
s̃(z)

)
, respectively, for shorthand notation throughout this section; that is,

j+1 (z) = j−0 (−z)
︸ ︷︷ ︸

honest betting

= (2− c)ρ(z)− c
2

and j−1 (z) = j+0 (−z)
︸ ︷︷ ︸

bluffing

= (c− 2)ρ(z)− c
2
. (4.7)

Proof sketch for Theorem 3. In the proof of Theorem 3, we employ a verification argument. We evaluate

the informed bettor’s profit under the threshold strategy ξ∗i defined in (4.4), showing that: (i) ξ∗i is a best

response strategy, and (ii) ξ∗i generates a finite profit for the informed bettor.

Constructing a candidate value function J̄ i (·). Let us first define a particular function J̄ i (·) as follows:

J̄1 (z) = J̄0 (−z) =
{

0 for all z ∈Z if z̄ =−∞,

j+1 (z̄− 1)
∑∞

n=(z−z̄)+ Λn +
∑(z̄−z)+

i=1 j+1 (z̄− i) for all z ∈ Z if z̄ >−∞.
(4.8)

Here, the constants {Λn} depend only on z̄ and ρ(·), and are given by

Λn :=
n∏

k=0

1
2
−ρ(z̄+k)

1
2
+ρ(z̄+k)

> 0. (4.9)

The intuition behind this construction is as follows. Intuitively, J̄1 (·) is the informed bettor’s continuation

profit function under the threshold strategy ξ∗1 . Drawing on the informed bettor’s one-stage profit function

and the transition rule of Zt, we expect J̄1 (·) to satisfy the following recursive relation for z ∈Z:

J̄1 (z) =

{

j+1 (z)+ J̄1 (z+1) if z < z̄,

F̄1 (s̃(z)) J̄
1 (z+1)+F1 (s̃(z)) J̄

1 (z− 1) if z ≥ z̄,

subject to the boundary condition limz→∞ J̄1 (z) = 0. In the meanwhile, by symmetry, J̄0 (·) should be a

“reflected” version of J̄1 (·); that is, J̄0 (z) = J̄1 (−z) for all z ∈ Z. Thus, the construction in (4.8) can be

viewed as a solution to the aforementioned recursive relation.

Key properties of J̄ i (·). The construction of J̄ i (·) raises three questions: (i) Is J̄ i (·) well-defined (i.e.,

finitely valued)? (ii) Is J̄ i (·) indeed the informed bettor’s continuation profit function under the threshold
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strategy ξ∗i ? (iii) Does the informed bettor have an incentive to deviate from ξ∗i ? In Lemmas 1-3 below, we

give definite answers to all of the three questions. The proofs of these lemmas are in Appendix G.5.

LEMMA 1. (range of the value function) For all z ∈Z, we have 0≤ J̄1 (z) = J̄0 (−z)<∞.

LEMMA 2. (continuation profit) Let r ∈ (0, r̄). Given hypothesis i ∈ {0,1}, the market maker’s inertial

policy πI , and the informed bettor’s response strategy ξ∗i , J̄ i (·) is the expected continuation profit function

for the type-i informed bettor. That is, for all z ∈Z,

J̄1 (z) = lim
T→∞

Ez
1

[
T∑

t=1

j+1 (Zt) I{Zt < z̄}
]

and J̄0 (z) = lim
T→∞

Ez
0

[
T∑

t=1

j−0 (Zt) I{Zt >−z̄}
]

. (4.10)

LEMMA 3. (Bellman optimality) Let r ∈ (0, r̄). Given hypothesis i ∈ {0,1}, the market maker’s inertial

policy πI , and current state z ∈ Z, the type-i informed bettor does not have any incentive to deviate from

the action specified by ξ∗i in (4.4). That is, J̄ i (·) satisfies the following Bellman equation:

J̄1 (z) =max
{

j+1 (z)+ J̄1 (z+1)
︸ ︷︷ ︸

bettor’s profit from at =+1

, j−1 (z)+ J̄1 (z− 1)
︸ ︷︷ ︸

bettor’s profit from at =−1

, F̄1 (s̃(z)) J̄
1 (z+1)+F1 (s̃(z)) J̄

1 (z− 1)
︸ ︷︷ ︸

bettor’s profit from at = 0

}

,

J̄0 (z) =max
{

j+0 (z)+ J̄0 (z+1)
︸ ︷︷ ︸

bettor’s profit from at =+1

, j−0 (z)+ J̄0 (z− 1)
︸ ︷︷ ︸

bettor’s profit from at =−1

, F̄0 (s̃(z)) J̄
0 (z+1)+F0 (s̃(z)) J̄

0 (z− 1)
︸ ︷︷ ︸

bettor’s profit from at = 0

}

.

(4.11)

Verification of optimality of J̄ i (·). To summarize, Lemma 2 implies that J̄ i (·) defined in (4.8) is the

continuation profit function of the threshold strategy ξ∗i defined in (4.4), and Lemma 1 ensures that the

total profit generated by ξ∗i is finite. The nonnegativity of J̄ i (·) in Lemma 1 plus the Bellman optimality in

Lemma 3 imply that J̄ i (·) is an upper bound of the informed bettor’s value function.16 Lemmas 1-3 jointly

establish the optimality of threshold strategy ξ∗i , as well as the fact that J̄ i (·) = J i (·). This verifies the

optimality of J̄ i (·). The complete proof of Theorem 3 is in Appendix G.

Discussion of proof methodology. Our analysis in Theorem 3 (especially Lemma 2) builds on an exact

analysis of {Zt}. To achieve tight results, we summarize our key proof step in Lemma 4 below. We relegate

its proof to Appendix F.

LEMMA 4. (key step for performance evaluation) Consider an arbitrary stationary discrete-time Markov

chain {Yt, t= 1,2, . . .} with state space S ⊂R defined on some probability measure space (Ω,P). Suppose

that u, f : S→ R are functions that satisfy f(z) = E[u(Y2)|Y1 = z]− u(z) for all z ∈ S. Then, Ef(Y1) +

Ef(Y2)+ · · ·+Ef(Yt) =Eu(Yt+1)−Eu(Y1) for all t.

Lemma 4 gives us a guideline on how to evaluate quantities of the form Ef(Y1) +Ef(Y2) + · · ·+Ef(Yt)

for any given function f(·). In the first step of this evaluation, we solve for the difference equation f(z) =

16 Because we consider the total profit problem for the informed bettor, the Bellman equation (4.11) in Lemma 3 alone implies
neither the optimality of ξ∗i as the informed bettor’s strategy nor the optimality of J̄ i (·) as his value function. In fact, the solution to
the Bellman equation (4.11) is not even unique: if any J̃ i(·) solves the Bellman equation, so does J̃ i(·)+ c, where c is an arbitrary
constant.
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E[u(Y2)|Y1 = z]−u(z) to obtain the function u(·). In the second step, we can replace the t-period sum with

only two quantities: Eu(Yt+1) and Eu(Y1), which are usually much easier to work with. Provided that solv-

ing the difference equation is tractable, this machinery has two main advantages over the commonly used

large-deviation based arguments. First, large-deviation based arguments are sometimes not easily avail-

able because the “deterministic” part of {Yt} does not overwhelm the “stochastic noise” part. Second, this

evaluation is exact, and hence tighter results can be obtained from this machinery. Readers familiar with

the stochastic calculus literature may view this machinery as a discrete-time analog of Dynkin’s formula

(Øksendal 2003, Theorem 7.4.1), which is commonly used to estimate various random quantities via solving

differential equations (Krylov 2002, Chapter 6.10).

In the context of our paper, we face several technical challenges: the growth of Zt suffers from vanishing

drift (see Section 4.4 for a more detailed discussion), and we need to evaluate the informed bettor’s continua-

tion profit exactly to verify the Bellman optimality. That is why we use the method in Lemma 4 to overcome

our challenges. More specifically, we take f(x) = j+1 (x) I{x< z̄} (resp. f(x) = j−0 (x) I{x>−z̄}) to eval-

uate the informed bettor’s continuation profit function under ξ∗1 (resp. ξ∗0 ). The same machinery is also a key

step in Proposition 3, where we take other forms of f(x) to show (i) the almost sure convergence of spread

lines, (ii) the convergence rate of spread lines, and (iii) the logarithmic growth rate of regret under IP.

4.4. Discussion on the Market Maker’s Regret (Theorem 4)

This subsection provides some intuition for why the market maker’s regret is O(logT ) under IP (as shown

in Theorem 4). This performance guarantee is derived via an exact analysis of the market state {Zt} via

Lemma 4. Roughly speaking, the market state Zt grows in the order of
√
t, with the market maker’s one-

period regret vanishing in the order of 1/Z2
t = 1/t, and her T -period regret growing in the order of logT .

Representation of the market maker’s regret. The following lemma expresses the market maker’s

regret, ∆πI (T ), in an additive form. We relegate its proof to Appendix H.

LEMMA 5. We have

∆πI (T ) =
T∑

t=1

E0
1[l(Zt)], (4.12)

where the loss function l(·) :Z→R+ is given by

l(z) = (2− c)ρ(z)I{z < z̄}+(4− 2c)ρ2(z)I{z≥ z̄}. (4.13)

The key advantage of Lemma 5 is that through the above additive form, we not only link the regret evaluation

problem with the performance evaluation step in Lemma 4, but also have a more parsimonious way of

understanding regret through an intuitive characterization (see the discussions below for more details).

Understanding the dynamics of {Zt}. In order to make sense of the convergence of st and the overall

regret, let us give some remarks on the dynamics of {Zt} (both intuitively and rigorously).
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Let us first characterize {Zt} in a heuristic fashion to gain intuition. For simplicity, we provide a char-

acterization under hypothesis H1 (the reasoning for H0 is the same). Define an auxiliary stochastic process

{Yt} such that Yt := 1/ρ2(Zt) for all t. Note that for sufficiently large z (i.e., z ≥ z̄ ∨ 1),

E0
1[Yt+1−Yt|Zt = z] =

[
1
2
+ ρ(z)

]
(r0 + rz+1)2+

[
1
2
− ρ(z)

]
(r0 + rz− 1)2− (r0 + rz)2 = 5

is a constant. Since Zt ↑∞ almost surely (as in Theorem 4), we expect Yt to grow linearly in t, expressed

as Yt ∼ t for brevity. Taking the appropriate transformations, we thus expect that ρ(Zt) = 1/
√
Yt ∼ 1/

√
t

and Zt ∼ 1/ρ(Zt) ∼
√
t. This heuristic characterization of Zt is related to Theorem 4 in two ways. First,

through a first-order Taylor expansion of s̃(Zt) as a function of ρ(Zt), we expect that dt ≈ ρ(Zt)∼ 1/
√
t.17

Second, in light of Lemma 5, we expect that ∆πI (T ) =
∑T

t=1E
0
1[l(Zt)]≈

∑T

t=1 ρ
2(Zt)∼ logT .

We formalize our intuition on the dynamics of {Zt} (under hypothesis H1) in Proposition 3 below. We

relegate the proof of Proposition 3 to Appendix H.

PROPOSITION 3. For every commission rate c ∈ (0,1) and policy parameter r ∈ (0, r̄), we have the fol-

lowing:

(P3:1) For all sufficiently large M > 0,
∑

tE
0
1[I{Zt ≤M}] converges.

(P3:2)
∑

tE
0
1[ρ(Zt)] diverges at a rate satisfying

∑T

t=1E
0
1[ρ(Zt)] =O

(√
T logT

)
.

(P3:3)
∑

tE
0
1[l(Zt)] diverges at a rate satisfying

∑T

t=1E
0
1[l(Zt)] =O(logT ).

Proposition 3 above provides the main steps for proving Theorem 4. These steps are related to (i) the

almost sure convergence of spread lines, (ii) the convergence rate of spread lines, and (iii) the logarithmic

growth rate of regret under IP (see the proof in Theorem 4 below). In Section 6, we revisit this proposition

in the case where ρ(·) belongs to a more general family of functions (see Proposition K.2 for details).

We also make a technical remark on Proposition 3 (and hence Theorem 4). In formalizing our intuition

on the dynamics of Zt, the main technical barrier is that the growth rates of Yt and Zt do not necessarily

overwhelm stochastic fluctuations. To see why, observe that Yt is essentially a linearly growing process,

but the (conditional) second moment of the increment of Yt, formally defined as E0
1[(Yt+1 − Yt)

2|Zt = z],

grows without bound in t. In other words, Zt is a martingale with bounded increments, but the growth rate

of Zt is sublinear (Zt ∼
√
t). This barrier makes estimating E[f(Zt)] difficult for each fixed t,18 as such

estimation typically relies on large-deviation based arguments. In comparison, Proposition 3 showcases how

our method in Lemma 4 estimates the partial sum
∑T

t=1E[f(Zt)] directly. We believe that this approach

is generally helpful if quantifying E[f(Zt)] is more complicated than solving the difference equation in

Lemma 4.

17 Recall that Statement (T4:2) in Theorem 4 expresses that
∑T

t=1E
0
1[dt] =O(

√
T logT ). This statement is a

√
logT factor weaker

than the above heuristic characterization, which implies that
∑T

t=1 dt ∼
√
T . While a tighter estimate is possible via Lemma 4, we

did not pursue it because we only need to show that
∑

t E
0
1[dt] diverges in order to demonstrate the sub-exponential convergence

of spread lines. This also does not affect our main goal of characterizing the regret performance.

18 In Proposition 3, the choices for f(x) are I{x≤M} and l(x).
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Proof of Theorem 4. Without loss of generality, we focus our analysis on H1 with the corresponding

probability measure P0
1(·) = P

πI ,ξ
∗
1

1 (·); the reasoning for H0 is the same.

Statement (T4:1) in Theorem 4 follows from Statement (P3:1) in Proposition 3. Invoking the Borel-

Cantelli lemma, we conclude that Zt ≤M infinitely often with P0
1-probability zero. As a result, Zt→∞

almost surely under P0
1. Because ρ(·) is asymptotically vanishing (i.e., ρ(z)→ 0 as z→∞), this implies

that ρ(Zt)→ 0 and dt = |st−m1|= |F−1
1 ( 1

2
− ρ(Zt))−F−1

1 ( 1
2
)| → 0 almost surely under P0

1.

Statement (T4:2) in Theorem 4 follows from Statement (P3:2) in Proposition 3. Note that under IP,

dt = |st−m1|=m1− st =
1

f1

(
F−1
1

(
1
2
−ρ(Zt)

))ρ(Zt)+ o(ρ(Zt))

as ρ(Zt)→ 0 and Zt →∞. By Assumption 1, the term 1/f1
(
F−1

1

(
1
2
− ρ(Zt)

))
is bounded away from

both zero and infinity. Therefore,
∑T

t=1E
0
1[dt] = Θ

(∑T

t=1E
0
1[ρ(Zt)]

)
. Invoking Statement (P3:2),

∑

tE
0
1[dt]

diverges, and its growth rate is such that
∑T

t=1E
0
1[dt] =O(

√
T logT ).

Statement (T4:3) in Theorem 4 follows from Statement (P3:3) in Proposition 3. In fact, ∆πI (T )
Lemma 5
==

∑T

t=1E
0
1[l(Zt)]

Statement (P3:3)
== O(logT ).

5. Generalized Analysis of Bayesian Policies

To deepen our understanding of how BPs perform, this section studies BPs under two distinct generaliza-

tions of our base model. These generalizations not only demonstrate the robustness of our main results

for BPs but also shed light on how BPs transition from “success” into “failure” as the informed bettor’s

bets become more prominent. Depending on whether the informed bettor can dominate the market (at least

temporarily), he needs either Θ(T ) or o(T ) betting opportunities to make BPs systematically fail.

5.1. Random Blocking by Myopic Bettors

As a generalization of our base model, assume that informed bettor’s each action attempt is randomly

“blocked” by myopic bettors with probability q. To be more precise, suppose that in every period t, the

following events happen sequentially:

1. The market maker quotes a spread line st.

2. The informed bettor chooses an action at ∈ {+1,0,−1}.
3. Nature randomly picks whether the informed bettor is blocked by a myopic bettor. We encode that by

χt, which follows an independent and identically distributed (i.i.d.) Bernoulli sequence with mean q.

• if χt = 1 (i.e., the informed bettor is blocked) or at = 0 (i.e., the informed bettor chooses to wait),

then bet t comes from a myopic bettor. That is, dt = ϑt.

• if χt = 0 (i.e., the informed bettor has a betting opportunity) and at 6= 0 (i.e., the informed bettor

chooses to act), then bet t comes from the informed bettor. That is, dt = at.

The random blocking model differs from our base model by introducing random blocking by myopic bettors

with probability q. Note that if q=0, this probabilistic blocking model reduces to our base model where the

informed bettor is present. If q = 1, the blocking model reduces to our base model any without informed
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bettors. Thus, this generalization bridges two extreme cases in the base model by restricting the informed

bettor’s ability to bet.

We define the market maker’s BP, πB, and the informed bettor’s response strategy, ξ, in the same way as

before, except that the realized transaction becomes dt = I{χt = 0 and at 6= 0}at+ I{χt =1 or at = 0}ϑt.
19

Note that the probabilistic blocking by myopic bettors adds another source of randomness to the model. To

accommodate this difference, we denote by P̂
πB,ξ
i (·) the probability measure governing the market statistics

{(st, dt, at, χt)} and by Ê
πB ,ξ
i (·) the corresponding expectation operator, given that the market maker’s pol-

icy is πB, the informed bettor’s response strategy is ξ, and the underlying hypothesis is Hi. Accordingly, we

let V̂ πB ,ξ
i (T ) :=

∑T

t=1 Ê
πB ,ξ
i

[
I{χt = 0}

(
j+i (st) I{at =+1}+ j−i (st) I{at =−1}

)]
be the informed bet-

tor’s T -period profit. With the introduction of P̂i(·), Êi[·] and V̂
πB ,ξ
i (·), we define the informed bettor’s best

response strategy ξ̂∗i and the market maker’s regret ∆̂πB (·) in the same way as in the base model.

Recall that Ξ = (c,m0,m1, Fǫ) is the collection of all problem input parameters. Let Ξ̂ := (m0,m1, Fǫ)

be the collection of problem input parameters concerning the distribution information only, i.e., those in

Ξ except the commission rate c. Theorem 5 below summarizes our main results for our model extension

where the informed bettor is randomly blocked by myopic bettors. We relegate its proof to Appendix I.

THEOREM 5. Suppose that the market maker uses a Bayesian policy πB with pricing function sπB (·). Then

there exist q, q̄ ∈ (0,1), which depend only on Ξ̂, such that for every initial belief b1 ∈ (0,1) and sufficiently

small commission rate c > 0, we have the following:

(T5:1) (low blocking probability) If q < q, then for some hypothesis i ∈ {0,1}, with strictly positive

P̂
πB ,ξ∗i
i -probability, dt does not converge to zero. Moreover, ∆̂πB (T ) = Ω(T ).

(T5:2) (high blocking probability) If q > q̄ and the pricing function sπB(·) is regular, then for every initial

belief b1 ∈ (0,1) and hypothesis i ∈ {0,1}, dt converges to zero almost surely under P̂
πB,ξ̂∗i
i , at a

rate such that Ê
πB,ξ∗i
i [dt] =O

(
e−λt

)
for some constant λ> 0. Moreover, ∆̂πB (T ) =O(1).

Theorem 5 generalizes our analysis of BPs to incorporate random blocking by myopic bettors. It means

that all the conclusions about the failure (Theorem 1) and success (Theorem 2) of Bayesian Policies are

robust even if we perturb the blocking probability q from {0,1} by a constant independent of T .

Theorem 5 also provides us a guidance on the transition of BPs from good to poor performance as the

number of the informed bettor’s betting opportunities increases. Roughly speaking, BPs display good profit

performance even if the informed bettor has (1− q̄)T betting opportunities. On the other hand, BPs suffer

from a linear regret even if the market maker observes qT number of bets from myopic bettors. As a result,

the critical number of informed bets that make BPs transition from success to failure is Θ(T ).

19 Here, at could be interpreted as a “virtual” action that may not necessarily be executed because of random blocking.
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5.2. Budget-constrained Informed Bettor

As another generalization of our base model, assume that the informed bettor can place at most K bets. In

this generalization, the informed bettor’s decision problem is the same as the base model except that he can

place up to K bets. This setting differs from our base model due to a hard constraint on the total number

of bets by the informed bettor. Note that if K =∞, this budget-constrained model reduces to our base

model with a informed bettor. If K = 0, the budget-constrained model reduces to our base model without

any informed bettors. This generalization, like its counterpart in the preceding subsection, connects the two

extreme cases in the base model by restricting the informed bettor’s ability to bet, but there is a fundamental

difference between the two generalizations. Specifically, the former generalization imposes a stochastic

restriction, making it difficult for the informed bettor to place many bets without the intervention of myopic

bettors. The latter generalization imposes a deterministic restriction, and hence the informed bettor can still

perfectly coordinate his bets as long as they are within the budget constraint.

In the budget-constrained model, the expression for the realized transaction in period t becomes dt =

I{
∑t

ℓ=1 |aℓ| ≤ K and at 6= 0}at + I{
∑t

ℓ=1 |aℓ| > K or at = 0}ϑt. To account for this, we denote by

P̆
πB,ξ
i (·) the probability measure governing the market statistics {(st, dt, at)}, and by Ĕ

πB,ξ
i [·] the cor-

responding expectation operator in the budget-constrained model, given that the market maker’s policy

is πB, the informed bettor’s response strategy is ξ, and the underlying hypothesis Hi. Furthermore, we

let V̆
πB ,ξ
i (T ;K) :=

∑T

t=1 Ĕ
πB ,ξ
i

[(
I{
∑t

ℓ=1 |aℓ| ≤ K}
)(
j+i (st) I{at = +1} + j−i (st) I{at = −1}

)]
be the

informed bettor’s T -period profit when the informed bettor has K betting opportunities remaining. Given

the market maker’s Bayesian policy πB, the informed bettor’s adaptive strategy ξ̆∗i = ξ̆∗i (K) is a best

response strategy if

ξ̆∗i ∈
{

argmaxξ lim infT→∞

{
V̆ πB ,ξ
i (T ;K)

}
if supξ lim infT→∞

{
V̆ πB,ξ
i (T ;K)

}
<∞,

argmaxξ lim infT→∞

{
1
T
V̆ πB ,ξ
i (T ;K)

}
if supξ lim infT→∞

{
V̆ πB,ξ
i (T ;K)

}
=∞.

Note that in general, even if the market maker’s BP is a Markov policy with the posterior belief bt serving

as a state variable, ξ̆∗i may not be Markov with the same state space because ξ̆∗i can depend on the number of

remaining bets of the informed bettor. With the introduction of P̆
πB ,ξ
i (·), ĔπB,ξ

i [·], V̆ πB,ξ
i (·) and ξ̆∗i , we define

the market maker’s regret ∆̆πB (T ) = ∆̆πB(T ;K) in the same way as in the base model. In our asymptotic

analysis, we study how ∆̆πB (T ;K) increases as T and K grow.

Theorem 6 below summarizes our main results for our model extension where the informed bettor is

budget-constrained. We relegate its proof to Appendix J.

THEOREM 6. Suppose that the market maker uses a Bayesian policy πB with pricing function sπB (·). Then

for every initial belief b1 ∈ (0,1) and sufficiently small commission rate c > 0, ∆̆πB (T ;K) = Ω(T ∧K). If

in addition, the pricing function sπB (·) is regular, then ∆̆πB (T ;K) =Θ(T ∧K).
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Theorem 6 states that the market maker’s regret under a BP is in the order of T ∧ K (under certain

regularity conditions) under the budget-constrained model. In particular, the regret of a BP is unbounded as

long as both T and K grow to infinity, and the regret becomes Ω(logT ) if K =Ω(logT ).

5.3. Discussion

Our findings for the generalized models in this section (Theorems 5 and 6) demonstrate the robustness of

our main results for BPs (Theorems 1 and 2). In addition, these findings consistently imply that the success

of BPs depends on the number of betting opportunities for the informed bettor. Specifically, if the informed

bettor is restricted to place up to a “small” number of bets, BPs can still achieve good revenue performance.

Otherwise, the market maker should consider a policy from the IP family. Roughly speaking, in the random

blocking model, the transition line from success to failure of BPs is when the informed bettor has Θ(T )

betting opportunities. In the budget-constrained model, the same transition line is when the informed bettor

has o(T ) betting opportunities.

Contrasting both models further reveals how manipulation-proofness of BPs depends on the bet arrival

process beyond the volume of bets from the informed bettor. Note that the aforementioned transition line

between success and failure of BPs is different in the two generalizations studied in this section. The reason

is that in the budget-constrained model, the informed bettor can inject large batch of bets within the budget

without the intervention of any myopic bettor. But, in the random blocking model, the informed bettor’s

bets are randomly mixed with myopic bettors’ bets. From a managerial standpoint, the difference between

transition lines can be viewed as the net value to the informed bettor of the ability to “flood” the market

while still maintaining anonymity.

6. Generalized Analysis of Inertial Policies

This section sheds light on the general designed of IP, especially focusing on why our choice of the residual

probability sequence ρ= {ρ(z) = 1
r0+rz

, z ∈Z+} is a good one. We find that there exists a problem instance

such that under mild regularity conditions, it is impossible to improve performance from logarithmic regret

to bounded regret by choosing a different type of residual probability sequence.

For intuition, consider a residual probability sequence ρ. If ρ(z) becomes too small as z increases, IP

does not push {Zt} in the correct direction sufficiently, and {Zt} behaves like a random walk. To see this,

recall that we argued in the preceding section that {Zt} evolves as a birth and death chain, and its drift

is essentially proportional to ρ(Zt) (except for a finite number of states). Thus, if ρ(z) < 1
4z

in the limit,

Zt does not diverge to infinity and the spread line does not converge to the correct median. Regarding our

original choice of ρ, this intuition suggests that for the sake of ensuring convergence, it is undesirable to

pick a sequence that vanishes faster. However, if ρ(z) remains too large as z increases, the market maker

does not fully exploit the historical data reflected in {Zt}. In the end, if ρ(z)> 1
4z

in the limit, the market

maker’s T -period regret would be O
(∑T

t=1 ρ(t)
)
. For our original choice of ρ, this means that it is also
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undesirable to pick a sequence that vanishes slower. As a result, the choice of ρ= {ρ(z) = 1
r0+rz

, z ∈ Z+}
(with an appropriate value of r) makes the residual probabilities vanish at just the right rate to regularize

the dynamics of {Zt} so as to achieve good profit performance.

Let us now formalize the above intuition. First, since we expect s̃(z)→m1 as z→∞ and s̃(z)→m0 as

z→−∞, we restrict our attention to the residual probability sequences that are vanishing, i.e., ρ(z)→ 0

as z→∞. Let us further consider the following two regimes of residual probability sequences in terms of

their behaviors in the limit.

DEFINITION 2. We say that the sequence ρ = {ρ(z) ∈ (0, 1
2
− α), z ∈ Z+} is fast vanishing if

limsupz→∞{zρ(z)}< 1
4
, and slowly vanishing if lim infz→∞{zρ(z)}> 1

4
and limz→∞{ρ(z)}= 0.

In Definition 2, we compare the function ρ(·) with the critical function, z 7→ 1
4z

. Specifically, {ρ(z), z ∈ Z+}
is fast (resp. slowly) vanishing if it vanishes faster (resp. more slowly) than 1

4z
as z→∞. The two different

cases covers all the possible vanishing residual probability sequences such that limz→∞{zρ(z)} exists and

is not equal to 1
4
. In particular, our original choice, ρ= {ρ(z) = 1

r0+rz
, z ∈ Z+} with a sufficiently small r,

belongs to the family of slowly vanishing sequences.

DEFINITION 3. The residual probability sequence ρ = {ρ(z), z ∈ Z+} is regular if there exists A ∈ R ∪
{±∞} such that ρ(z)

ρ(z+1)
= 1+ A

z
+ o
(
1
z

)
as z→∞.

The regularity condition above means that the sequence ρ does not alternate excessively in the limit. This

is closely related to the Raabe’s test of convergence (Bromwich 1908, p. 33) applied to the series
∑

z ρ(z).

This condition is satisfied by many well-behaved sequences such as the popular family of “test” sequences,

{C(a+ bz)−µ, z ∈Z+} for given C,a, b,µ > 0, which includes our original choice of ρ.

Theorem 7 below studies how inertial policies with generic residual probability sequences perform when

the commission rate is sufficiently large. The proof of this result is in Appendix K.

THEOREM 7. Let πI be an inertial policy with a regular residual probability sequence ρ= {ρ(z) : z ∈ Z+}
and the commission rate c be sufficiently large so that ξ∗i = ξ∅ (i.e., the type-i informed bettor’s best response

strategy is to never bet) for every hypothesis i∈ {0,1}. Then, we have the following:

• If ρ is fast vanishing, then {Zt} is recurrent.

• If ρ is slowly vanishing, then ∆πI (T ) diverges in T at a rate satisfying ∆πI (T ) =O
(∑T

t=1 ρ(t)
)
.

In either case, ∆πI (T ) is unbounded in T .

Theorem 7 indicates that there exists a problem instance such that, if we use almost any other type of residual

probability sequence, then either {Zt} becomes recurrent (and thus the spread line st fails to converge) or the

regret guarantee becomes weaker than our original result. Consequently, we cannot improve performance

from logarithmic regret to bounded regret by choosing a different type of residual probability sequence.

This gives a partial characterization of the best achievable regret performance. While we leave the complete
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characterization as an open question, we conjecture that this is generally the case, i.e., it is not possible to

pick any adaptive policy such that the market maker’s T -period regret is bounded in T .

It is worth emphasizing that our proof of Theorem 7 is valid in more general setting in which the informed

bettor participates in the market and places bets according to a threshold strategy in the following form:

ξZ̄1 (z) = I{z < Z̄} and ξZ̄0 (z) =−I{z >−Z̄} for every z ∈ Z,

where Z̄ ∈ Z∪ {−∞}. This is a generalization of the particular threshold policy in Theorem 3. This extra

level of generality in the proof of Theorem 7 reveals that the above performance results can be applied to

more general problem instances, as long as the informed bettor’s best response strategy is of threshold type.

7. Concluding Remarks

Wolfers and Zitzewitz (2006) identify the question of how the market limits manipulation as one of the five

open questions about prediction markets. Partially in response to this question, we study a stylized model

to analyze the pricing policies of a monopolist market maker operating a spread betting market, who is

uninformed of the event outcome distribution. We demonstrate that if the market maker ignores the existence

of informed and strategic bettors, an informed bettor can manipulate the market by bluffing and eventually

gain an abnormal amount of profit. This (negative) finding still holds even we consider a informed bettor

who is restricted in the ability to dominate the market. We propose a policy, called the inertial policy, which

eliminates the informed bettor’s incentive to bluff, resulting in a regret up to a logarithmic factor of the total

number of bets.

There are many possibilities for future work and extensions to our model. For example, one could extend

the model so that myopic agents are systematically biased. One approach would be to add a bias term. If the

bias term is known to the market maker (or can be empirically estimated), then our model could be extended

to incorporate this setting.

Another extension would be to relax the continuity assumption for the event outcome distribution. If the

feasible set of spread lines is finite, the spread line cannot be arbitrarily close to the correct median. We

conjecture that in this setting, the same inertial policy with proper randomization would be also nearly opti-

mal. One could also extrapolate the insights of this paper to other forms of prediction markets, e.g., the odds

market and the index market (see Wolfers and Zitzewitz 2004). The main difference between those organi-

zations and the spread betting market is the payoff structure. We conjecture that the main insights, such as

the strategic manipulation of the informed bettor, as well as the rule of thumb to be inertial, carry through to

those organizations of prediction markets. Lastly, we could consider relaxing the commitment assumption

by considering a perfect Bayesian equilibrium (PBE) between the market maker and the informed bettor.

While it is significantly harder to characterize a PBE in a similar setting (see Routledge 1999 for some

discussions in the financial market), our Theorem 1 hints that there is no PBE that always leads the spread

lines to the correct median. The reason is that in a PBE where the informed bettor eventually quits, the
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equilibrium condition requires the market maker to essentially use a BP studied in our paper (except that

we did not cover the pathological case where sπB(0+) or sπB(1−) does not exist), but a BP is unable to

keep the informed bettor out of the market. Hence a market maker with commitment power is needed. Two

further extensions of the PBE characterization are (i) multiple market makers and informed bettors; and (ii)

the endogenous formation of market makers/informed bettors/commission rates. We leave these extensions

for future research.
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Appendix A: Facts Related to Problem Inputs (Assumption 1)

In this section, we explore immediate consequences of Assumption 1, centering around the symmetry and

separability of certain problem inputs.

A.1. Symmetry

Much of our analysis throughout the paper is based on the ideas that we only need to analyze the system

under one of the two hypotheses, and the case for the other hypothesis follows by symmetry. The following

lemmas reveals the problem structure that allows us to enjoy such simplification.

LEMMA A.1. (symmetry of probability distribution) For every x ∈ R, f0(x) = f1(m0 + m1 − x) and

F0(x)+F1(m0 +m1−x) = 1.

Proof. Note that for every i ∈ {0,1}, fi(·) is the p.d.f. for mi + ǫ, where ǫ has a p.d.f. fǫ(·). As a result,

for every x ∈ R and i ∈ {0,1}, fi(x) = fǫ(x−mi) and Fi(x) = Fǫ(x−mi). Due to (A1:2), which states

that fǫ is symmetric around zero, we have fǫ(x) = fǫ(−x). Hence, f0(x) = fǫ(x−m0) = fǫ(m0 − x) =

f1(m0 +m1−x), thereby establishing the first statement in the lemma.

To prove the second statement, we observe that for all x ∈ R, Fǫ(x) =
∫ x

−∞
fǫ(t)dt= 1−

∫∞

x
fǫ(t)dt=

1−
∫ −x

−∞
fǫ(−t)dt=1−

∫ −x

−∞
fǫ(t)dt= 1−Fǫ(−x). Thus, Fǫ(x)+Fǫ(−x) = 1, and F0(x) = Fǫ(x−m0) =

1−Fǫ(m0−x) = 1−F1(m1 +m0−x). Therefore, we have the second statement in the lemma.

LEMMA A.2. (symmetry of profit function) For every s ∈ [m0,m1], j+1 (s) = j−0 (m0 +m1− s) and

j−1 (s) = j+0 (m0 +m1− s).

Proof. We observe that j+1 (s)
(2.1)
= (c− 2)F1 (s) + 1− c

Lem. A.1
= (c− 2)[1− F0 (m0 +m1− s)] + 1− c =

(2− c)F0 (m0 +m1− s)− 1
(2.1)
= j−0 (m0 +m1− s) . Similarly, note that j−1 (s)

(2.1)
= (2− c)F1 (s)− 1

Lem. A.1
=

(2− c)[1−F0 (m0 +m1− s)]− 1 = (2− c)F0 (m0 +m1− s)+ 1− c
(2.1)
= j+0 (m0 +m1− s) .

A.2. Separability

The following lemma is concerned with the separability of the hypotheses, which is a similar condition to

the δ-discriminative condition in Harrison et al. (2012).

LEMMA A.3. (separability) There exists δ̄ > 0 such that for all s∈ S , (i) F0

(
s)−F1

(
s)≥ δ̄, (ii) log F0(s)

F1(s)
≥

δ̄, and (iii) log F̄1(s)

F̄0(s)
≥ δ̄.

Proof. Due to (A1:1), F0(s)−F1(s), log
F0(s)

F1(s)
, and log F̄1(s)

F̄0(s)
are all continuous functions of s on the compact

set S = [sL, sH ] and hence obtain minimal values in S . Moreover, by (A1:3), F0(s) > F1(s) > 0 for all

s ∈ S . Thus, for all s ∈ S , F0(s)− F1(s)> 0, log F0(s)

F1(s)
> 0, and log F̄1(s)

F̄0(s)
> 0. In particular, the minimal

values of all three functions are strictly positive. Based on this, we complete the proof by picking δ̄ > 0

such that min
{

min
s∈S
{F0(s)−F1(s)},min

s∈S
log F0(s)

F1(s)
,min
s∈S

log F̄1(s)

F̄0(s)

}

> δ̄ > 0.

Electronic copy available at: https://ssrn.com/abstract=3283392



Birge et al.: Dynamic Learning and Market Making in Spread Betting Markets with Informed Bettors

34 Submitted

Appendix B: Summary of Algorithms

Algorithm 1: Bayesian policy (BP)

Data: initial belief b1 ∈ (0,1), pricing function
sπB : (0,1)→S .

Result: the spread line st for each bet t.
t← 1;
while t≤ T do

st← sπB(bt);
observe bet dt ∈ {−1,+1};
if dt =+1 then

bt+1← btF̄1(st)

btF̄1(st)+(1−bt)F̄0(st)
;

else

bt+1← btF1(st)

btF1(st)+(1−bt)F0(st)
;

end

t← t+1;
end

Algorithm 2: Inertial Policy (IP)

Data: the residual probability sequence
ρ(·) :Z+→ (0, 1

2
−α).

Result: the spread line st for each bet t.
t← 1, Z1← 0;
while t≤ T do

st← s̃(Zt) according to (4.3);
observe bet dt ∈ {−1,+1};
if dt =+1 then

Zt+1←Zt +1;
else

Zt+1←Zt− 1;
end

t← t+1;
end

Appendix C: On the Failure of Bayesian Policies (Theorem 1)

This section provides the details for the proof of Theorem 1.

C.1. Roadmap

We first aim to identify profitable strategies for the informed bettor when the market maker uses BPs. Our

search for such strategies depends only on the values of sπB (0+) and sπB (1−), i.e., the limiting spread

lines as the posterior beliefs converge to {0,1}. There are two cases of the values of sπB(0+) and sπB (1−),
each corresponding to a profitable strategy for the informed bettor.

• Case 1 (profitable manipulation): sπB(0+)≤m0 and sπB(1−)≥m1. In this case, the informed bet-

tor’s honest bets a clear correcting power on the market maker’s spread lines. We construct a policy

for the informed bettor such that he can still gain a linear profit by mixing bluffing bets and honest bets

in a certain manner. We formally state our result regarding Case 1 in Proposition C.1 below, which is

a direct generalization of Proposition 1. We present the proofs of both propositions in Appendix C.4.

PROPOSITION C.1. (bluffing) Suppose that the market maker uses a Bayesian policy πB with pricing

function sπB (·) such that sπB (0+) ≤m0 and sπB (1−)≥m1. Then, there exists c̄0 = c̄0(Ξ̂) ∈ (0,1)

such that for every initial belief b1 ∈ (0,1), hypothesis i ∈ {0,1}, and commission rate c ≤ c̄0, the

type-i informed bettor has a “bluffing” policy ξb satisfying the following:

1. (belief and spread line dynamics) The posterior belief bt converges to (1− i) and the spread line

st converges to a limit s∞ 6=mi almost surely under P
πB,ξb
i .

2. (linearly growing profit of the informed bettor) V
πB ,ξb
i (T ) = Ω(T ).

• Case 2 (profitable honest betting): sπB(0+)>m0 or sπB (1−)<m1. In this case, the informed bet-

tor’s honest bets do not have a sufficiently strong correcting power on the market maker’s spread lines.
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That is, even if a certain type of informed bettor honestly bet all the time, the spread line does not

converge to the correct median. Thus the informed bettor can earn a linear profit by simply betting

honestly all the time. We formally state our result regarding Case 2 in Proposition C.2 below, and

present the proof of this proposition in Appendix C.5.

PROPOSITION C.2. (honest betting) Suppose that the market maker uses a Bayesian policy πB with

pricing function sπB(·) such that sπB(0+)>m0 or sπB (1−)<m1. Then there exists c̄1 = c̄1(πB, Ξ̂)

such that for some hypothesis i ∈ {0,1}, every initial belief b1 ∈ (0,1), and every commission rate

c≤ c̄1, the type-i informed bettor has an “honest” policy ξh satisfying the following:

1. (belief and spread line dynamics) The posterior belief bt converges to i and the spread line st

converges to a limit s∞ 6=mi almost surely under P
πB,ξb
i .

2. (linearly growing profit of the informed bettor) V
πB ,ξh
i (T ) = Ω(T ).

C.2. Proof of Theorem 1

Fix any policy πB with pricing function sπB (·). Pick c̄0 ∈ (0,1) as in Proposition C.1, and hypoth-

esis i and c̄1 as in Proposition C.2. Let c̄ := min{c̄0, c̄1} ∈ (0,1), and pick any c ∈ (0, c̄). We first

claim that the market maker’s regret is linear, i.e., lim infT→∞{ 1
T
∆πB (T )} > 0. Because 0 < c < c̄, we

deduce from Propositions C.1 and C.2 that the type-i informed bettor has a feasible policy ξi such that

lim infT→∞{ 1
T
V

πB ,ξi
i (T )}> 0. The type-i bettor’s best response policy, ξ∗i , maximizes his long-run aver-

age profit. Hence, lim infT→∞{ 1
T
V

πB ,ξ∗i
i (T )} ≥ lim infT→∞{ 1

T
V

πB,ξi
i (T )}> 0. From the market maker’s

point of view, her regret is at least the informed bettor’s profit, which leads to a linear regret. In fact, we can

decompose the bets into two groups: the first group comes from myopic bettors, and the second from the

informed bettor:

∆
πB,ξ∗i
i (T )

(2.5)
= cT

2
−

T∑

t=1

E
πB ,ξ∗i
i [I{(X − st)dt < 0}− (1− c)I{(X− st)dt > 0}]

= cT
2
−

T∑

t=1

E
πB,ξ∗i
i I{at = 0} [I{(X − st)dt < 0}− (1− c)I{(X− st)dt > 0}]

−
T∑

t=1

E
πB,ξ∗i
i I{at 6= 0} [I{(X − st)dt < 0}− (1− c)I{(X− st)dt > 0}]

= cT
2
−

T∑

t=1

E
πB,ξ∗i
i I{at = 0} [I{(X − st)ϑt < 0}− (1− c)I{(X− st)ϑt > 0}]

−
T∑

t=1

E
πB,ξ∗i
i I{at =+1} [I{X < st}− (1− c)I{X > st}]

−
T∑

t=1

E
πB,ξ∗i
i I{at =−1} [I{X > st}− (1− c)I{X < st}]
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=E
πB,ξ∗i
i

T∑

t=1

[
c
2
− I{at = 0}ri(st)

]

︸ ︷︷ ︸

(2.4)
≥ 0

+ E
πB,ξ∗i
i

T∑

t=1

[
I{at =+1}j+i (st)+ I{at =−1}j−i (st)

]

︸ ︷︷ ︸

(2.2)
= V

πB,ξ∗
i

i
(T )

≥ V
πB ,ξ∗i
i (T ).

In conclusion, the market maker’s regret is asymptotically linear in T :

lim inf
T→∞

{
1
T
∆πB (T )

}
≥ lim inf

T→∞

{
1
T
∆

πB ,ξ∗i
i (T )

}
≥ lim inf

T→∞

{
1
T
V

πB ,ξ∗i
i (T )

}
> 0.

We next claim that for some i∈ {0,1}, with positive P
πB,ξ∗i
i -probability, st does not converge to mi. Suppose

towards a contradiction that for all i∈ {0,1}, st converges to mi almost surely. It implies that the informed

bettor, who makes a linear profit, bets finite times (i.e.,
∑∞

t=1 I{at 6=0}<∞) almost surely. Thus,

0< lim inf
T→∞

{ 1
T
V

πB ,ξ∗i
i (T )}

(a)

≤ lim
T→∞

{
1
T
E

πB,ξ∗i
i

[
∑T

t=1 I{at 6= 0}
]}

(b)
= E

πB,ξ∗i
i

[

lim
T→∞

1
T

∑T

t=1 I{at 6= 0}
]

=0,

where (a) follows because the informed bettor’s profit per bet is at most 1, and (b) follows from the bounded

convergence theorem. We have thus arrived at a contradiction.

C.3. Main Proof Idea: One-stage Analysis

The above proof is based on what we call a “one-stage analysis.” That is, if the informed bettor places one

(possibly randomized) bet, we characterize the expected impact on the market maker’s belief as well as the

informed bettor’s profit from this single bet. Two functions are of interest throughout the proof. First, define

D(b,p) := (1− p) log
(

F1(s
π(b))

F0(sπ(b))

)

+ p log
(

F̄1(s
π(b))

F̄0(sπ(b))

)

(C.1)

as the expected increment (i.e., drift) of the market maker’s log-likelihood process Lt after a single bet if (i)

the current belief state is b and (ii) the informed bettor bets positively with probability p and negatively with

probability 1− p. In (C.1), the expectation is taken over the randomized action of the informed bettor. The

informed bettor misleads the market maker if D(b,p)< 0 under H1 and D(b,p)> 0 under H0. Second, let

Ri(b,p) := (1− p)j−i (s
π (b))+ pj+i (s

π (b)) (C.2)

be the informed bettor’s expected profit from a single bet under Hi if (i) the current belief state is b and (ii)

the informed bettor bets positively with probability p and negatively with probability 1− p. In (C.2), the

expectation is taken over the randomized action of the informed bettor and the final realization of the event

outcome X . The type-i informed bettor makes a profit in expectation if Ri(b,p)> 0.

The following result demonstrates how we utilize the aforementioned one-stage analysis in our proofs. It

builds on standard large-deviation based arguments. With a slight abuse of notation, we let {p(b)} denote the

informed bettor’s following behavioral strategy: he randomly (and independently) chooses to bet positively

with probability p(b) and negatively with probability 1− p(b) given the belief state b.
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LEMMA C.1. Let i ∈ {0,1}. Suppose that the market maker uses a Bayesian policy πB and the type-i

informed bettor’s policy ξ is given by the behavioral strategy {p(b)}. Then, we have the following:

1. If there exists δ > 0 such that E
πB ,ξ
i [Lt+1−Lt|bt = b] =D(b,p(b))<−δ for all b∈ (0,1) and t∈Z+,

then (i) E
πB,ξ
i [bt] =O(e−λt) for some λ > 0, and (ii) bt→ 0, Lt→−∞, st→ sπ (0+) almost surely.

If in addition, there exists b̄∈ (0,1) such that Ri(b,p(b))> δ for all b∈ (0, b̄], then V
πB ,ξ
i (T ) = Ω(T ).

2. If there exists δ > 0 such that E
πB,ξ
i [Lt+1 −Lt|bt = b] =D(b,p(b))> δ for all b ∈ (0,1) and t ∈ Z+,

then (i) E
πB,ξ
i [1− bt] =O(e−λt) for some λ> 0, and (ii) bt→ 1, Lt→∞, st→ sπ (1−) almost surely.

If in addition, there exists b̄∈ (0,1) such that Ri(b,p(b))> δ for all b∈ [b̄,1), then V πB ,ξ
i (T ) = Ω(T ).

In our proofs, we employ our one-stage analysis in different settings, and combine it with Lemma C.1 to

obtain desired results. Specifically, we use the one-stage analysis in Lemma C.2, in Step 1 in the proof of

Proposition C.2 in Appendix C.5, and in Step 1 in the proof of Theorem 2 in Appendix D.1. We combine

these instances of the one-stage analysis with Lemma C.1 to prove Propositions C.1 and C.2 as well as

Theorem 2.

Proof of Lemma C.1. Without loss of generality, suppose that D(b,p(b))<−δ for all b∈ (0,1). The proof

for the other case follows by repeating the same arguments verbatim. We complete the proof in two steps.

Step 1: concentration and convergence for {Lt}. We claim that there exists ε > 0 such that Pπ,ξ
i (Lt ≥

− δt
2
)≤ exp(−εt) for t∈ Z+, in which case the following hold: (i) E

πB ,ξ
i [bt] =O(e−λt) for some λ> 0; (ii)

Lt→−∞ almost surely; (iii) bt→ 0 almost surely; and (iv) st→ sπ (0+) almost surely.

Observe that the market maker’s pricing policy πB is Markovian with respect to the belief state bt. The

informed bettor’s behavioral strategy {p(b)} is also Markovian. As a result, bt is a Markov chain under

P
πB,ξ
i , and so is the market maker’s log-likelihood ratio process Lt.

We apply Doob’s decomposition to the process Lt. That is, we define At :=
∑t

ℓ=1E
πB,ξ
i [Lℓ−Lℓ−1|Lℓ−1]

and Mt :=
∑t

ℓ=1

(
Lℓ −E

πB,ξ
i [Lℓ|Lℓ−1]

)
so that Lt =At +Mt for all t. We may interpret At as the “drift”

of Lt and Mt as its “noise.” Because D(b,p(b))<−δ for all b∈ (0,1), At <−δt almost surely. Moreover,

Mt is a martingale with bounded increments: note that

|Mℓ−Mℓ−1| ≤
∣
∣Lℓ−E

πB,ξ
i [Lℓ|Lℓ−1]−Lℓ−1 +E

πB,ξ
i [Lℓ−1|Lℓ−2]

∣
∣

=
∣
∣Lℓ−E

πB,ξ
i [Lℓ−Lℓ−1|Lℓ−1]− 2Lℓ−1 +E

πB,ξ
i [Lℓ−1−Lℓ−2|Lℓ−2] +Lℓ−2

∣
∣

≤|Lℓ−Lℓ−1|+ |Lℓ−1−Lℓ−2|+E
πB ,ξ
i [|Lℓ−Lℓ−1||Lℓ−1] +E

πB ,ξ
i [|Lℓ−1−Lℓ−2||Lℓ−2]

(a)

≤4M,

where (a) follows by defining the constant M := max
{

sups∈S log
(

F0(s)

F1(s)

)

, sups∈S log
(

F̄1(s)

F̄0(s)

)}

≤
max

{

log 1
F0(sL)

, log 1
F̄1(sH )

}

, which is finite due to Assumption (A1:3). As a result, Lt is a Markov chain

with a non-vanishing drift and bounded increments.
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Finally, we deduce the following for all t∈Z+:

P
πB,ξ
i (Lt ≥− δt

2
)

= P
πB,ξ
i

(
At +Mt ≥− δt

2

)

≤ P
πB,ξ
i

(
Mt ≥ δt

2

)
[At <−δt almost surely]

≤ exp
(

− t2

2t(64M2/δ2)

)

[by Azuma-Hoeffding inequality;
∣
∣ 2Mt

δ
− 2Mt−1

δ

∣
∣≤ 8M

δ
]

= exp
(

− t
128M2/δ2

)

= exp(−εt) [ε := δ2

128M2 > 0]

The four facts mentioned in the beginning of this step, namely, (i) E
πB,ξ
i [bt] =O(e−λt) for some λ> 0; (ii)

Lt→−∞ almost surely; (iii) bt→ 0 almost surely; and (iv) st→ sπ (0+) almost surely, follow from the

above analysis in a standard manner; see, e.g., the proof of Proposition 7 in Harrison et al. (2012).

Step 2: profit evaluation. Suppose that Ri(b,p(b)) > δ for all b ∈ (0, b̄]. We claim that

lim infT→∞{ 1
T
V

πB ,ξ
i }> 0. Pick L̄ := log

(
b̄

1−b̄

)
− log

(
b1

1−b1

)
so that Lt ≥ L̄ if and only if bt ≥ b̄. Note that

L̄ is finite because b1 ∈ (0,1) and b̄∈ (0,1). Now, let us evaluate the type-i informed bettor’s payoff:

V πB ,ξ
i (T )

=
T∑

t=1

(

E
πB,ξ
i [Ri(bt,p(bt))]I{bt≤ b̄}+E

πB ,ξ
i [Ri(bt,p(bt))]I{bt > b̄}

)

≥
T∑

t=1

(

E
πB ,ξ
i [δ I{bt ≤ b̄}] +E

πB ,ξ
i [(−1)I{bt > b̄}]

)

[Ri(b,p(b))> δ ∀b∈ (0, b̄]]

= δT − (1+ δ)
T∑

t=1

P
πB,ξ
i (bt > b̄)

≥ δT − (1+ δ)
∞∑

t=1

P
πB ,ξ
i (bt > b̄)

≥ δT − (1+ δ)

∞∑

t=1

P
πB ,ξ
i (Lt≥ L̄)

We deduce from Step 1 that (1 + δ)
∑∞

t=1 P
πB,ξ
i (Lt ≥ L̄) is a finite constant that is independent of T .

Therefore, lim infT→∞{ 1
T
V πB ,ξ
i } ≥ δ > 0.

C.4. Profitable Manipulation (Proofs of Propositions 1 and C.1)

Let πB be the market maker’s Bayesian policy satisfying sπB(0+)≤m0 and sπB (1−)≥m1. The existence

of sπB(0+) and sπB (1−) are guaranteed by the definition of a Bayesian policy in our setting. Roughly

speaking, the proofs of Propositions 1 and C.1 rely on the construction of a strategy for the informed bettor

that randomizes between bluffing and honest betting. Under such a strategy, the informed bettor keeps

misleading the market maker while making profits. To formalize this idea, we recall that Ξ= (c,m0,m1, Fǫ)

is the collection of problem input parameters and α= F1(m0), and state the following auxiliary result.
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LEMMA C.2. (one-stage analysis for manipulation) There exist c̄0,p0 ∈ (0,1), which depend only on α,

such that for all c ∈ (0, c̄0], there exist b̄= b̄(Ξ,p0)∈ (0,1) and δ = δ(Ξ,p0)> 0 satisfying the following:

1. (global manipulability) For all b∈ (0,1), D(b,0)<−δ and D(b,1)> δ.

2. (local profitable manipulation; type-1) For all b∈ (0, b̄], D(b,p0)<−δ and R1(b,p0)> δ.

3. (local profitable manipulation; type-0) For all b∈ [1− b̄,1), D(b,1− p0)> δ and R0(b,1− p0)> δ.

Proof of Proposition C.1. We focus on the type-1 bettor, as the proof for the type-0 bettor follows from the

same arguments. Let b1 ∈ (0,1), and choose c̄0, c,p0, b̄, δ as in Lemma C.2. In particular, c̄0 depends only on

α (and hence on Ξ̂). Consider the following (behavioral) betting strategy ξb for the type-1 informed bettor:

under ξb, p(b) = p0I{b≤ b̄}. That is, the probability that he bets positively is p0 if bt ≤ b̄ and 0 otherwise.

Lemma C.2 implies that E
πB ,ξb
i [Lt+1 −Lt|bt = b] =D(b,p(b)) =D (b,p0) I{b≤ b̄}+D (b,0) I{b > b̄}<

−δ for all b ∈ (0,1) and t ∈ Z+, and R1 (b,p(b)) > δ for all b ∈ (0, b̄]. Hence, we are in the first case in

the statement of Lemma C.1. As a result, bt→ 0, Lt→−∞, and st→ sπ (0+) almost surely, as well as

V
πB,ξ
1 (T ) = Ω(T ).

Proof of Proposition 1. Proposition 1 is a special case of Proposition C.1, because we focus on the case

where sπ (0+) = m0 and sπ (1−) = m1 in Proposition 1 while we consider all possible cases satisfying

sπ (0+)≤m0 and sπ (1−)≥m1 in Proposition C.1.

Proof of Lemma C.2. We complete the proof in four steps.

Step 1. We claim that there exists δ1 = δ1(m0,m1, Fǫ) such that (i) D(b,0)<−δ1 and (ii) D(b,1)> δ1 for

all b∈ (0,1). By Lemma A.3, there exists δ̄ > 0 such that D(b,0)= log
(

F1(s
π(b))

F0(sπ(b))

)

≤ sups∈S log
(

F1(s)

F0(s)

)

=

− infs∈S log
(

F0(s)

F1(s)

)

≤−δ̄ for all b ∈ [0,1]. Similarly, D(b,1) = log
(

F̄1(s
π(b))

F̄0(sπ(b))

)

≥ infs∈S log
(

F̄1(s)

F0(s)

)

≥ δ̄.

To prove our claim in this step, we choose δ1 =
δ̄
2
.

Step 2. We claim that c̄0,p0 ∈ (0,1), which depend only on α, satisfying the following for all c ∈ (0, c̄0]:
• D(0+,p0)< 0 and R1(0+,p0)> 0;

• D(1−,1− p0)> 0 and R0(1−,1− p0)> 0.

In other words, the type-1 (resp. type-0) informed bettor can enjoy profitable manipulation when the market

maker’s belief is close to 0 (resp. 1). To prove this claim, let us first introduce some constants. Define

κ := − log 2α
log 2(1−α)

, c̄0 :=
(κ−1)(1−2α)

2(κ−1)(1−α)+1
, and κ̂ := (c̄0−2)α+1

(c̄0−2)α+1−c̄0
. By definition, all of the three constants depend

only on α. The following auxiliary result below summarizes the relationship among these constants.

LEMMA C.3. (ranges of and relations between κ, κ̂ and c̄0) We have c̄0 ∈ (0,1). Moreover, for all c ∈
(0, c̄0], κ> κ̂≥ (c−2)α+1

(c−2)α+1−c
> 1.

In light of the result above, we choose p0 so that κ > p0
1−p0

> κ̂. For example, we can choose p0 as the

solution to the equation p

1−p
= κ+κ̂

2
. Such a construction is valid because κ > κ̂ and the mapping p 7→ p

1−p

maps (0,1) onto (0,∞). Since κ and κ̂ depend only on α, so does p0. Intuitively, we may interpret p0 as
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the probability of honest betting (instead of bluffing), which means positive betting for the type-1 informed

bettor and negative betting for the type-0 informed bettor. Similarly, we may interpret p0
1−p0

as the probability

ratio of honest betting over bluffing. The constants κ and κ̂ are respectively upper and lower benchmarks

for this ratio: if bluffing is sufficiently frequent (i.e., p0
1−p0

< κ) then manipulation happens, and if honest

betting is sufficiently frequent (i.e., p0
1−p0

> κ̂) then manipulation is profitable for the informed bettor. A

more detailed derivation is presented below. The fact that there is a strict gap between κ and κ̂ is a key

construct in this proof, ensuring that the strategy ξb achieves profitable manipulation.

Second, we verify that D(0+,p0) < 0 and D(1−,1− p0) > 0. In other words, as the informed bettor

bluffs with high probability (i.e., the ratio of honest betting over bluffing less than κ), he misleads the market

maker. To see this, observe that

D(0+,p0)

= (1− p0) log
(

F1(s
π(0+))

F0(sπ(0+))

)

+ p0 log
(

F̄1(s
π(0+))

F̄0(sπ(0+))

)

< 1
1+κ

log
(

F1(s
π(0+))

F0(sπ(0+))

)

+ κ
1+κ

log
(

F̄1(s
π(0+))

F̄0(sπ(0+))

)

[p0 <
κ

κ+1
]

= H
(
F1 (s

π (0+))
)
−H

(
F0 (s

π (0+))
)

[H(x) := 1
κ+1

log(x)+ κ
κ+1

log(1−x)]

≤H(x0)−H
(
F0 (s

π (0+))
)

[x0 := F1 (s
π (0+))≤α]

(a)
=
(
H(x0)−H( 1

2
)
)
∨ 0

(b)

≤
(
H(α)−H( 1

2
)
)
∨ 0 (c)

= 0∨ 0= 0.

To derive part (a) above, we use the following two facts: (i) H(·) increases in the region (0, 1
κ+1

) and

decreases in the region ( 1
κ+1

,1), and hence is a quasi-concave function; and (ii) x0 = F1 (s
π (0+)) ≤

F0 (s
π (0+))≤ F0 (m0) =

1
2
. These two facts imply that H

(
F0 (s

π (0+))
)
≥H(x0)∧H( 1

2
). Rearranging

terms, we deduce that H(x0)−H
(
F0 (s

π (0+))
)
≤
(
H(x0)−H( 1

2
)
)
∨ 0. For part (b), we use two facts as

well. First, H(α)−H( 1
2
) = 1

κ+1
log(2α) + κ

κ+1
log(2(1−α)) = 0, implying that H(·) is increasing in the

region (0, α). Second, x0 = F1 (s
π (0+)) ≤ F1(m0) = α. Thus, H(x0) ≤H(α). Part (c) follows because

H(α) =H( 1
2
). Similarly,

D(1−,1− p0)

= p0 log
(

F1(s
π(1−))

F0(sπ(1−))

)

+(1− p0) log
(

F̄1(s
π(1−))

F̄0(sπ(1−))

)

> κ
1+κ

log
(

F1(s
π(1−))

F0(sπ(1−))

)

+ 1
1+κ

log
(

F̄1(s
π(1−))

F̄0(sπ(1−))

)

[p0 <
κ

κ+1
]

= H
(
F̄1 (s

π (1−))
)
−H

(
F̄0 (s

π (1−))
)

≥
(
H( 1

2
)∨H(y0)

)
−H(y0) [y0 := F̄0 (s

π (1−))≤α]

=
(
H( 1

2
)−H(y0)

)
∨ 0

≥
(
H( 1

2
)−H(α)

)
∨ 0= 0.
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Third, we verify that for all c ∈ (0, c̄0], R1(0+,p0) > 0 and R1(1−,1− p0) > 0. In other words, If the

informed bettor bets honestly with high probability (i.e., the ratio of honest betting over bluffing higher than

κ̂), he makes profits from every bet in expectation. To see this point, note that

R1(0+,p0) = (1− p0)j
−
1 (s

π (0+))+ p0j
+
1 (s

π (0+))

= (1− p0) [(2− c)F1 (s
π (0+))− 1]+ p0 [(c− 2)F1 (s

π (0+))+1− c] [by (2.1)]

(d)

≥ (1− p0) [(2− c)F1 (m0)− 1]+ p0 [(c− 2)F1 (m0)+ 1− c]

= (1− p0) [(2− c)α− 1]+ p0 [(c− 2)α+1− c]
(e)

> 0,

where (d) follows because ∂
∂F1(sπ(0+))

R1(0+,p0) = (2− c)(1− 2p0)< 0 as p0
1−p0

> κ̂ > 1 by construction,

and (e) follows because p0
1−p0

> κ̂= (c̄0−2)α+1

(c̄0−2)α+1−c̄0
≥ (c−2)α+1

(c−2)α+1−c
(see Lemma C.3). Similarly,

R0(1−,1− p0) = p0j
−
0 (s

π (1−))+ (1− p0)j
+
0 (s

π (1−))

= p0 [(2− c)F0 (s
π (1−))− 1]+ (1− p0) [(c− 2)F0 (s

π (1−))+ 1− c] [by (2.1)]

≥ p0 [(2− c)F0 (m1)− 1]+ (1− p0) [(c− 2)F0 (m1)+ 1− c]

= p0 [(2− c)(1−α)− 1]+ (1− p0) [(c− 2)(1−α)+ 1− c]

= p0 [(c− 2)α+1− c] + (1− p0) [(2− c)α− 1]> 0.

The preceding derivations confirm that D(0+,p0), D(1−,1− p0), R1(0+,p0), and R0(1−,1− p0) are all

well-defined as sπ (0+) and sπ (1−) exist.

Step 3. By Step 2, there exists b̄, δ2, δ3, δ4, δ5 > 0, all of which depend only on p0 and Ξ, such that

• (local profitable manipulation; type-1) D(b,p0)<−δ2 and R1(b,p0)> δ3 for all b∈ (0, b̄];
• (local profitable manipulation; type-0) D(b,1− p0)> δ4 and R0(b,1− p0)> δ5 for all b∈ (1− b̄,1].

The existence is guaranteed by the local continuity of D(b,p0) and R1(b,p0) with respect to b at 0+, as well

as that of D(b,1− p0) and R0(b,1− p0) with respect to b at 1−.

Step 4. Based on Steps 1 and 3, we complete the proof by choosing δ :=min{δ1, δ2, δ3, δ4, δ5}.

Proof of Lemma C.3. To prove that c̄0 > 0, it suffices to verify that κ > 1. Note that α ∈ (0, 1
2
),

and log
(
2(1 − α)

)
> 0 > log 2α. Moreover, due to Jensen’s inequality, log 2(1 − α) + log 2α <

2 log 2(1−α)+2α

2
= 0. Thus, κ= − log 2α

log 2(1−α)
> 1, and c̄0 > 0. To see why c̄0 < 1, note that c̄0 =

(κ−1)(1−2α)

2(κ−1)(1−α)+1
<

(κ−1)(1−2α)

(κ−1)(1−α)+1
< (κ−1)(1−α)

(κ−1)(1−α)+1
< 1. We have thus verified that c̄0 ∈ (0,1). Now, we choose c∈ (0, c̄0] to verify

that κ> κ̂≥ (c−2)α+1

(c−2)α+1−c
> 1. To see why (c−2)α+1

(c−2)α+1−c
> 1, note that c≤ c̄0 <

1−2α
1−α
⇒ (1− c)+(c−2)α> 0.

Moreover,
[
(c−2)α+1

]
−
[
(c−2)α+1− c

]
= c > 0. Hence, (c−2)α+1

(c−2)α+1−c
> 1. To see why κ̂≥ (c−2)α+1

(c−2)α+1−c
,

observe that the function c 7→ (c−2)α+1

(c−2)α+1−c
increases in c because α < 1. As a result, c ≤ c̄0, which implies

that (c−2)α+1

(c−2)α+1−c
≤ (c̄0−2)α+1

(c̄0−2)α+1−c̄0
= κ̂. Finally, let us verify that κ > κ̂. Note that c̄0 = (κ−1)(1−2α)

2(κ−1)(1−α)+1
<

(κ−1)(1−2α)

(κ−1)(1−α)+1
. By rearranging terms, we see that

(κ− 1)(1− 2α)> [(1−α)(κ− 1)+1]c̄0 =⇒ (1− 2α)κ+2α− 1> (1−α)c̄0κ+αc̄0
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=⇒ [(1− c̄0)+ (c̄0− 2)α]κ> 1+ (c̄0− 2)α

=⇒ κ> 1+(c̄0−2)α

(1−c̄0)+(c̄0−2)α
= κ̂.

We have thus completed the proof.

C.5. Profitable Honest Betting (Proof of Proposition C.2)

Proof of Proposition C.2. Choose

c̄1 :=min
{

max
{

2F0(s
πB (0+))−1

2F0(s
πB (0+))

, 1−2F1(s
πB (1−))

2F̄1(s
πB (1−))

}

, 1
2

}

. (C.3)

By construction, c̄1 ∈ (0,1), because either sπB(0+)>m0 or sπB(1−)<m1. Let c∈ (0, c̄1].
First, suppose that sπB (0+)>m0. We define the type-0 informed bettor’s “honest” strategy ξh as always

betting negatively, i.e., under ξh, p(b) = 0 for all b ∈ (0,1). We claim that there exists δ, b̄ > 0 such that

E
πB,ξh
0 [Lt+1 − Lt|bt = b] = D(b,0) < −δ for all b ∈ (0,1) and t ∈ Z+, and R0(b,p(b)) = R0(b,0) > 0

for all b ∈ (0, b̄]. To that end, we deduce from Lemma A.3 that there exists δ̄ > 0 such that D(b,0) =

log F1(s
π(b))

F0(sπ(b))
≤ −δ̄. Note that F0(s

πB(0+)) > F0(m0) =
1
2
, and 0 < c < 2F0(s

πB (0+))−1

F0(s
πB (0+))

. In that case,

R0(0+,0)= j−0 (sπB (0+))= (2− c)F0(s
πB(0+))−1= [2F0(s

πB(0+))−1]− cF0(s
πB(0+))> 0. Hence,

there exist ε > 0 and b̄ (independent of T ) such that R0(b,0)≥ ε for all b∈ (0, b̄]. Choosing δ =min{δ̄, ε},
we deduce from Lemma C.1 that bt→ 0 and st→ sπB (0+) almost surely, and that V

πB,ξh
0 (T ) = Ω(T ).

In the case where sπB (1−) < m1, our analysis is similar. In fact, type-1 informed bettor’s honest pol-

icy ξh is specified as always betting positively. Notice that 0 < c < 1−2F1(s
πB (1−))

F̄1(s
πB (1−))

; thus, R1(0+,0) =

j+1 (sπB (1−)) = (c− 2)F1(s
πB(1−))+ 1− c= [1− 2F1(s

πB(1−))]− cF̄1

(
sπB (1−)

)
> 0. The rest of the

proof for this case follows by repeating the above arguments.

Appendix D: On the Success of Bayesian Policies (Theorem 2)

This section provides the details for the proof of Theorem 2, as well as additional discussions on the myopic

Bayesian policy (MBP) as a special case of BP. In what follows, we use the following little-o notation: for

all functions f, g defined in a neighborhood around zero, we say that f(x) = o(g(x)) if limx→0
f(x)

g(x)
=0.

D.1. Proof of Theorem 2

Let sπB(·) be a regular pricing function and b1 ∈ (0,1). We assume without loss of generality that i=0 (the

analysis that follows can be repeated verbatim for the case where i = 1). Throughout this proof, we also

denote P
πB ,ξ∅
0 (·) and E

πB ,ξ∅
0 [·] as P0(·) and E0[·] for brevity. We complete the proof in three steps.

Step 1. We claim that there exists δ > 0 such that E0[Lt+1−Lt|bt = b]<−δ for all b∈ (0,1) and t∈Z+.

To prove this claim, we deduce from Lemma A.3 that πB is a δ̄-discriminative policy (in the sense of

Harrison et al. 2012) for some δ̄ > 0. By Lemma A.2 in Harrison et al. (2012), E0[Lt+1−Lt|bt = b]<−2δ̄2

for all b ∈ (0,1) and t ∈ Z+. As a result, Lemma C.1 implies that E0[bt] = O(e−λt) for some λ > 0, and

st→ sπ(0+) almost surely.
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Step 2. We claim that dt→ 0 almost surely, and E0[dt] =O
(
e−λt

)
, thus verifying Statements (T2:1) and

(T2:2) in Theorem 2. To that end, choose µ0 > 0 such that E0[bt] ≤ µ0e
−λt for all t ∈ Z+. Since sπB (·)

is regular, limsupb↓0
|sπB (b)−m0|

b
<∞. That is, there exists C > 0 such that |sπB (b) −m0| < bC for all

b∈ (0, δ). Hence, dt = |sπB(bt)−m0| → 0 P0-almost surely. Moreover,

E0[dt] =E0[dt
∣
∣bt ≥ δ]

︸ ︷︷ ︸

≤sH−sL

P0(bt ≥ δ)
︸ ︷︷ ︸

≤
E0[bt]

δ

+E0[dt|bt ≤ δ]
︸ ︷︷ ︸

≤E0[bt]C

P0(bt ≤ δ)
︸ ︷︷ ︸

≤1

≤ (sH−sL)E0[bt]

δ
+E0[bt]C =

[
sH−sL

δ
+C

]
E0[bt]≤

[
sH−sL

δ
+C

]
µ0e

−λt.

Therefore, E0[dt] =O
(
e−λt

)
.

Step 3. We claim that ∆
πB,ξ∅
0 (T ) = O(1), verifying Statement (T2:3) in Theorem 2. For this purpose,

observe that c
2
− r0(s

π (b)) = o(b) and c
2
− r1(s

π (b)) = o(1 − b). To see this, recall from (2.4) that

ri(s) = (2c− 4)
(
Fi(s)− 1

2

)2
+ c

2
for i ∈ {0,1}. Hence, r′i(s) = (2c− 4)(2Fi(s)− 1)fi(s). In particular,

r′0(m0) = r′1(m1) = 0. By Taylor’s theorem, we have r0(s) =
c
2
− o(s−m0) and r1(s) =

c
2
− o(m1 − s).

Because the BP in question is regular, max
{

limsupb↓0
|sπB (b)−m0|

b
, limsupb↑1

|sπB (b)−m1|
1−b

}

<∞. Thus,

r0(s
π (b))− c

2
= o
(
sπB (b)−m0

)
= o(b) and r1(s

π (b))− c
2
= o
(
m1 − sπB (b)

)
= o(1− b). Based on this,

and repeating the arguments in Step 2, we deduce that there exists µ2 > 0 such that E0[
c
2
− r0(s

π (bt))]≤
µ2e

−λt. Consequently, ∆
πB ,ξ∅
0 (T ) = cT

2
− Ei

[∑T

t=1 I{(X − st)dt < 0} − (1 − c)I{(X − st)dt > 0}
]
=

∑T

t=1E0

[
c
2
− r0(s

π (bt))
]
≤∑T

t=1 µ2e
−λt <

∑∞

t=1 µ2e
−λt =O(1).

D.2. Discussion on an Equivalent Interpretation of the Absence of the Informed Bettor

The informed bettor’s vacuous strategy ξ∅ is equivalent to his best response strategy when the commission

rate c is sufficiently high. We formalize this observation in the result below.

LEMMA D.1. For every policy π of the market maker, hypothesis i ∈ {0,1}, and sufficiently large c that

depends only on F0(·) and F1(·), ξ∗i = ξ∅.

Proof of Lemma D.1. Let α̃ :=min{F1(sL),1−F0(sH)}, which is strictly positive by Assumption 1. Let

c > 1−2α̃
1−α̃

so that α̃ < 1−c
2−c

(this choice of c is feasible because 1−2α̃
1−α̃

< 1). For all s ∈ S ,

j+1 (s) =(c− 2)F1(s)+ 1− c≤ (c− 2)α̃+1− c < 0;

j+0 (s) =(c− 2)F0(s)+ 1− c≤ (c− 2)F1(s)+ 1− c< 0;

j−0 (s) =(2− c)F0(s)− 1≤ (2− c)(1− α̃)− 1= (1− c)− α̃(2− c)< 0;

j−1 (s) =(2− c)F1(s)− 1≤ (2− c)F0(s)− 1< 0.

That is, the informed bettor finds it (strictly) better off not to bet at all, regardless of the market maker’s

spread line s. In that case, it is easy to verify that the informed bettor’s best response strategy is to quit the

market, regardless the market maker’s policy.
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D.3. Discussion on the Myopic Bayesian Policy (MBP)

In this section, we briefly discuss the MBP. The main purpose of this discussion is to connect to the previous

dynamic pricing and learning literature (in particular, Harrison et al. 2012 and Chen and Wang 2016), and

demonstrate that the MBP satisfies the additional regularity condition in Theorem 2. For all b ∈ [0,1], we

denote the market maker’s myopic expected profit function by

rb(s) := br1(s)+ (1− b)r0(s) = (2c− 4)
[
b(F1 (s)− 1

2
)2 +(1− b)(F0 (s)− 1

2
)2
]
+ c

2
. (D.1)

The MBP uses the following policy function:

sπB(b) := s†(b) = sup argmax
s∈R

{rb(s)}. (D.2)

The supremum operator in Equation (D.2) is introduced to ensure that s†(b) is uniquely defined. In the

following series of results, we establish the key properties of the MBP.

LEMMA D.2. For i∈ {0,1}, argmaxs∈R ri(s) =mi.

Proof. Observe that r0(s) = (2c−4)
(
F0(s)− 1

2

)2
+ c

2
and r1(s) = (2c−4)

(
F1(s)− 1

2

)2
+ c

2
. The statement

follows by noticing that F0(·) and F1(·) have unique medians m0 and m1, respectively, due to (A1:3).

LEMMA D.3. For b∈ [0,1], s†(b)∈ [m0,m1]. Moreover, for b∈ [0,1], s†(b) strictly increases in b.

Proof. To prove the first statement, note that for i∈ {0,1}, ri(·) has a unique maximizer, mi. Thus, it suffices

to consider b∈ (0,1). Observe that r′b(s) = b(2c−4)f1(s)
(
2F1(s)−1

)
+(1−b)(2c−4)f0(s)

(
2F0(s)−1

)
.

Hence, for all s ≥m1, r′b(s)≤ b(2c− 4)f1(m1)
(
2F1(m1)− 1

)
+ (1− b)(2c− 4)f0(m1)

(
2F0(m1)− 1

)
.

By (A1:3), F0(m1)>F0(x)>F0(m0) =
1
2
=F1(m1)>F1(x)>F1(m0) for all x∈ (m0,m1). As a result,

r′b(s)≤ 0 and rb(s)≤ sb(m1) for all s≥m1. Moreover, r′b(m1) = (1− b)(2c− 4)f0(m1)
(
2F0(m1)− 1

)
<

0, because b < 1, c < 1, f0(m1)> 0 by (A1:3), and 2F0(m1)− 1> 0. Thus, rb(s)<sb(m1) for all s >m1.

Consequently, by a similar argument, rb(s)< sb(m0) for all s <m0.

To prove the second statement, we deduce from the first statement that it suffices to consider the case

where s∈ [m0,m1]. Note that, for all b∈ [0,1] and s ∈ [m0,m1],

∂2rb(s)

∂b∂s
= ∂

∂b
[r′b(s)] =

∂
∂b

[
b(2c− 4)f1(s)(2F1 (s)− 1)+ (1− b)(2c− 4)f0(s)(2F0 (s)− 1)

]

= (2c− 4)
︸ ︷︷ ︸

<0

[
f1(s)(2F1 (s)− 1)+ f0(s)(1− 2F0 (s))
︸ ︷︷ ︸

<0

]
> 0,

where the strict inequality is due to (A1:3). Thus, rb(s) is a strictly supermodular function of (b, s). Conse-

quently, we deduce from Topkis’s theorem (Topkis 1978) that s†(b) is non-decreasing in b. To see why s†(b)

is strictly increasing in b, note that s†(b) satisfies the first order condition r′b(s) = 0, which is equivalent to

b= f0(s)(2F0(s)−1)

f0(s)(2F0(s)−1)+f1(s)(1−2F1(s))
=: G(s). (D.3)

For all s∈ [m0,m1], the denominator of G(s) is strictly positive and hence well-defined. Suppose that there

exist bx, by ∈ [0,1] such that s†(bx) = s†(by). Then, the first order condition states that bx = G(s†(bx)) =
G(s†(by)) = by . Hence, s†(b) must be strictly increasing in b.
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PROPOSITION D.1. There exist C0,C1 > 0 such that s†(b) =m0+C0b+o(b) =m1+C1(b−1)+o(1−b).

That is, s†(b) is a regular pricing function.

Proof. Recall that s†(·) satisfies the first order condition in Equation (D.3). By Lemma D.2, m0 and m1 are

the unique solutions to G(s) = 0 and G(s) = 1, respectively. Moreover, it is straightforward verify that

G′(m0) =
2f2

0 (m0)

f1(m0)(1−2F1(m0))
> 0 and G′(m1) =

2f2
1 (m1)

f0(m1)(2F0(m1)−1)
> 0.

Note that the strict positivity is guaranteed by (A1:3). Define C0 :=
1

G′(m0)
> 0 and C1 :=

1
G′(m1)

> 0. By

the inverse function theorem (Rudin 1976, Theorem 9.24), G−1(b) is uniquely defined in [0, ε)∪ (1− ε,1]

for some ε > 0, with (G−1)′(i) = Ci for i ∈ {0,1}. Thus, by Taylor’s theorem, for b ∈ [0, ε) ∪ (1− ε,1],

s†(b) = G−1(b) =m0+C0b+o(b) =m1+C1(b−1)+o(1−b). For b∈ [ε,1−ε], s†(b) is uniquely defined,

and the statement of this lemma trivially holds.

Appendix E: Residual Probability Representation of Inertial Policies (Proposition 2)

In this section, we provide the details for the proof of Proposition 2, as well as additional discussions on the

extension of the function ρ(·) from Z+ to Z.

E.1. Proof of Proposition 2

We first extend ρ(·) from Z+ to Z as follows:

ρ(z) =

{
1
2
−F1

(
m0+m1

2

)
if z =0,

1
2
−F1 ◦F−1

0

(
1
2
+ ρ(−z)

)
if z ∈Z−.

(E.1)

In particular, we find it useful to combine (E.1) with our specific construction of the residual probability

sequence {ρ(z) = 1
r0+rz

, z ∈ Z+}, and write out the extended version of ρ(·) as the following:

ρ(z) =

{
1

r0+rz
if z ∈N,

1
2
−F1 ◦F−1

0

(
1
2
+ 1

r0−rz

)

if z ∈Z−.
(E.2)

We complete the rest of proof in three steps.

Step 1. We claim that both s̃(·) in (4.3) and the extension of ρ(·) in (E.1) are well-defined (we prove

this statement to verify that the inverse functions in (4.3) and (E.1) both exist). Because ρ(z) ∈ (0, 1
2
− α)

for all z ∈ Z+, it suffices to verify that (i) F−1
0 (·) exists in ( 1

2
,1 − α), and (ii) F−1

1 (·) exists in (α, 1
2
).

Moreover, as Fǫ(·) =Fi(·+mi) for i∈ {0,1}, it is sufficient to show that F−1
ǫ (·) exists in (α,1−α). Note

that Fǫ(m0 −m1) = F1(m0) = α, and Fǫ(m1 −m0) = F0(m1) = 1− F1(m0) = 1− α, where the second

equality follows from Lemma A.1. Since |m1−m0|=m1−m0≤ sH−m0, we deduce from (A1:3) that Fǫ

is strictly increasing in the interval [m0−m1,m1−m0]. This means that F−1
ǫ (·) exists and strictly increases

in (α,1−α).

Step 2. We now claim that the construction of s̃(·) and the extension of ρ(·) satisfy (4.2). First, let z ∈Z+.

Then, F0 (s̃(−z)) (4.3)
= F0

(
F−1

0

(
1
2
+ ρ(z)

))
= 1

2
+ ρ(z). Furthermore, F1

(
s̃(z)

) (4.3)
= F1

(
F−1

1

(
1
2
− ρ(z)

))
=
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1
2
− ρ(z). Now, let z = 0. In this case, F0(s̃(0))

(4.3)
= F0

(
m0+m1

2

) Lem. A.1
= 1−F1

(
m0+m1

2

) (E.1)
= 1

2
+ρ(0). More-

over, F1(s̃(0))
(4.3)
= F1

(
m0+m1

2

) (E.1)
= 1

2
− ρ(0). Finally, let z ∈ Z−. To analyze this case, we use the following

result, which states that the pricing function s̃(·) in (4.3) is symmetric around the point
(
0, m0+m1

2

)
.

LEMMA E.1. For all z ∈ Z, s̃(z)+ s̃(−z) =m0 +m1.

Thus, F0(s̃(−z)) Lem. A.1 & E.1
= 1 − F1(s̃(z))

(4.3)
= 1 − F1 ◦ F−1

0

(
1
2
+ ρ(−z)

) (E.1)
= 1

2
+ ρ(z). In addition,

F1

(
s̃(z)

) (4.3)
= F1

(
F−1

0

(
1
2
+ ρ(−z)

)) (E.1)
= 1

2
− ρ(z).

Step 3. Lastly, we claim that given {ρ(z), z ∈Z+}, the construction of s̃(·) and the extension of ρ(·) that

satisfy (4.2) are both unique. The proof of uniqueness also provides us some intuition for the choices of s̃(·)
and ρ(·). Note that both F0(·) and F1(·) are strictly increasing by Step 1. Thus, we first uniquely determine

the values of s̃(·) from (4.2). In fact, given the residual probability sequence {ρ(z), z ∈Z+},
• {s̃(z), z ∈ Z+} is uniquely determined by the relationship F1

(
s̃(z)

)
= 1

2
− ρ(z) for all z ∈ Z+ (this

corresponds to the zone where the betting sequence is in favor of H1, and hence s̃(·) is closer to m1),

• {s̃(z), z ∈ Z−} is uniquely determined by the relationship F0

(
s̃(−z)

)
= 1

2
− ρ(z) for all z ∈ Z+ (this

corresponds to the zone where the betting sequence is in favor of H0, and hence s̃(·) is closer to m0),

• s̃(0) is uniquely determined by the relationships F1

(
s̃(0)

)
= 1

2
−ρ(0) and F0

(
s̃(0)

)
= 1

2
−ρ(0), which

imply that F1

(
s̃(0)

)
+ F0

(
s̃(0)

)
= 1 (this corresponds to the zone where the betting sequence is in

favor of neither hypothesis, and hence s̃(0) = m0+m1
2

).

Because the values of s̃(·) are uniquely determined, the value of ρ(z) for every z ∈ Z− ∪ {0} is uniquely

determined by (4.2).

Proof of Lemma E.1. Let z ∈ Z. If z = 0, then we deduce from (4.3) that s̃(0) + s̃(0) = m0 +m1, and

the claim holds. On the other hand, if z ∈ Z+, then we note that F0

(
m0 +m1−F−1

1

(
1
2
− ρ(z)

)) Lem. A.1
=

1 − F1 ◦ F−1
1

(
1
2
− ρ(z)

)
= 1

2
+ ρ(z). In this case, by Step 1 of the proof of Proposition 2, the inverse

of F0 is well-defined. Thus, F−1
0

(
1
2
+ ρ(z)

)
=m0 +m1 − F−1

1

(
1
2
− ρ(z)

)
. As a result, s̃(z) + s̃(−z) (4.3)

=

F−1
1

(
1
2
− ρ(z)

)
+F−1

0

(
1
2
+ ρ(z)

)
=m0 +m1.

E.2. Discussions

Let us now explore general properties of the extended residual probability sequence {ρ(z), z ∈Z} in (E.1).

LEMMA E.2. (upper bound) ρ(z)< 1
2
−α for all z ∈Z.

Proof. By definition, ρ(z)< 1
2
−α for all z ∈Z+. Note that ρ(0) = 1

2
−F1

(
m0+m1

2

)
< 1

2
−F1 (m0) =

1
2
−α

by the (strict) monotonicity of F1(·). For all z ∈Z−, ρ(z) = 1
2
−F1◦F−1

0

(
1
2
+ ρ(−z)

)
< 1

2
−F1◦F−1

0

(
1
2

)
=

1
2
−α by the (strict) monotonicity of F1(·) and F0(·).

LEMMA E.3. (lower bound) ρ(z) > 0 for all z ∈ Z. Moreover, if sup{ρ(z) : z ∈ Z+} < 1
2
− α, then

inf{ρ(z) : z ≤M}> 0 for all M ∈ Z.
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Proof. By definition, ρ(z)> 0 for all z ∈Z+. Moreover, ρ(0) = 1
2
−F1

(
m0+m1

2

)
> 1

2
−F1 (m1) = 0 by the

(strict) monotonicity of F1(·). Choose δ ≥ 0 so that ρ(z)≤ 1
2
−α− δ for all z ∈Z+. For all z ∈ Z−, ρ(z) =

1
2
−F1 ◦F−1

0

(
1
2
+ ρ(−z)

)
≥ 1

2
−F1 ◦F−1

0 (1−α− δ)≥ 0, where the last inequality is strict if δ > 0 by the

(strict) monotonicity of F1(·) and F0(·). If δ > 0, ρ(z)≥min{1
2
−F1 ◦F−1

0 (1−α− δ) , ρ(1), . . . , ρ(M)}>
0 for all z ≤M .

Appendix F: Key Proof Steps for the Results in Section 4

Proof of Lemma 4. Since Yt is time-homogeneous, we have f(z) = E[u(Y2)|Y1 = z] − u(z) =

E[u(Yt+1)|Yt = z]−u(z) for all z, t. Consequently,

f(Y1)+ f(Y2)+ · · ·+ f(Yt) =E[u(Y2|Y1)]−u(Y1)+E[u(Y3|Y2)]−u(Y2)+ · · ·+E[u(Yt+1|Yt)]−u(Yt)

=
t−1∑

i=1

(

E[u(Yi+1)|Yi]−u(Yi+1)
)

︸ ︷︷ ︸

Mt

+E[u(Yt+1)|Yt]−u(Y1)

for all t, whereMt is a martingale with respect to the σ-algebra Ft = σ(Y1, · · · , Yt) because

E[Mt+1|Ft]
(a)
= E [Mt +E[u(Yt+1)|Yt]−u(Yt+1)|Ft]

(b)
=Mt +E[u(Yt+1)|Yt]−E[u(Yt+1)|Ft]

(c)
= 0.

In the preceding chain of equalities, (a) follows from the definition ofMt, (b) from the fact that bothMt

and E[u(Yt+1)|Yt] are Ft-measurable, and (c) from the Markov property of the Markov chain Yt. Thus,

E[f(Y1)]+E[f(Y2)]+ · · ·+E[f(Yt)] =EMt +EE[u(Yt+1)|Yt]−Eu(Y1) =Eu(Yt+1)−Eu(Y1).

The following lemma is another key proof step for the results in Section 4.

LEMMA F.1. For all constants δ ∈ R, ẑ ∈ Z, and any two sequences x(·), p(·) : {ẑ, ẑ + 1, . . .} → R, con-

sider the difference equation (F.1) below:
{

y(ẑ− 1)= 0, y(ẑ) = δ,

p(z)y(z+1)+ p̄(z)y(z− 1)− y(z) = x(z) for all z ≥ ẑ,
(F.1)

where p̄(z) := 1− p(z). If p(·) 6∈ {0,1}, the difference equation (F.1) above admits the following solution

yẑ
δ (·) : {ẑ− 1, ẑ, . . .}→R:

yẑ
δ (z) =







0 if z = ẑ− 1,
(

1+
z−1∑

n=ẑ

n∏

m=ẑ

p̄(m)

p(m)

)

δ+
z−1∑

n=ẑ

n∑

k=ẑ

(
n∏

m=k

p̄(m)

p(m)

)

x(k)

p̄(k)
if z ≥ ẑ.

(F.2)

In the notation above, we use the convention that
∑n−1

k=n(·) := 0, and
∏n−1

k=n(·) := 1.

Proof. Let δ ∈ R, ẑ ∈ Z, and x(·) be a function from {ẑ, ẑ + 1, . . .} to R. By construction, yẑ
δ (·) satisfies

the boundary conditions yẑ
δ (ẑ− 1) = 0 and yẑ

δ (ẑ) = δ. To verify the inductive relation, we first evaluate the

term yẑ
δ (z+1)− yẑ

δ(z) for z ≥ ẑ− 1:

yẑ
δ (z+1)− yẑ

δ (z) =







δ if z = ẑ− 1,

δ
z∏

m=ẑ

p̄(m)

p(m)
+

z∑

k=ẑ

(
z∏

m=k

p̄(m)

p(m)

)

x(k)

p̄(k)
if z ≥ ẑ.
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Next, we evaluate the term p(z)yẑ
δ (z+1)+ p̄(z)yẑ

δ (z− 1)− yẑ
δ(z): for all z ≥ ẑ,

p(z)yẑ
δ (z+1)+ p̄(z)yẑ

δ (z− 1)− yẑ
δ(z)

= p(z)[yẑ
δ (z+1)− yẑ

δ (z)]− p̄(z)[yẑ
δ (z)− yẑ

δ (z− 1)]

= δ

(
z−1∏

m=ẑ

p̄(m)

p(m)

)(

p(z) p̄(z)
p(z)
− p̄(z)

)

+ p(m) p̄(m)

p(m)

x(z)

p̄(z)
+

[
z−1∑

k=ẑ

(
z−1∏

m=k

p̄(m)

p(m)

)

x(k)

p̄(k)

](

p(z) p̄(z)
p(z)
− p̄(z)

)

= 0+x(z)+ 0= x(z).

Appendix G: The Informed Bettor’s Best Response to IP (Theorem 3)

In this section, we provide the details for the proof of Theorem 3.

G.1. Summary of Intuition

Lemmas 1 and 3 correspond to two separate mechanisms through which the informed bettor’s profit may be

unbounded. The first mechanism is that the threshold strategy ξ∗i itself generates an infinite amount of profit

for the informed bettor. In the context of the threshold strategy ξ∗i defined in (4.4), this happens when the

market state Zt behaves so noisily that the event of severe mispricing (i.e., the spread line being sufficiently

far away from the true median) occurs infinitely often. In such cases, the market maker is effectively not

collecting information from the market. Our inertial policy guards against this mechanism by preventing the

learning rate (formally defined as the drift of {Zt}) from vanishing too fast, in which case {Zt} diverges in

the right direction and the spread line st converges to the correct median almost surely.

The second mechanism is that the informed bettor may have an incentive to deviate from ξ∗i . To mathe-

matically verify that IP guards against this mechanism, it suffices to only algebraically verify the Bellman

equation (4.11). But to see it intuitively, let us separately discuss the following two cases, each correspond-

ing to a different type of deviation:

• (case 1) The informed bettor may deviate from ξ∗i by bluffing. IP prevents this type of deviation

because under IP, a pair of positive-negative bets have no net impact on the market state Zt. Thus, the

informed bettor can only push the market state Zt to the wrong direction by bluffing more often than

honest betting. But as discussed in Section 3.2, he also needs to bet honestly more often than bluffing

to gain a positive net profit. Based on these two contradicting facts, we reach the conclusion that the

informed bettor does not have an incentive to bluff.

• (case 2) The informed bettor may also deviate from ξ∗i by not following the threshold structure of

betting honestly versus waiting. IP induces the informed bettor to bet according to a threshold strategy,

because we can marginally change the action from betting (at =+1) to waiting (at = 0) at every state

z ∈ Z, and evaluate the difference in his continuation profits. It turns out this difference function only

crosses zero once, leading to a threshold structure.20

20 Algebraically, this is ultimately reduced to verifying that the function j+1 (z− 1)
[

( 1
2
− ρ(z))+ ( 1

2
− ρ(z))2 + · · ·

]

− j+1 (z) =

j+1 (z− 1)
1

2
−ρ(z)

1

2
+ρ(z)

− j+1 (z) crosses zero only once.
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G.2. Preliminaries

First, we provide the explicit expressions for z̄ and r̄. Let

z̄ := inf
{

z : ρ(z−1)

2ρ(z)
− ρ(z)− ρ(z− 1)> 1

2
− c

2−c

}

(G.1)

be the threshold used in the informed bettor’s optimal policy ξ∗i in (4.4). We follow the common conven-

tion that z̄ =∞ if the set inside the infimum in (G.1) is empty, and z̄ =−∞ if this set is unbounded from

below. By Lemma G.2 below, z̄ is finite if and only if j+1 (−∞)> 0 (i.e., the type-1 informed bettor finds

it profitable to act at some point in time). Otherwise, z̄ = −∞, which corresponds to the informed bet-

tor’s policy of never betting according to (4.4). Given strictly positive constants r̄0, r̄1 that depend only on

m0,m1, Fǫ(·), and c, let

r̄=min{2, r̄0, r̄1} (G.2)

be the upper bound of r for Theorem 3 to hold. The closed form expressions for r̄0 and r̄1 are as follows:

r̄0 :=
cr0

(2−c)ζ0
, where ζ0 :=max

{

1, max
s∈[m0,m1]

f1(s)

f0(s)

}

, (G.3)

and

r̄1 := sup{r : ζ1r+2r0 > 0}=
{

2r0
−ζ1

if ζ1 < 0,

∞ if ζ1 ≥ 0,
where ζ1 := min

s∈[m0,m1]

{(
f ′
1(s)

f1(s)
− f ′

0(s)

f0(s)

)
1

f0(s)

}

. (G.4)

REMARK 1. Theorem 3 requires r̄ to be strictly positive. It is straightforward to verify the strict positivity

of r̄. By (A1:1) and (A1:3), fi(·) is continuous and strictly positive in the interval [m0,m1]. Hence, ζ0 is

strictly positive and finite (which implies that r̄0 > 0), and ζ1 is finite (which implies that r̄1 > 0).

G.3. Auxiliary Lemmas

We employ the following auxiliary lemmas to prove Theorem 3, deferring their proofs to Appendix G.6.

The first auxiliary lemma summarizes the properties of ρ(·) in (E.2).

LEMMA G.1. The (extended) residual probability sequence {ρ(z), z ∈ Z} in (E.2) satisfies the following:

(LG.1-1) The natural further extension of ρ(z) from domain Z to domain R, defined as

ρ(x) =

{
1

r0+rx
if x≥ 0,

1
2
−F1 ◦F−1

0 ( 1
2
+ 1

r0−rx
) if x< 0,

(G.5)

is a continuous and strictly decreasing function. Moreover, ρ(·) is twice differentiable in R\{0}.
(LG.1-2) For all z ∈ Z, 1

2
−α= ρ(−∞)>ρ(z)> ρ(∞) = 0.

(LG.1-3) For all r ∈ (0,4) and z0 ∈Z,
∑∞

n=0

∏n

k=0

1
2−ρ(z0+k)
1
2+ρ(z0+k)

<∞.

(LG.1-4) Suppose that 0< r < r̄0. Then, for every integer z ∈Z,
ρ(z+1)

ρ(z)
> 1− c

2−c
. Therefore,

(a) ρ(z)− ρ(z+1)< c
2−c

,

(b)
1
2−ρ(z)
1
2+ρ(z)

<
(2−c)ρ(z+1)+ c

2
(2−c)ρ(z)+ c

2
.
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In Lemma G.1 above, (LG.1-1)-(LG.1-2) are (intuitive) regularity conditions for ρ(·). Property (LG.1-3)

is closely related to the convergence of
∑∞

n=1Λn, which ensures that Zt diverges to infinity with prob-

ability one. The last property, (LG.1-4), ensures that ρ(z + 1) is “close enough” to ρ(z). This “inertia”

property eliminates the informed bettor’s incentive to bluff; see the proof of Lemma 3 for further details.

The following lemma summarizes the properties of the threshold z̄, which is defined in (G.1).

LEMMA G.2. Suppose that 0< r <min{2, r̄1}. Then, z̄ possesses the following properties:

(LG.2-1) (finiteness) If j+1 (−∞)> 0, then z̄ is finite. Otherwise, z̄ =−∞.

(LG.2-2) (single-crossing property) j+1 (z)
[
1
2
+ ρ(z)

]
< j+1 (z− 1)

[
1
2
− ρ(z)

]
if and only if z ≥ z̄.

(LG.2-3) (profitable action) j+1 (z)> 0 for all z < z̄.

The following lemma characterizes the summation of the probabilities that Zt hits the region (−∞,M ] up

to period T under the probability measure Pz
1.

LEMMA G.3. For all r ∈ (0, r̄), z̄ ∈Z∪{−∞}, and M ∈ Z satisfying M > z̄−2, there exists an increasing

function ũ : {z ∈Z : z > z̄− 2}→R such that
T∑

t=1

Ez
1I{Zt ≤M}=Ez

1ũ(ZT+1)− ũ(z) for all z ∈Z satisfying z > z̄− 2 and T ∈Z+. (G.6)

The closed-form expression for ũ(·) is as follows:

ũ(z) =







(

1+
M∑

n=z+1

M∏

m=n

1
2+ρ(m)
1
2−ρ(m)

)

β̃+
M∑

n=z+1

M∑

k=n

1
1
2+ρ(k)

k∏

m=n

1
2+ρ(m)
1
2−ρ(m)

if z̄− 2< z ≤M,

0 if z =M +1,
(

1+
z−1∑

n=M+2

n∏

m=M+2

1
2−ρ(m)
1
2+ρ(m)

)

β if z ≥M +2,

(G.7)

where β > 0 and β̃ < 0 are finite constants given by:






β̃ =−∏M

m=z̄

1
2−ρ(m)
1
2+ρ(m)

−∑M

k=z̄
1

1
2−ρ(k)

∏M

m=k

1
2−ρ(m)
1
2+ρ(m)

,

β =−
1
2−ρ(M+1)
1
2+ρ(M+1)

β̃.
(G.8)

G.4. Main Body of the Proof of Theorem 3

For the market maker, fix an arbitrary inertial policy πI with tuning parameter r ∈ (0, r̄), where r̄ is as

in (G.2). We make two assumptions without loss of generality. First, we assume that i = 1, because the

analysis for the case where i= 0 can be repeated verbatim. Second, we assume that j+1 (−∞)> 0 (which

implies that z̄ >−∞ by (LG.2-1)) because otherwise the type-1 informed bettor never finds it profitable to

act and the theorem’s statement holds trivially.

Given the function J̄1 (·) defined in (4.8), we have the following for all T ∈ Z+ and any admissible

response policy ξ1 of type-1 informed bettor:

0≤ E
πI ,ξ1
1 [J̄1 (ZT+1)] [by Lemma 1]
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=E
πI ,ξ1
1 [J̄1 (Z1)]+

T∑

t=1

[

E
πI ,ξ1
1 [J̄1 (Zt+1)]−E

πI ,ξ1
1 [J̄1 (Zt)]

]

= J̄1 (0)+E
πI ,ξ1
1

T∑

t=1

[

I{at =+1}
(
J̄1 (Zt +1)− J̄1 (Zt)
︸ ︷︷ ︸

Lem. 3
≤ −j+1 (Zt)

)
+ I{at =−1}

(
J̄1 (Zt− 1)− J̄1 (Zt)
︸ ︷︷ ︸

Lem. 3
≤ −j−1 (Zt)

)

+ I{at = 0}
([

1
2
+ ρ(Zt)

]
J̄1 (Zt +1)+

[
1
2
− ρ(Zt)

]
J̄1 (Zt− 1)− J̄1 (Zt)

︸ ︷︷ ︸

Lem. 3
≤ 0

)]

≤ J̄1 (0)+E
πI ,ξ1
1

T∑

t=1

[

I{at =+1}[−j+1 (Zt)]+ I{at =−1}[−j−1 (Zt)]
]

= J̄1 (0)−V πI ,ξ1
1 (T ). [by (2.2)]

As a result, under the strategy profile (πI , ξ1), the informed bettor’s continuation profit function is bounded

above by the constant J̄1 (0), which is independent of T . That is, V πI ,ξ1
1 (T ) ≤ J̄1 (0). Taking the limit

infimum over T on the term on both sides and invoking Lemma 2, we reach the following chain of relations:

lim inf
T→∞

V πI ,ξ1
1 (T )≤ J̄1 (0)

Lem. 2
= lim

T→∞
E0

1

[
T∑

t=1

j+1 (Zt) I{Zt ≤ z̄− 1}
]

(2.2)
= lim

T→∞
V

πI ,ξ
∗
1

1 (T ).

Thus, ξ∗1 ∈ argmaxξ lim infT→∞ V
πI ,ξ
i (T ). By Lemma 1, we deduce that the informed bettor’s total profit

is finite: supξ lim infT→∞ V
πI ,ξ
i (T ) = limT→∞ V

πI ,ξ
∗
1

1 (T ) = J̄1 (0)
Lem. 1
< ∞. Consequently, ξ∗1 is the type-1

informed bettor’s best response strategy in the sense of (2.3). Moreover, J̄1 (·) = J1 (·) is the optimal value

function.

G.5. Proofs of Lemma 1-3

Proof of Lemma 1. Recall from (G.2) that r̄≤ 2< 4. Hence, when r ∈ (0, r̄),
∞∑

n=0

Λn
(4.9)
=

∞∑

n=0

n∏

k=0

1
2−ρ(z̄+k)
1
2+ρ(z̄+k)

(LG.1-3)
< ∞.

Recalling (4.8), we note that the finiteness and nonnegativity of J̄ i (·) follows from the convergence of
∑∞

n=0Λn as well as the nonnegativity of j+1 (z) for all z < z̄ because of (LG.2-3).

Proof of Lemma 2. To verify that (4.10) holds, let us assume that z̄ > −∞ without loss of generality.

Otherwise, both sides of the equation are zero trivially. We complete the proof in three steps.

Step 1. We claim that if J̄1 (·) satisfies (4.10), where the limit term on the right-hand side exists, then

J̄0 (·) also satisfies (4.10), and the limit term on the right-hand side exists. In other words, we may assume

that i=1 without loss of generality. To prove this claim, note that for all z, z̆ ∈ Z, P1
z,z̆ =P0

−z,−z̆. Therefore,

{Zt} under Pz
1 has the same law as {−Zt} under P−z

0 . Formally speaking, given any T ∈ Z+, measurable

function f :RT →R, and z ∈ Z, we have

Ez
1f(Z1,Z2, . . . ,ZT ) =E−z

0 f(−Z1,−Z2, . . . ,−ZT ). (G.9)
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As a result, if J̄1 (·) satisfies (4.10), we have

J̄0 (z) = J̄1 (−z) [by (4.8)]

= lim
T→∞

E−z
1

[
T∑

t=1

j+1 (Zt) I{Zt ≤ z̄− 1}
]

[J̄1 (·) satisfies (4.10) where the limit exists by assumption]

= lim
T→∞

Ez
0

[
T∑

t=1

j+1 (−Zt) I{−Zt ≤ z̄− 1}
]

[by (G.9)]

= lim
T→∞

Ez
0

[
T∑

t=1

j−0 (Zt) I{Zt ≥ 1− z̄}
]

[by (4.7)]

Step 2. We claim that for all z ∈ Z, there exists a bounded function u0(·) such that for all T ≥ z̄− z,

Ez
1

T∑

t=1

j+1 (Zt) I{Zt ≤ z̄− 1}=
{

j+1 (z̄− 1) [Ez
1u0(ZT+1)−u0(z)] if z ≥ z̄,

∑z̄−z

i=1 j
+
1 (z̄− i)+ j+1 (z̄− 1)Ez̄

1u0(ZT+1−z̄+z) if z ≤ z̄− 1.
(G.10)

Here, u0(·) is as follows:

u0(z) =







−1 if z = z̄− 1,

0 if z = z̄,
∑z−z̄−1

n=0 Λn if z ≥ z̄+1.

(G.11)

Let us first consider the case where z ≥ z̄. Starting with initial value z, the Markov chain Zt is restrained to

the region [z̄−1,∞). Consider a special case of Lemma G.3 where z̄ >−∞ and M = z̄−1. In that special

case, the corresponding ũ(·) function simplifies to:

ũ(z) =







−1 if z = z̄− 1,

0 if z = z̄,
(

1+
∑z−1

n=z̄+1

∏n

m=z̄+1

1
2−ρ(m)
1
2+ρ(m)

)
1
2−ρ(z̄)
1
2+ρ(z̄)

if z ≥ z̄+1,

[by (G.7)]

=







−1 if z = z̄− 1,

0 if z = z̄,
∑z−1

n=z̄

∏n

m=z̄

1
2−ρ(m)
1
2+ρ(m)

if z ≥ z̄+1,

=







−1 if z = z̄− 1,

0 if z = z̄,
∑z−z̄−1

n=0 Λn if z ≥ z̄+1,

[by (4.9)]

= u0(z). [by (G.11)]

Thus, u0(·) is a special case of the function ũ(·) in Lemma G.3. By the conclusion of Lemma G.3, u0(·) is

an increasing function such that
∑T

t=1E
z
1I{Zt ≤ z̄−1}=Ez

1ũ(ZT+1)− ũ(z) =Ez
1u0(ZT+1)−u0(z) for all

z ≥ z̄− 1. Moreover, since
∑

nΛn is a convergent series (see the derivations in the proof of Lemma 1), the

function u0(·) is bounded. Finally, Ez
1

∑T

t=1 j
+
1 (Zt) I{Zt ≤ z̄ − 1}= Ez

1

∑T

t=1 j
+
1 (z̄− 1) I{Zt ≤ z̄ − 1}=

j+1 (z̄− 1)
∑T

t=1E
z
1I{Zt ≤ z̄− 1}= j+1 (z̄− 1)[Ez

1u0(ZT+1)−u0(z)].

Now, let us consider the case where z < z̄. Note that Zt increases with certainty until it hits [z̄,∞). Thus,

Ez
1

T∑

t=1

j+1 (Zt) I{Zt ≤ z̄− 1}
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=Ez
1

z̄−z∑

t=1

j+1 (Zt) I{Zt ≤ z̄− 1}+Ez
1

T∑

t=z̄−z+1

j+1 (Zt) I{Zt ≤ z̄− 1}

=
z̄−z∑

i=1

j+1 (z̄− i)+Ez
1

T∑

t=z̄−z+1

j+1 (z̄− 1) I{Zt ≤ z̄− 1}

=
z̄−z∑

i=1

j+1 (z̄− i)+Ez̄
1

T−z̄+z∑

t=1

j+1 (z̄− 1) I{Zt ≤ z̄− 1} [by the Markov property of Zt]

(a)
=

z̄−z∑

i=1

j+1 (z̄− i)+Ez̄
1

T−z̄+z∑

t=1

j+1 (Zt) I{Zt ≤ z̄− 1}

=
z̄−z∑

i=1

j+1 (z̄− i)+ j+1 (z̄− 1)Ez̄
1u0(ZT−z̄+z+1). [by the analysis for z ≥ z̄; u0(z̄) = 0]

In the derivations above, (a) follows since Zt increases by one with certainty as soon as it hits (−∞, z̄−1].

Combining our results for the cases where z ≥ z̄ and z < z̄, we finish this step.

Step 3. We evaluate the term J̄1 (z) for all z ∈Z:

J̄1 (z)

=

{

j+1 (z̄− 1)
∑∞

n=z−z̄ Λn if z̄ ≤ z,
∑z̄−z

i=1 j
+
1 (z̄− i)+ j+1 (z̄− 1)

∑∞

n=0Λn if z ≤ z̄− 1,
[by (4.8)]

=

{

j+1 (z̄− 1) [u0(∞)−u0(z)] if z̄ ≤ z,
∑z̄−z

i=1 j
+
1 (z̄− i)+ j+1 (z̄− 1)u0(∞) if z ≤ z̄− 1,

[by (G.11)]

(b)
= lim

T→∞

{

j+1 (z̄− 1) [Ez
1u0(ZT+1)−u0(z)] if z̄ ≤ z,

∑z̄−z

i=1 j
+
1 (z̄− i)+ j+1 (z̄− 1)Ez̄

1u0(ZT+1−z̄+z) if z ≤ z̄− 1,

= lim
T→∞

Ez
1

T∑

t=1

j+1 (Zt) I{Zt ≤ z̄− 1}, [by (G.10)]

where (b) follows from the bounded convergence theorem (Rudin 1976, Theorem 11.32) and the following

two facts: (i) Zt ↑∞ almost surely (by Statement (T4:1) in Theorem 4, which is proven independently), and

(ii) u0(·) in (G.11) is a bounded function (see Step 2). As a result, limT→∞Ez
1

∑T

t=1 j
+
1 (Zt) I{Zt ≤ z̄− 1}

exists and equals J̄1 (z). Combining Steps 1-3, we complete the proof.

Proof of Lemma 3. We first assume that z̄ > −∞ without loss of generality. To see this, suppose that

z̄ =−∞. By (LG.2-1), j+(−∞)≤ 0. As a result, we have j+1 (z)≤ 0 and j−1 (z)≤ 0 for all z ∈ Z, and the

Bellman equation (4.11) holds trivially. We complete the rest of the proof in four steps.

Step 1. We claim that we can assume that i = 1 without loss of generality. To be more accurate, J̄0 (·)

satisfies the Bellman equation (4.11) if J̄1 (·) does. Note that if J̄1 (·) satisfies (4.11), then we have the

following for all z ∈ Z:

J̄0 (z) = J̄1 (−z) [by (4.8)]
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=max
{

j+1 (−z)
︸ ︷︷ ︸

(a)
= j−0 (z)

+ J̄1 (−z+1)
︸ ︷︷ ︸

(b)
= J̄0(z−1)

, j−1 (−z)
︸ ︷︷ ︸

(a)
= j+0 (z)

+ J̄1 (−z− 1)
︸ ︷︷ ︸

(b)
= J̄0(z+1)

,

F̄1 (s̃(−z))
︸ ︷︷ ︸

(c)
=F0(s̃(z))

J̄1 (−z+1)
︸ ︷︷ ︸

(b)
= J̄0(z−1)

+F1 (s̃(−z))
︸ ︷︷ ︸

(c)
= F̄0(s̃(z))

J̄1 (−z− 1)
︸ ︷︷ ︸

(b)
= J̄0(z+1)

}

[by (4.11)]

=max
{
j−0 (z)+ J̄0 (z− 1) , j+0 (z)+ J̄0 (z+1) , F0 (s̃(z)) J̄

0 (z− 1)+ F̄0 (s̃(z)) J̄
0 (z+1)

}

where (a), (b), and (c) follow from (4.7), (4.8), and (4.2) respectively. Therefore, J̄0 (·) satisfies the Bellman

equation (4.11) as well.

Step 2. We claim that the following equation holds:

J̄1 (z) =

{

j+1 (z)+ J̄1 (z+1) if z ≤ z̄− 1,

F̄1 (s̃(z)) J̄
1 (z+1)+F1 (s̃(z)) J̄

1 (z− 1) if z ≥ z̄.
(G.12)

The intuition for (G.12) is that the function J̄1 (·) satisfies the above recursive relation if the type-1 bettor

follows the threshold strategy ξ∗1 . This step is a direct consequence of Lemma 2, the transition rule of Zt,

and the Markov property of Zt.

Step 3. We build on Step 2, and claim that for all z ∈ Z, the following holds:

J̄1 (z) =max
{
j+1 (z)+ J̄1 (z+1) , F̄1 (s̃(z)) J̄

1 (z+1)+F1 (s̃(z)) J̄
1 (z− 1)

}
. (G.13)

Equation (G.13) can be interpreted as a “weakened” version of the Bellman equation for the decision prob-

lem where bluffing (or at =−1) is not a feasible action for the type-1 bettor. Invoking (G.12), we deduce

that it suffices to verify that

j+1 (z)+ J̄1 (z+1)−
[
F̄1 (s̃(z)) J̄

1 (z+1)+F1 (s̃(z)) J̄
1 (z− 1)

]

︸ ︷︷ ︸

(∗)

≥ 0 ⇐⇒ z ≤ z̄− 1.

Let us evaluate the term (∗) above. For all z ∈Z,

(∗) = j+1 (z)+ J̄1 (z+1)−
[
F̄1 (s̃(z)) J̄

1 (z+1)+F1 (s̃(z)) J̄
1 (z− 1)

]

= j+1 (z)+ J̄1 (z+1)−
[
1
2
+ ρ(z)

]
J̄1 (z+1)−

[
1
2
− ρ(z)

]
J̄1 (z− 1) [by (4.2)]

= j+1 (z)+
[
1
2
− ρ(z)

] [
J̄1 (z+1)− J̄1 (z− 1)

]
[rearranging terms]

=







j+1 (z)+
[
1
2
− ρ(z)

][

j+1 (z̄− 1)
∞∑

n=z+1−z̄

Λn− j+1 (z̄− 1)
∞∑

n=z−1−z̄

Λn

]

if z ≥ z̄+1,

j+1 (z)+
[
1
2
− ρ(z)

][

j+1 (z̄− 1)
∞∑

n=1

Λn− j+1 (z̄− 1)
∞∑

n=0

Λn− j+1 (z̄− 1)
]

if z = z̄,

j+1 (z)+
[
1
2
− ρ(z)

][ z̄−z−1∑

i=1

j+1 (z− i)−
z̄−z+1∑

i=1

j+1 (z− i)
]

if z ≤ z̄− 1,

[by (4.8)]

=







j+1 (z)− j+1 (z̄− 1)Λz−z̄−1

1
2−ρ(z)
1
2+ρ(z)

if z ≥ z̄+1,

j+1 (z)− j+1 (z̄− 1)
1
2−ρ(z)
1
2+ρ(z)

if z = z̄,

j+1 (z)−
[
1
2
− ρ(z)

] [
j+1 (z− 1)+ j+1 (z)

]
if z ≤ z̄− 1,

[by (4.9)]

=

{

j+1 (z)− j+1 (z̄− 1)
(

1
2−ρ(z)
1
2+ρ(z)

)(
1
2−ρ(z−1)
1
2+ρ(z−1)

)

· · ·
(

1
2−ρ(z̄)
1
2+ρ(z̄)

)

if z ≥ z̄,
[
1
2
+ ρ(z)

]
j+1 (z)−

[
1
2
− ρ(z)

]
j+1 (z− 1) if z ≤ z̄− 1.

[by (4.9)]
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For all z ≥ z̄, we have the following due to (LG.2-2):

j+1 (z)< j+1 (z− 1)
(

1
2−ρ(z)
1
2+ρ(z)

)

< j+1 (z− 2)
(

1
2−ρ(z)
1
2+ρ(z)

)(
1
2−ρ(z−1)
1
2+ρ(z−1)

)

...

< j+1 (z̄− 1)
(

1
2−ρ(z)
1
2+ρ(z)

)(
1
2−ρ(z−1)
1
2+ρ(z−1)

)

· · ·
(

1
2−ρ(z̄)
1
2+ρ(z̄)

)

.

Thus, for all z ≥ z̄, the term (∗) is less than 0. On the other hand, for all z ≤ z̄−1, j+1 (z)≥ j+1 (z− 1)
1
2−ρ(z)
1
2+ρ(z)

by (LG.2-2); thus the term (∗) is greater than or equal to 0. In either case, (G.13) holds.

Step 4. We claim that the negative bet (i.e., bluffing) is a dominated action for type-1 bettor. Thus, the

type-1 bettor never needs to bluff. By the Bellman equation (4.11), it suffices to verify the following:

J̄1 (z)−
[
j−1 (z)+ J̄1 (z− 1)

]

︸ ︷︷ ︸

(∗∗)

> 0. (G.14)

Let us first evaluate the term (∗∗) when z ≤ z̄:

(∗∗) =
[
J̄1 (z)− J̄1 (z− 1)

]
− j−1 (z)

=−j+1 (z− 1)− j−1 (z) [by (4.8); z ≤ z̄ ]

=−(2− c)ρ(z− 1)+ c
2
− (c− 2)ρ(z)+ c

2
[by (4.7)]

= c− (2− c)[ρ(z− 1)− ρ(z)]> 0,

where the inequality follows because by the lemma’s hypothesis, r < r̄, and hence by (LG.1-4), ρ(z− 1)−
ρ(z)< c

2−c
. We now evaluate the term (∗∗) when z ≥ z̄+1:

(∗∗) =
[
J̄1 (z)− J̄1 (z− 1)

]
− j−1 (z)

=−j−1 (z)− j+1 (z̄− 1)Λz−1−z̄ [by (4.8); z ≥ z̄+1]

= (2− c)ρ(z)+ c
2
− j+1 (z̄− 1)Λz−1−z̄ [by (4.7)]

(d)

>
[
(2− c)ρ(z− 1)+ c

2

]( 1
2−ρ(z−1)
1
2+ρ(z−1)

)

− j+1 (z̄− 1)Λz−1−z̄

...

(d)

>
[
(2− c)ρ(z̄)+ c

2

]( 1
2−ρ(z−1)
1
2+ρ(z−1)

)

· · ·
(

1
2−ρ(z̄)
1
2+ρ(z̄)

)

︸ ︷︷ ︸

(4.9)
= Λz−1−z̄

−j+1 (z̄− 1)Λz−1−z̄

=
[
(2− c)ρ(z̄)+ c

2

]
Λz−1−z̄ − j+1 (z̄− 1)Λz−1−z̄

=
[
(2− c)ρ(z̄)+ c

2
− (2− c)ρ(z̄− 1)+ c

2

]
Λz−1−z̄ [by (4.7)]

=
[
c− (2− c)

(
ρ(z̄− 1)− ρ(z̄)

)]
Λz−1−z̄

(e)

> 0,

where (d) follows because by the lemma’s hypothesis, r < r̄, and thus
1
2−ρ(z−1)
1
2+ρ(z−1)

<
(2−c)ρ(z)+ c

2
(2−c)ρ(z−1)+ c

2
(see

(LG.1-4)); and (e) follows because ρ(z̄ − 1)− ρ(z̄) < c
2−c

(see (LG.1-4)). Combining our findings in the
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cases where z ≤ z̄ and z ≥ z̄+1, we conclude that the term (∗∗) is greater than 0. Therefore, based on all

of the conclusions from Steps 1-4, we have the desired result.

G.6. Proofs of Auxiliary Lemmas

Proof of Lemma G.1. We prove each part separately. To prove (LG.1-1), note that (G.5) can be viewed as

an extension of the function ρ(·) from the domain Z to domain R, because it is consistent with (E.2) on the

integer domain Z. By construction, ρ(·) is piecewise continuous in the region (−∞,0) and in the region

(0,∞). To see that ρ(·) is twice differentiable in R \{0}, note that ρ(·) is twice differentiable in (0,∞). By

(A1:1) and (A1:3), F1 ◦F−1
0 (·) is a twice differentiable function in (−∞,0). This implies that ρ(x) is twice

differentiable in (0,∞). To verify that ρ(·) is continuous at 0 and hence in R, observe that ρ(0+) = ρ(0)

and that ρ(0) = 1
r0

= 1
2
−F1

(
m0+m1

2

) Lem. A.1
= F0

(
m0+m1

2

)
− 1

2
. As a result,

ρ(0−) = 1
2
−F1 ◦F−1

0

(
1
2
+ ρ(0+)

)
= 1

2
−F1 ◦F−1

0

(
1
2
+ ρ(0)

)
= 1

2
−F1

(
m0+m1

2

)
= ρ(0).

Lastly, to show that ρ(x) is strictly decreasing in x, note that for all x∈R \ {0},

ρ′(x) =







− r
(r0+rx)2

if x> 0,
f1[F−1

0 ( 1
2+ρ(−x))]

f0[F−1
0 ( 1

2+ρ(−x))]

(
−r

(r0−rx)2

)

if x< 0,

is strictly negative. The evaluation of ρ′(x) when x < 0 is based on the inverse function theorem (IFT)

(Rudin 1976, Theorem 9.24). Invoking the mean value theorem (MVT) (Rudin 1976, Theorem 5.9), we

conclude that ρ(x) strictly decreases in x.

To prove (LG.1-2), observe that

ρ(−∞) = 1
2
−F1 ◦F−1

0

(
1
2
+ ρ(∞)

)
= 1

2
−F1 ◦F−1

0

(
1
2

)
= 1

2
−F1(m0) =

1
2
−α,

and ρ(∞) = limx↑∞
1

r0+rx
= 0. Thus, (LG.1-2) holds by the (strict) monotonicity of ρ(·).

To prove (LG.1-3), note that since ρ(z) = 1
r0+rz

for z ∈Z+ and r ∈ (0,4), lim infn→∞{nρ(n)}> 1
4
. The

rest follows from Lemma L.1.

To prove (LG.1-4), observe that for all z ∈Z,

log
(

ρ(z)

ρ(z+1)

)

=−
[
log ρ(x)

]′
= −ρ′(x)

ρ(x)
[for some x∈ (z, z+1)⊂R \ {0}, by MVT]

=







r
r0+rx

if x> 0,
f1[F−1

0 ( 1
2+ρ(−x))]

f0[F−1
0 ( 1

2+ρ(−x))]

(
r

(r0−rx)2

)
1

ρ(x)
if x< 0,

[by IFT]

<







r
r0

if x> 0,
f1[F−1

0 ( 1
2+ρ(−x))]

f0[F−1
0 ( 1

2+ρ(−x))]

(
r
r20

)

r0 if x< 0,
[x< 0=⇒ ρ(x)>ρ(0) = 1

r0
]

≤max
{

1, max
s∈[m0,m1]

f1(s)

f0(s)

}
r
r0

= ζ0r
r0
. [by (G.3); F−1

0

(
1
2
+ ρ(−x)

)
∈ [m0,m1]]

As a result, for all r such that 0< r < r̄0,

ρ(z+1)

ρ(z)
= exp

(

log ρ(z+1)

ρ(z)

)

≥ exp
(

− ζ0r
r0

)

≥ 1− ζ0r
r0

[ex ≥ 1+x ∀x∈R]

> 1− ζ0
r0

cr0
(2−c)ζ0

=1− c
2−c

. [r < r̄0 =
cr0

(2−c)ζ0
]
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To see (LG.1-4)(a), note that for all z ∈Z,

ρ(z)− ρ(z+1)= ρ(z)
(

1− ρ(z+1)

ρ(z)

)

<ρ(z) c
2−c

(a)

< c
2−c

,

where (a) holds because ρ(z)< 1. To see (LG.1-4)(b), observe that that since ρ(z+1)

ρ(z)
> 1− c

2−c
= 2−2c

2−c
,

(2−c)ρ(z+1)+ c
2

(2−c)ρ(z)+ c
2

>
(2−2c)ρ(z)+ c

2
(2−c)ρ(z)+ c

2
=

c[ 12−ρ(z)]+(2−c)ρ(z)

c[ 12+ρ(z)]+(2−2c)ρ(z)

(b)

>
1
2−ρ(z)
1
2+ρ(z)

,

where (b) holds because 2−c
2−2c

> 1>
1
2−ρ(z)
1
2+ρ(z)

.

Proof of Lemma G.2. In light of (G.1), let

φ(z) := ρ(z−1)

2ρ(z)
− ρ(z)− ρ(z− 1), (G.15)

so that z̄ = inf{z : φ(z)> 1
2
− c

2−c
}. We divide the proof into four steps.

Step 1. We claim that φ(z) strictly increases in z. That is to say, for all z ∈ Z, φ(z) > φ(z − 1). Let us

first consider the case where z ∈Z+:

φ(z) = ρ(z−1)

2ρ(z)
− ρ(z)− ρ(z− 1) [by (G.15)]

= r0+rz
2(r0+rz−r)

− 1
r0+rz

− 1
r0+rz−r

[ρ(z) = 1
r0+rz

∀z ∈Z+]

= x
2(x−r)

− 1
x
− 1

x−r
[x := r0 + rz ≥ r0 + r]

= 1
2
+
(
r
2
− 1
)

1
x−r
− 1

x
, [r < 2]

which strictly increases in x. Next, let us consider the case where z ∈N−; i.e., z is a negative natural number

(including zero). In light of (G.5), let us consider the continuous extension of φ(·) to (−∞,0], which is

continuous in (−∞,0] and differentiable in (−∞,0). For all z ∈N−,

φ(z)−φ(z− 1) = φ′(x̃) [for some z− 1< x̃< z, by MVT]

= ρ′(x̃−1)ρ(x̃)−ρ′(x̃)ρ(x̃−1)

2ρ2(x̃)
− ρ′(x̃)− ρ′(x̃− 1)

≥ ρ′(x̃−1)/ρ(x̃−1)−ρ′(x̃)/ρ(x̃)

2ρ(x̃)/ρ(x̃−1)
[ρ′(x)< 0 ∀x< 0]

= ρ̃′(x̃)−ρ̃′(x̃−1)

2ρ(x̃)/ρ(x̃−1)
[ρ̃(x) := log(−ρ′(x))∈ C1 on (−∞,0) ]

= ρ̃′(x̆)

2ρ(x̃)/ρ(x̃−1)
, [for some x̃− 1< x̆< x̃, by MVT]

where MVT stands for the mean value theorem (Rudin 1976, Theorem 5.9). Thus, to show that φ(z− 1)−
φ(z)> 0 for all z ∈N−, it suffices to show that ρ̃′(x)> 0 for all x< 0. Let us compute ρ̃(x) = log(−ρ′(x)):

ρ̃(x) = log
(

− d
dx

[
1
2
−F1 ◦F−1

0

(
1
2
+ ρ(−x)

)])

[by (G.5)]

= log

(
f1◦F

−1
0

(
1
2+ρ(−x)

)

f0◦F
−1
0

(
1
2+ρ(−x)

)
(
−ρ′(−x)

)
)

[by IFT]

= log
(
f1 ◦ g(x)

)
− log

(
f0 ◦ g(x)

)
+ log

(
−ρ′(−x)

)
, [g(x) := F−1

0 ( 1
2
+ ρ(−x))]

where IFT stands for the inverse function theorem (Rudin 1976, Theorem 9.24). Let us now evaluate ρ̃′(x):

ρ̃′(x) =
(f ′

1◦g(x))g
′(x)

f1◦g(x)
− (f ′

0◦g(x))g
′(x)

f0◦g(x)
+ ρ′′(−x)

−ρ′(−x)
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=
[
f ′
1◦g(x)

f1◦g(x)
− f ′

0◦g(x)

f0◦g(x)

]

g′(x)+ ρ′′(−x)

−ρ′(−x)

=
[
f ′
1◦g(x)

f1◦g(x)
− f ′

0◦g(x)

f0◦g(x)

](
1

f0◦g(x)

)

︸ ︷︷ ︸

≥ζ1; see (G.4)

[
−ρ′(−x)

]

︸ ︷︷ ︸

>0

+ ρ′′(−x)

−ρ′(−x)

≥ ζ1
[
−ρ′(−x)

]
+ ρ′′(−x)

−ρ′(−x)

= ζ1r
(r0−rx)2

+ 2
(r0−rx)

[ρ(−x) = 1
r0−rx

]

= 2r0+ζ1r−2rx
(r0−rx)2

(a)

> 0,

where (a) holds because (i) x < 0 and (ii) ζ1r + 2r0 > 0, which is implied by 0 < r < r̄1 and (G.4).

Therefore, φ(z)−φ(z− 1)> 0 for all z ∈Z.

Step 2. We claim that (LG.2-1) holds. By Step 1, φ(z) is strictly increasing in z. Thus, z̄ <∞ if and only

if φ(∞)> 1
2
− c

2−c
. Similarly, z̄ >−∞ if and only if φ(−∞)< 1

2
− c

2−c
. Let us evaluate φ(∞) and φ(−∞):

φ(∞) = lim
z↑∞

(
ρ(z−1)

2ρ(z)
− ρ(z)− ρ(z− 1)

)
(b)
= 1

2
− 0− 0= 1

2
,

φ(−∞) = lim
z↓−∞

(
ρ(z−1)

2ρ(z)
− ρ(z)− ρ(z− 1)

)
(LG.1-2)
= 1

2
− 2( 1

2
−α) =− 1

2
+2α.

In the derivations above, (b) holds because ρ(z) = 1
r0+rz

for every z ∈ Z+. Since c ∈ (0,1), 1
2
− c

2−c
< 1

2
=

φ(∞). This implies that z̄ <∞. Moreover,

φ(−∞)−
(

1
2
− c

2−c

)

=− 1
2
+2α− 1

2
+ c

2−c
[φ(−∞) =− 1

2
+2α]

=−2ρ(−∞)+ c
2−c

[ρ(−∞) = 1
2
−α]

= 2
c−2

(
(2− c)ρ(−∞)− c

2

)
= 2j+(−∞)

c−2

Consequently, z̄ >−∞ if and only if j+1 (−∞)> 0.

Step 3. We claim that (LG.2-2) holds. Note that for all z ∈Z,

z ≥ z̄

⇐⇒ φ(z)≥ 1
2
− c

2−c
[z̄ = inf{z : φ(z)> 1

2
− c

2−c
} and φ(z) increases in z]

⇐⇒ ρ(z−1)

ρ(z)
− ρ(z)− ρ(z− 1)> 1

2
− c

2−c
[by the definition of φ(z)]

⇐⇒ 2−c
2
ρ(z− 1)− (2− c)ρ2(z)− (2− c)ρ(z)ρ(z− 1)− c

4
> 2−c

2
ρ(z)− cρ(z)− c

4

⇐⇒ 2−c
2
ρ(z− 1)− (2− c)ρ(z− 1)ρ(z)− c

4
+ c

2
ρ(z)> 2−c

2
ρ(z)− c

4
+(2− c)ρ2(z)− c

2
ρ(z)

⇐⇒
[
(2− c)ρ(z− 1)− c

2

] [
1
2
− ρ(z)

]
>
[
(2− c)ρ(z)− c

2

] [
1
2
+ ρ(z)

]

⇐⇒ j+1 (z− 1)
[
1
2
− ρ(z)

]
> j+1 (z)

[
1
2
+ ρ(z)

]
.

Step 4. We claim that (LG.2-3) holds. Without loss of generality, assume that z̄ > −∞ (otherwise, the

statement trivially holds). By (LG.2-1), we know that j+(−∞)> 0. Let z̃ := inf{z : j+1 (z) ≤ 0} ∈ Z. By

definition, we have j+1 (z̃− 1) > 0. Moreover, by (LG.1-2), ρ(z̃) ∈ (0, 1
2
). Thus, j+1 (z̃− 1)

[
1
2
− ρ(z̃)

]
>

0≥ j+1 (z̃)
[
1
2
+ ρ(z̃)

]
. Furthermore, in light of (LG.2-2), z̄ ≤ z̃. Therefore, j+1 (z̄− 1)≥ j+1 (z̃− 1)> 0.
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Proof of Lemma G.3. By Lemma H.1, Lemma G.3 reduces to a special case of Lemma L.2 where z̄ = Z̄

and the residual probability sequence is {ρ(z) = 1
r0+rz

, z ∈Z+}.

Appendix H: Performance Analysis of IP in Theorem 4

In this section, we provide the proof details regarding the supporting results for Theorem 4.

Proof of Lemma 5. Recall that ∆πI (T ) := max
{
∆

πI ,ξ
∗
0

0 (T ),∆
πI ,ξ

∗
1

1 (T )
}

, where ∆
πI ,ξ

∗
i

i (T ) is as in (2.5).

Thus, it suffices to evaluate ∆
πI ,ξ

∗
1

1 (T ) and ∆
πI ,ξ

∗
0

0 (T ). We start by evaluating ∆
πI ,ξ

∗
1

1 (T ):

∆
πI ,ξ

∗
1

1 (T )

= cT
2
−

T∑

t=1

E
πI ,ξ

∗
1

1 [I{(X − st)dt < 0}− (1− c)I{(X− st)dt > 0}] [by (2.5)]

= cT
2
−

T∑

t=1

E0
1

[
I{at = 0}r1(st)+ I{at =+1}(−j+1 (st))+ I{at =−1}(−j−1 (st))

]
[by (2.4) & (4.5)]

=
T∑

t=1

E0
1

[

I{Zt ≥ z̄}(4− 2c)
(
F1(s̃(Zt))− 1

2

)2

︸ ︷︷ ︸

= ρ2(Zt)

+I{Zt < z̄}
(
c
2
+ j+1 (s̃(Zt))

)

︸ ︷︷ ︸

= (2− c)ρ(Zt)

]

[by Thm. 3 & (2.4)]

=
T∑

t=1

E0
1

[
I{Zt ≥ z̄}(4− 2c)ρ2(Zt)+ I{Zt < z̄}(2− c)ρ(Zt)

]
[by (4.2) & (4.7)]

=
T∑

t=1

E0
1l(Zt) =

T∑

t=1

E
πI ,ξ

∗
1

1 [l(Zt)].

To evaluate ∆
πI ,ξ

∗
0

0 (T ), let us leverage the symmetry relation between the cases where i=0 and i=1:

∆
πI ,ξ

∗
0

0 (T )

= cT
2
−

T∑

t=1

E
πI ,ξ

∗
0

0 [I{(X − st)dt < 0}− (1− c)I{(X− st)dt > 0}] [by (2.5)]

= cT
2
−

T∑

t=1

E0
0

[
I{at = 0}r0(st)+ I{at =+1}(−j+0 (st))+ I{at =−1}(−j−0 (st))

]
[by (2.4) & (4.5)]

=
T∑

t=1

E0
0

[

I{Zt ≤−z̄}(4− 2c)
(
F0(s̃(Zt))− 1

2

)2

︸ ︷︷ ︸

= ρ2(−Zt)

+I{Zt >−z̄}
(
c
2
+ j−0 (s̃(Zt))

)

︸ ︷︷ ︸

= (2− c)ρ(−Zt)

]

[by Thm. 3 & (2.4)]

=
T∑

t=1

E0
0

[
I{Zt ≤−z̄}(4− 2c)ρ2(−Zt)+ I{Zt >−z̄}(2− c)ρ(−Zt)

]
[by (4.2) & (4.7)]

=
T∑

t=1

E0
1

[
I{Zt ≥ z̄}(4− 2c)ρ2(Zt)+ I{Zt < z̄}(2− c)ρ(Zt)

]
[by (G.9)]

=
T∑

t=1

E0
1l(Zt) =

T∑

t=1

E
πI ,ξ

∗
1

1 [l(Zt)].

In the derivations above, we adopt the notational convention that when z̄ =−∞, (4.13) reduces to l(z) =

(4− 2c)ρ2(z) for all z ∈ Z. As a consequence of the above identities, we have the desired result.
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Proof of Proposition 3. Let r ∈ (0, r̄), where r̄ is as in (G.2). In addition, let πI be an inertial policy with

the residual probability sequence ρ = {ρ(z) = 1
r0+rz

, z ∈ Z+}, and extend ρ to Z according to (E.2). We

first the following result, the proof of which is at the end of this section.

LEMMA H.1. If r ∈ (0, r̄), then the sequence ρ= {ρ(z) = 1
r0+rz

, z ∈Z+} is regular and slow vanishing.

Because ρ is regular and slowly vanishing (by Lemma H.1), we choose Z̄ := z̄ in the context of Proposition

K.2 and deduce that Statements (PK.2:1) and (PK.2:3) imply Statements (P3:1) and (P3:3), respectively.

The last step is to verify Statement (P3:2). By Lemmas E.2 and E.3, ρ(z) ∈ (0, 1
2
− α) for all

z ∈ Z. Thus, we deduce from (4.13) that (4 − 2c)ρ2(z) ≤ l(z) for all z ∈ Z. By Statement (P3:3),
∑T

t=1E
0
1[ρ

2(Zt)]≤ 1
4−2c

∑T

t=1E
0
1[l(Zt)] = O(logT ). Hence,

∑T

t=1E
0
1[ρ(Zt)]≤

√

T
∑T

t=1 (E
0
1[ρ(Zt)])

2 ≤
√

T
∑T

t=1E
0
1[ρ

2(Zt)] =O(
√
T logT ). Moreover,

∑T

t=1E
0
1[ρ(Zt)]≥

∑T

t=1E
0
1[ρ

2(Zt)]→∞ as T →∞.

Proof of Lemma H.1. Observe that (i) lim
z→∞
{zρ(z)} = lim

z→∞

{
z

r0+rz

}
= 1

r
> 1

4
because r < r̄ < 4, and

(ii) lim
z→∞
{ρ(z)} = lim

z→∞

{
1

r0+rz

}
= 0. Therefore, by Definition 2, ρ is slowly vanishing. Now, note that

lim
z→∞

[(
ρ(z)

ρ(z+1)
− 1
)
z
]
= lim

z→∞

[(
r0+rz+r
r0+rz

− 1
)
z
]
= 1. As a result, by Definition 3, ρ is regular.

Appendix I: Analysis of the Random Blocking Model (Theorem 5)

This section provides the details for the proof of Theorem 5, which generalizes Theorems 1 and 2 to accom-

modate random blocking by myopic bettors. Let us restate Theorem 5 by breaking it into two separate

results, the first generalizing Theorem 1 and the second generalizing Theorem 2.

The result below, which restates Statement (T5:1) in Theorem 5, generalizes Theorem 1 by incorporating

myopic bettors’ random blocking. We present its proof in Appendix I.2.

THEOREM I.1. (low blocking probability) Suppose that the market maker uses a Bayesian policy πB with

pricing function sπB(·). Then there exists q = q(Ξ̂) ∈ (0,1) such that for all q ≤ q, b1 ∈ (0,1), and suffi-

ciently small c > 0, we have the following:

(TI.1:1) (non-convergence of spread line) For some i∈ {0,1}, with strictly positive P̂
πB,ξ̂∗i
i -probability, dt

does not converge to zero.

(TI.1:2) (linearly growing regret) ∆̂πB (T ) = Ω(T ).

When q = 0, Theorem I.1 reduces to Theorem 1. This means that all of the conclusions in Theorem 1 hold

even if we perturb the random blocking probability by a small constant (independent of T ).

The following result, which restates Statement (T5:2) in Theorem 5, generalizes Theorem 2 by allowing

for random blocking by myopic bettors. Its proof is in Appendix I.3.

THEOREM I.2. (high blocking probability) Suppose that the market maker uses a Bayesian policy πB with

a regular pricing function sπB(·). Then there exists q̄= q̄(Ξ̂)∈ (0,1) such that for all q ≥ q̄, b1 ∈ (0,1) and

i∈ {0,1}, we have:
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(TI.2:1) (convergence of spread lines) dt converges to zero almost surely under P̂
πB ,ξ̂∗i
i .

(TI.2:2) (rate of convergence) Ê
πB,ξ̂∗i
i [dt] =O

(
e−λt

)
for some constant λ> 0.

(TI.2:3) (bounded regret) ∆̂πB (T ) =O(1).

When q = 1, Theorem I.2 reduces to Theorem 2, meaning that the conclusions in Theorem 2 continue to

hold even if the random blocking probability is perturbed by a small constant (independent of T ).

I.1. Main Proof Idea: the One-stage Analysis Under Random Blocking

Our proof roadmaps for Theorems I.1 and I.2 are similar to those for Theorems 1 and 2. What differentiates

the generalized proofs from their original versions is extending the functions D(·, ·) and Ri(·, ·) introduced

in Appendix C.3 to incorporate random blocking by myopic bettors. Formally, define

D̂i(b,p) := [(1− q)(1− p)+ qFi (s
π (b))] log

(
F1(s

π(b))

F0(sπ(b))

)

+
[
(1− q)p+ qF̄i (s

π (b))
]
log
(

F̄1(s
π(b))

F̄0(sπ(b))

)

as the expected increment of the market maker’s log-likelihood process Lt after a single bet under Hi if (i)

the current belief state is b, and (ii) when his bet is not blocked, the informed bettor bets positively with

probability p and negatively with probability 1−p. Here, the expectation is taken over the random blocking

by myopic bettors, the randomized strategy of the informed bettor, and the random behavior of myopic

bettors. The informed bettor misleads the market maker if D̂1(b,p)< 0 or D̂0(b,p)> 0. Now, define

R̂i(b,p) := (1− q)
[
(1− p)j−i (s

π (b))+ pj+i (s
π (b))

]

to be the informed bettor’s expected profit from a single bet under Hi if (i) the current belief state is b,

and (ii) when his bet is not blocked, the informed bettor bets positively with probability p and negatively

with probability 1 − p. Here, the expectation is taken over the random blocking by myopic bettors, the

randomized strategy of the informed bettor, and the final realization of the event outcome X . The informed

bettor makes a profit in expectation if R̂i(b,p)> 0.

Summary of key steps. In the proofs of Theorems I.1 and I.2, we utilize our one-stage analysis in the

same way we utilize it in the proofs of Theorems 1 and 2. By incorporating the additional randomness from

blocking, we immediately obtain the following extended version of Lemma C.1.

LEMMA I.1. Let i ∈ {0,1}. Suppose that the market maker uses a Bayesian policy πB and the type-i

informed bettor’s policy ξ is given by the behavioral strategy {p(b)}. Then, we have the following:

1. If there exists δ > 0 such that Ê
πB ,ξ
i [Lt+1−Lt|bt = b] = D̂i(b,p(b))<−δ for all b∈ (0,1) and t∈Z+,

then (i) Ê
πB,ξ
i [bt] =O(e−λt) for some λ > 0, and (ii) bt→ 0, Lt→−∞, st→ sπ (0+) almost surely.

If in addition, there exists b̄∈ (0,1) such that R̂i(b,p(b))> δ for all b∈ (0, b̄], then V̂
πB ,ξ
i (T ) = Ω(T ).

2. If there exists δ > 0 such that Ê
πB ,ξ
i [Lt+1−Lt|bt = b] = D̂i(b,p(b))> δ for all b ∈ (0,1) and t ∈ Z+,

then (i) Ê
πB,ξ
i [1− bt] =O(e−λt) for some λ> 0, and (ii) bt→ 1, Lt→∞, st→ sπ (1−) almost surely.

If in addition, there exists b̄∈ (0,1) such that R̂i(b,p(b))> δ for all b∈ [b̄,1), then V̂
πB ,ξ
i (T ) = Ω(T ).
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Next, we provide below a summary of the results pertaining to the one-stage analysis under random

blocking. Because of the new source of randomness, the one-stage analysis is a bit more involved. These

results on the generalized one-stage analysis (i.e., Lemmas I.2, I.3, and I.4 below) are what makes the proofs

of Theorems I.1 and I.2 different from those of Theorems 1 and 2.

The following result applied to the scenario where sπB (0+)≤m0, sπB (1−)≥m1, and the blocking prob-

ability q is sufficiently small. Recall that Ξ= (c,m0,m1, Fǫ) is the collection of problem input parameters,

and Ξ̂ := (m0,m1, Fǫ) is the collection of problem input parameters concerning distribution information

only, i.e., those except the commission rate c.

LEMMA I.2. (one-stage analysis for manipulation under random blocking) Suppose that the market maker

uses a Bayesian policy πB such that sπB (0+)≤m0 and sπB(1−)≥m1. Then, there exist c̄0, q0,p0 ∈ (0,1),
which depend only on Ξ̂, such that for all c ≤ c̄0 and q ≤ q

0
, there exist b̄ = b̄(Ξ, q) ∈ (0,1) and δ =

δ(Ξ, q)> 0 satisfying the following:

1. (global manipulability) For all b∈ (0,1), D̂1(b,0)<−δ and D̂0(b,1)> δ.

2. (local profitable manipulation; type-1) For all b∈ (0, b̄], D̂1(b,p0)<−δ and R̂1(b,p0)> δ.

3. (local profitable manipulation; type-0) For all b∈ [1− b̄,1), D̂0(b,1− p0)> δ and R̂0(b,1− p0)> δ.

Observing that Lemma I.2 reduces to Lemma C.2 when q= 0, we note that the conclusions in Lemma C.2

hold even if we perturb the random blocking probability by a small constant (independent of T ).

The following result applies to the case where sπB (0+)>m0 or sπB(1−)<m1, and the blocking prob-

ability q is sufficiently small.

LEMMA I.3. (one-stage analysis for honest betting under random blocking) Suppose that the market maker

uses a Bayesian policy πB such that sπB (0+)>m0 or sπB (1−)<m1. Then, there exists c̄1 = c̄1(Ξ̂, πB)∈
(0,1) such that for all c ≤ c̄1 and q ∈ (0,1), there exist b̄ = b̄(Ξ, q, πB) ∈ (0,1) and δ = δ(Ξ, q, πB) > 0

satisfying the following:

1. (correcting power) For all b∈ (0,1), D̂1(b,1)> δ and D̂0(b,0)<−δ.

2. (local profitable honest betting) Either of the following is true:

• (type-1) for all b∈ [1− b̄,1), R̂1(b,1)> δ.

• (type-0) for all b∈ (0, b̄], R̂0(b,0)> δ.

Note that when q= 0, Lemma I.3 reduces to the analysis in the proof of Proposition C.2, where the informed

bettor honestly bet all the time.

The following result applies to the case where the blocking probability q is sufficiently large.

LEMMA I.4. (one-stage analysis for high blocking probability) There exists q̄ ∈ (0,1), which depends only

on Ξ̂, such that for all p ∈ (0,1), b∈ (0,1) and q ≥ q̄, D̂1(b,p)> 0 and D̂0(b,p)< 0.

When q= 0, Lemma I.4 reduces to the analysis in the proof of Theorem 2, where the informed bettor does

not bet at all.
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I.2. The Low Blocking Probability Case (Theorem I.1)

Following the same roadmap as in the proof of Theorem 1 (Appendix C.1), we aim to identify profitable

strategies for the informed bettor if the market maker uses BPs in presence of random blocking by myopic

bettors. There are two cases regarding the values of sπB(0+) and sπB(1−), each corresponding to a prof-

itable strategy for the informed bettor.

The result below generalizes Proposition C.1 by accommodating random blocking by myopic bettors.

PROPOSITION I.1. (bluffing under random blocking) Suppose that the market maker uses a Bayesian policy

πB with pricing function sπB (·) such that sπ(0+)≤m0 and sπB(1−)≥m1. Then there exists q
0
= q

0
(Ξ̂)∈

(0,1) such that for every blocking probability q ≤ q
0
, initial belief b1 ∈ (0,1), hypothesis i ∈ {0,1} and

sufficiently small commission rate c, the type-i informed bettor has a “bluffing” policy ξb satisfying the

following:

(PI.1:1) (belief and spread line dynamics) The posterior belief bt converges to (1− i) and the spread line

st converges to m1−i almost surely under P̂
πB,ξb
i ;

(PI.1:2) (linearly growing profit of the informed bettor) V̂
πB ,ξb
i (T ) = Ω(T ).

Noting that Proposition I.1 reduces to Proposition C.1 when q = 0, we deduce that the conclusions in

Proposition C.1 remain to be valid even if the random blocking probability is perturbed by a small constant

(independent of T ).

Proof of Proposition I.1. After making the appropriate notational changes to incorporate the new source

of randomness due to probabilistic blocking (i.e., replacing Pi, Ei, ξ
∗
i , V , ∆, D, and Ri with P̂i, Êi, ξ̂

∗
i ,

V̂ , ∆̂, D̂i, and R̂i, respectively), this proposition follows from Lemmas I.1 and I.2 in the same way that

Proposition C.1 follows from Lemmas C.1 and C.2.

The result below generalizes Proposition C.2 by accommodating random blocking by myopic bettors.

PROPOSITION I.2. (honest betting under random blocking) Suppose that the market maker uses a Bayesian

policy πB with pricing function sπB (·) such that sπB (0+)>m0 or sπB (1−)<m1. Then for some hypoth-

esis i∈ {0,1}, every blocking probability q ∈ (0,1), initial belief b1 ∈ (0,1), and sufficiently small commis-

sion rate c, the type-i informed bettor has an “honest” policy ξh satisfying the following:

(PI.2:1) (belief and spread line dynamics) With P̂
πB ,ξh
i -probability 1, posterior belief bt converges to the

truth, i. The spread line st converges to a limit s∞, but s∞ 6=mi;

(PI.2:2) (linearly growing profit of the informed bettor) V̂ πB ,ξh
i (T ) = Ω(T ).

Proposition I.2 means that all the conclusions in Proposition C.2 (which is a special case of Proposition I.2

when q= 0) hold even if we perturb the random blocking probability arbitrarily within the range (0,1).

Proof of Proposition I.2. This proposition follows from repeating the proof of Proposition C.2 with the

following changes to incorporate probabilistic blocking: (i) replacing the notations Pi, Ei, ξ
∗
i , V , ∆, D, and
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Ri with P̂i, Êi, ξ̂
∗
i , V̂ , ∆̂, D̂i, and R̂i, respectively; (ii) replacing Step 1 in the proof of Proposition C.2 with

Lemma I.3 (this step corresponds to the one-stage analysis); and (iii) replacing Lemma C.1 with Lemma I.1

(this step corresponds to showing how the one-stage analysis leads to the final result).

Proof of Theorem I.1. The logical deduction from Propositions C.1 and C.2 to Theorem 1 is the same as

from Propositions I.1 and I.2 to Theorem I.1. In other words, let q := q
0

in Proposition I.1 and fix q ∈ (0, q).
The rest of the proof follows from repeating the arguments in that of Theorem 1, with the following changes

to incorporate random blocking by myopic bettors: (i) replacing Pi, Ei, ξ
∗
i , V , ∆, I{at = 0}, and I{at 6= 0}

with P̂i, Êi, ξ̂
∗
i , V̂ , ∆̂, I{at = 0 or χt = 1}, and I{at 6= 0 and χt = 0}, respectively; and (ii) replacing

Propositions C.1 and C.2 with Propositions I.1 and I.2, respectively.

I.3. The High Blocking Probability Case (Theorem I.2)

Proof of Theorem I.2. This theorem follows from repeating the proof of Theorem 2 with the following

changes to incorporate probabilistic blocking: (i) replacing the notations Pi, Ei, ξ
∗
i , V , ∆, D, and Ri with

P̂i, Êi, ξ̂
∗
i , V̂ , ∆̂, D̂i, and R̂i, respectively; and (ii) replacing Step 1 in the proof of Theorem 2 with Lemmas

I.1 and I.4.

I.4. Proofs of Auxiliary Lemmas

Proof of Lemma I.2. This proof is similar to the proof of Lemma C.2. We complete the proof in four steps.

Step 1. We claim that there exists δ1 = δ1(Ξ̂)> 0 and εq = εq(Ξ̂)> 0 such that (i) D̂1(b,0) <−δ1 and

(ii) D̂0(b,1)> δ1 for all b∈ (0,1) and q ≤ εq. By Lemma A.3 and Assumption (A1:3), there exist δ̄,M > 0,

which depend only on Ξ̂, such that −M ≤ log
(

F1(s)

F0(s)

)

≤−δ̄ and δ̄≤ log
(

F̄1(s)

F̄0(s)

)

≤M for all s ∈ S . Thus,

D̂1(b,0) = [(1− q)+ qF1 (s
π (b))] log

(
F1(s

π(b))

F0(sπ(b))

)

+ qF̄1 (s
π (b)) log

(
F̄1(s

π(b))

F̄0(sπ(b))

)

≤ (1− q)(−δ̄)+ qM =−δ̄+(M + δ̄)q,

and

D̂0(b,1) = qF0 (s
π (b)) log

(
F1(s

π(b))

F0(sπ(b))

)

+
[
(1− q)+ qF̄0 (s

π (b))
]
log
(

F̄1(s
π(b))

F̄0(sπ(b))

)

≥ q(−M)+ (1− q)(δ̄)= δ̄− (δ̄+M)q.

To prove our claim in this step, we choose δ1 =
δ̄
2

and εq =
δ̄

4(δ̄+M)
, both of which depend only on Ξ̂.

Step 2. We claim that exists c̄0, ε̂q,p0 ∈ (0,1), which depend only on Ξ̂, such that for all c≤ c̄0 and q ≤ ε̂q,

• D̂1(0+,p0)< 0 and R̂1(0+,p0)> 0;

• D̂0(1−,1− p0)> 0 and R̂0(1−,1− p0)> 0.

That is, the type-1 (resp. type-0) informed bettor can make a profitable manipulation when the blocking

probability is low, the commission rate is low, and the market maker’s belief is close to 0 (resp. 1). To prove

this claim, recall the following three quantities introduced in Step 2 of the proof of Lemma C.2 (where

random blocking was not present):

κ= − log 2α
log 2(1−α)

> 1, κ̂= (c̄0−2)(1−α)+1

(c̄0−2)(1−α)+1−c̄0
, and c̄0 =

(κ−1)(1−2α)

2(κ−1)(1−α)+1
∈ (0,1).
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In that proof, p0 was constructed such that it depends only on α = F1(m0) and hence only on Ξ̂, and

moreover, it satisfies the following inequalities:

(1− p0) log
(

F1(s
π(0+))

F0(sπ(0+))

)

+ p0 log
(

F̄1(s
π(0+))

F̄0(sπ(0+))

)

< 0,

p0 log
(

F1(s
π(1−))

F0(sπ(1−))

)

+(1− p0) log
(

F̄1(s
π(1−))

F̄0(sπ(1−))

)

> 0.

In light of this, we choose p0 in the same way, and uniquely construct ε̂1, ε̂2 > 0 that satisfy the following:

(1− ε̂1)
[

(1− p0) log
(

F1(s
π(0+))

F0(sπ(0+))

)

+ p0 log
(

F̄1(s
π(0+))

F̄0(sπ(0+))

)]

+ ε̂1M = 0,

(1− ε̂2)
[

p0 log
(

F1(s
π(1−))

F0(sπ(1−))

)

+(1− p0) log
(

F̄1(s
π(1−))

F̄0(sπ(1−))

)]

− ε̂2M = 0.

One can verify that both ε̂1 and ε̂2 depend only on Ξ̂. Now, if q ≤ ε̂q :=min{ ε̂1
2
, ε̂2

2
, 1
2
}, then

D̂1(0+,p0) = [(1− q)(1− p0)+ qF1 (s
π (0+))] log

(
F1(s

π(0+))

F0(sπ(0+))

)

+
[
(1− q)p0+ qF̄1 (s

π (0+))
]
log
(

F̄1(s
π(0+))

F̄0(sπ(0+))

)

≤ (1− q)
[

(1− p0) log
(

F1(s
π(0+))

F0(sπ(0+))

)

+ p0 log
(

F̄1(s
π(0+))

F̄0(sπ(0+))

)]

+ qM

< (1− ε̂1)
[

(1− p0) log
(

F1(s
π(0+))

F0(sπ(0+))

)

+ p0 log
(

F̄1(s
π(0+))

F̄0(sπ(0+))

)]

+ ε̂1M =0,

and

D̂0(b,1− p0) = [(1− q)p0+ qF0 (s
π (1−))] log

(
F1(s

π(1−))

F0(sπ(1−))

)

+
[
(1− q)(1− p0)+ qF̄0 (s

π (1−))
]
log
(

F̄1(s
π(1−))

F̄0(sπ(1−))

)

≥ (1− q)
[

p0 log
(

F1(s
π(1−))

F0(sπ(1−))

)

+(1− p0) log
(

F̄1(s
π(1−))

F̄0(sπ(1−))

)]

− qM

> (1− ε̂2)
[

p0 log
(

F1(s
π(1−))

F0(sπ(1−))

)

+(1− p0) log
(

F̄1(s
π(1−))

F̄0(sπ(1−))

)]

− ε̂2M = 0.

Moreover, for all q ≤ ε̂q and c≤ c̄0,

R̂1(0+,p0) = (1− q)[(1− p0)j
−
1 (s

π (0+))+ p0j
+
1 (s

π (0+))]
(a)

> 0,

R̂0(1−,1− p0) = (1− q)[p0j
−
0 (s

π (1−))+ (1− p0)j
+
0 (s

π (1−))]
(b)

> 0.

In the derivations above, (a) and (b) follow from Step 2 in the proof in Lemma C.2.

Step 3. Based on Step 2, there exist b̄, δ2, δ3, δ4, δ5 > 0, all of which depend only on q and Ξ, such that

• (local profitable manipulation; type-1) D̂1(b,p0)<−δ2 and R̂1(b,p0)> δ3 for all b∈ (0, b̄];

• (local profitable manipulation; type-0) D̂1(b,1− p0)> δ4 and R̂0(b,1− p0)> δ5 for all b∈ (1− b̄,1].

The existence is guaranteed by the local continuity of D̂1(b,p0) and R̂1(b,p0) with respect to b at point 0+;

as well as that of D̂0(b,1− p0) and R̂0(b,1− p0) with respect to b at point 1−.

Step 4. In light of Steps 1 and 3, we complete the proof by taking q
0
= min{εq, ε̂q} and δ :=

min{δ1, δ2, δ3, δ4, δ5}. Note that q
0

depends only on Ξ̂, and δ depends only on (Ξ, q).
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Proof of Lemma I.3. Choose δ̄ > 0 as in Lemma A.3 so that log
(

F0(s)

F1(s)

)

≥ δ̄ and log
(

F̄1(s)

F̄0(s)

)

≥ δ̄ for all

s∈ S . Let q ∈ (0,1). Note that for all b∈ (0,1),

D̂1(b,1) = qF1 (s
π (b)) log

(
F1(s

π(b))

F0(sπ(b))

)

+
[
(1− q)+ qF̄1 (s

π (b))
]
log
(

F̄1(s
π(b))

F̄0(sπ(b))

)

= (1− q) log
(

F̄1(s
π(b))

F̄0(sπ(b))

)

+ q
[

F1 (s
π (b)) log

(
F1(s

π(b))

F0(sπ(b))

)

+ F̄1 (s
π (b)) log

(
F̄1(s

π(b))

F̄0(sπ(b))

)]

≥ (1− q)δ̄ > 0.

Similarly,

D̂0(b,0) = [(1− q)+ qF0 (s
π (b))] log

(
F1(s

π(b))

F0(sπ(b))

)

+ qF̄0 (s
π (b)) log

(
F̄1(s

π(b))

F̄0(sπ(b))

)

= (1− q) log
(

F1(s
π(b))

F0(sπ(b))

)

+ q
[

F0 (s
π (b)) log

(
F1(s

π(b))

F0(sπ(b))

)

+ F̄0 (s
π (b)) log

(
F̄1(s

π(b))

F̄0(sπ(b))

)]

≤−(1− q)δ̄ < 0.

As in the proof of Proposition C.2, choose

c̄1 :=min
{

max
{

2F0(s
πB (0+))−1

2F0(s
πB (0+))

, 1−2F1(s
πB (1−))

2F̄1(s
πB (1−))

}

, 1
2

}

∈ (0,1),

and let c ∈ (0, c̄1]. If sπB(0+)>m0, then R̂0(0+,0) = (1− q)j−0 (s
πB(0+))> 0. If sπB (1−)<m1, then

R̂1(1−,1) = (1− q)j+1 (s
πB(1−))> 0. Since R̂0(b,p) is continuous in b at 0+ and R̂1(b,p) is continuous

in b at 1−, there exist b̄, δ̂ > 0, which depend only on Ξ, q, πB, such that either of the following is true:

• (type-1) for all b∈ [1− b̄,1), R̂1(b,1)> δ̂ (this happens if sπB (1−)<m1).

• (type-0) for all b∈ (0, b̄], R̂0(b,0)> δ̂ (this happens if sπB (0+)>m0).

The proof is finished by choosing δ :=min{ (1−q)δ̄

2
, δ̂}.

Proof of Lemma I.4. By Lemma A.3 and Assumption (A1:3), there exist ε, δ̄,M > 0, which depend only

on Ξ̂, such that−M ≤ log
(

F1(s)

F0(s)

)

≤−δ̄, δ̄ ≤ log
(

F̄1(s)

F̄0(s)

)

≤M , F0(s)−F1(s)≥ δ̄, ε≤F0(s), and F1(s)≤
1 − ε for all s ∈ S . Let dKL(x, y) := x log

(
x
y

)
+ (1 − x) log

(
1−x
1−y

)
be the Kullback-Leibler divergence

between two Bernoulli random variables with success probabilities x and y. This function is continuous

and strictly positive on the closed polytope P := {(x, y) : y − x≥ δ̄, ε≤ x≤ 1− ε, y ≤ 1− ε} and hence

inf(x,y)∈P{dKL(x, y)}> 0. Observe that

D̂1(b,p) = [(1− q)(1− p)+ qF1 (s
π (b))] log

(
F1(s

π(b))

F0(sπ(b))

)

+
[
(1− q)p+ qF̄1 (s

π (b))
]
log
(

F̄1(s
π(b))

F̄0(sπ(b))

)

≥ q
[

F1 (s
π (b)) log

(
F1(s

π(b))

F0(sπ(b))

)

+ F̄1 (s
π (b)) log

(
F̄1(s

π(b))

F̄0(sπ(b))

)]

− (1− q)M

= q
[
dKL(F1 (s

π (b)) , F0 (s
π (b)))

]
− (1− q)M

= q
[

inf
(x,y)∈P

{dKL(x, y)}
]

− (1− q)M

= q
[

inf
(x,y)∈P

{dKL(x, y)}+M
]

−M.

Similarly,

D̂0(b,p) = [(1− q)(1− p)+ qF0 (s
π (b))] log

(
F1(s

π(b))

F0(sπ(b))

)

+
[
(1− q)p+ qF̄0 (s

π (b))
]
log
(

F̄1(s
π(b))

F̄0(sπ(b))

)
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≤ q
[

F0 (s
π (b)) log

(
F1(s

π(b))

F0(sπ(b))

)

+ F̄0 (s
π (b)) log

(
F̄1(s

π(b))

F̄0(sπ(b))

)]

+(1− q)M

=−q
[

F0 (s
π (b)) log

(
F0(s

π(b))

F1(sπ(b))

)

+ F̄0 (s
π (b)) log

(
F̄0(s

π(b))

F̄1(sπ(b))

)]

+(1− q)M

=−q
[
dKL(F̄0 (s

π (b)) , F̄1 (s
π (b)))

]
+(1− q)M

≤−q
[

inf
(x,y)∈P

{dKL(x, y)}+M
]

+M.

We complete the proof by letting q̄ := M
M+inf(x,y)∈P{dKL(x,y)}

∈ (0,1).

Appendix J: Analysis of the Budget-constrained Model (Theorem 6)

Proof of Theorem 6. Let πB be the market maker’s Bayesian policy, and b1 ∈ (0,1) be her initial belief.

We complete the proof in three steps.

Step 1. We claim that for a sufficiently small commission rate c > 0, ∆̆πB(T ;K) = Ω(T ∧K). To prove

this claim, observe that in the proofs of Propositions C.1 and C.2, we construct strategies for the informed

bettor such that the informed bettor bets every time and the bets do not depend on the time horizon. Thus,

using the arguments in the proofs of Proposition C.1 and C.2, we deduce that for some hypothesis i∈ {0,1}
and sufficiently small commission rate c, the type-i informed bettor has a feasible strategy ξ̆i such that

V̆ πB,ξ̆i(T ;K) =Ω(T ∧K). Because the informed bettor makes profits at the expense of the market maker,

we deduce from the arguments in the proof of Theorem 1 that ∆̆πB (T ;K)= Ω(T ∧K).

Step 2. We claim that ∆̆πB (T ;K) = O(T ). The intuition for this is that the market maker’s regret is at

most a constant per bet. Formally, note that ∆̆πB (T ;K) =max{∆πB ,ξ̆∗0
0 (T ),∆

πB,ξ̆∗1
1 (T )} and for i∈ {0,1},

∆
πB,ξ̆∗i
i (T ) = cT

2
−

T∑

t=1

Ĕ
πB ,ξ̆∗i
i

[
I{(X − st)dt < 0}− (1− c)I{(X− st)dt > 0}

]

=
T∑

t=1

Ĕ
πB ,ξ̆∗i
i

[
c
2
− I{(X − st)dt < 0}+(1− c)I{(X − st)dt > 0}

]

≤
T∑

t=1

Ĕ
πB,ξ̆∗i
i

[
c
2
+(1− c)

]
= (1− c

2
)T.

Step 3. We claim that if the pricing function sπB (·) is regular, then ∆̆πB (T ;K)=O(K). Without loss of

generality, suppose that K is sublinear in T , that is, limsupT→∞{KT }= 0. Choose i ∈ {0,1}, and observe

that:

∆
πB,ξ̆∗i
i (T )

=
T∑

t=1

Ĕ
πB,ξ̆∗i
i

[
c
2
− I{(X − st)dt < 0}+(1− c)I{(X− st)dt > 0}

]

=
T∑

t=1

Ĕ
πB,ξ̆∗i
i

[
c
2
− I{(X − st)dt < 0}+(1− c)I{(X− st)dt > 0}

]
I

{

at = 0 or

t∑

ℓ=1

|aℓ|>K

}

+
T∑

t=1

Ĕ
πB ,ξ̆∗i
i

[
c
2
− I{(X − st)dt < 0}+(1− c)I{(X− st)dt > 0}

]
I

{

at 6= 0 and

t∑

ℓ=1

|aℓ| ≤K

}
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=
T∑

t=1

Ĕ
πB,ξ̆∗i
i

[
c
2
− ri(st)

]
I

{

at = 0 or

t∑

ℓ=1

|aℓ|>K

}

+
T∑

t=1

Ĕ
πB ,ξ̆∗i
i

[
c
2
− I{(X − st)dt < 0}+(1− c)I{(X− st)dt > 0}

]
I{at 6= 0}

≤
T∑

t=1

Ĕ
πB ,ξ̆∗i
i

[
c
2
− ri(st)

]
+(1− c

2
)K.

Because K is sublinear in T , Lt diverges in a linear speed and st converges to mi in a linear speed. Hence,

the first term above is independent of T and at most linear in K . As a result, ∆̆
πB ,ξ̆∗i
i (T ) =O(K).

Appendix K: On the Lower Bound of Regret (Theorem 7)

We prove Theorem 7 in a more general setting when the informed bettor participates in the market with a

threshold strategy.

K.1. Description of the Setting

The Z̄-threshold response strategy. To shed light on how the residual probability sequence should be

selected, let us first consider the following family of threshold strategies for the informed bettor.

DEFINITION 4. (Z̄-threshold strategy) Given Z̄ ∈ Z ∪ {−∞}, the type-i informed bettor’s Z̄-threshold

strategy ξZ̄i is such that ξZ̄1 (z) = I{z < Z̄} and ξZ̄0 (z) =−I{z >−Z̄}.

Note that the Z̄-threshold strategy might not necessarily be the informed bettor’s best response strategy in

general. In fact, although the definition of IP focuses on Markov policies with state variable Zt, the general

characterization of informed bettor’s best response strategy for an arbitrary IP is quite complex. However,

the analysis of generic Z̄-threshold strategies helps us understand how to make a suitable choice for the

function ρ(·). In particular, the informed bettor’s best response strategy is indeed of threshold type when

ρ(z) = 1
r0+rz

with an appropriate value of r (see Theorem 3), where the threshold z̄ maximizes the informed

bettor’s profit. Since we evaluate the profit performance of IP under generic choices for the threshold Z̄ and

the function ρ(·), our analysis in this section generalizes Theorem 3 and 4. In this sense, a well-performing

IP should at least have reasonably good performance against the informed bettor’s Z̄-threshold strategies.

To account for the generic choice of Z̄ instead of z̄, let us introduce P̃z
i (·) := P

πI ,ξ
Z̄
i

i (· |Z1 = z), Ẽz
i [·] :=

E
πI ,ξ

Z̄
i

i [· |Z1 = z], and l̃(z) := (2− c)ρ(z)I{z < Z̄}+ (4− 2c)ρ2(z)I{z ≥ Z̄} for the shorthand notations

in this section. We also denote by ∆̃πI (T ) the market maker’s regret under IP against the informed bettor’s

Z̄-threshold strategies.

K.2. Key Intermediate Results

Our main results in this section characterize the dynamics of {Zt} under the market maker’s IP and the

informed bettor’s Z̄-threshold strategy. For simplicity, we consider the case where i = 1 without loss of

generality. The analysis for the case where i= 0 follows from the symmetry relations between P̃z
0 and P̃z

1

akin to (G.9). The next result characterizes the convergence behavior of Zt when ρ(·) is fast vanishing.
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PROPOSITION K.1. Let ρ= {ρ(z), z ∈Z+} be a fast vanishing residual probability sequence, m> Z̄ − 2,

and z ∈Z. Then, {m} is recurrent under P̃z
1.

Proposition K.1 means that when ρ(z) < 1
4z

in the limit, Zt does not diverge to infinity. Note that this is

an undesirable property because it implies that the spread line st does not converge to the correct median.

The main reason behind Proposition K.1 is that if ρ(z) becomes too small (or s̃(z) gets close to the median)

as z→∞, the process Zt behaves like a simple symmetric random walk on Z, which is recurrent. From

a technical point of view, this result is closely related to the (standard) characterization of recurrence of a

birth and death chain with a reflecting boundary point (see, e.g., Durrett 2019).

In contrast to Proposition K.1, Proposition K.2 below characterizes the dynamics of the market when ρ(·)
is slowly vanishing.

PROPOSITION K.2. Let ρ= {ρ(z), z ∈ Z+} be a slowly vanishing residual probability sequence. Then, we

have the following:

(PK.2:1) For all sufficiently large M > 0,
∑

t Ẽ
0
1[I{Zt ≤M}] converges.

(PK.2:2) Zt→∞ almost surely under P̃0
1. As a result, dt converges to zero almost surely under P̃0

1.

(PK.2:3) If ρ is regular, then
∑

t Ẽ
0
1[l̃(Zt)] diverges at a rate satisfying

∑T

t=1 Ẽ
0
1[l̃(Zt)] =O

(∑T

t=1 ρ(t)
)
.

(PK.2:4) If ρ is regular, then ∆̃πI (T ) diverges in T at a rate satisfying ∆̃πI (T ) =O
(∑T

t=1 ρ(t)
)
.

Proposition K.2 means that when ρ(z) vanishes more slowly than 1
4z

as z →∞, the following happens:

(i) the spread line converges to the correct median, and (ii) under certain regularity conditions, the market

maker’s regret (loss) against the Z̄-threshold strategy grows in the order of O
(∑T

t=1 ρ(t)
)
.

The above proposition extends the convergence and regret analysis in Proposition 3 and Theorem 4 in the

following way: Statements (PK.2:1) and (PK.2:3) generalize Statements (P3:1) and (P3:3) in Proposition 3,

respectively. As a consequence, Statements (PK.2:2) and (PK.2:4) generalize Statements (T4:1) and (T4:3)

in Theorem 4, respectively. In all of the generalizations, we study a larger family of ρ(·) rather than the

particular choice of ρ(z) = 1
r0+rz

with r ∈ (0, r̄), and we study a generic Z̄-threshold strategy rather than

the particular choice of ξ∗1 .

K.3. Proof of Theorem 7

Consider an IP for the market maker with some residual probability sequence ρ= {ρ(z) :Z+→ 1
2
−α}. Let

c be sufficiently large as in Lemma D.1 so that ξ∗i = ξ∅. By construction and using the arguments in the proof

of Lemma 5, we deduce that ∆πI (T ) = max{∆πI ,ξ∅
0 (T ),∆

πI ,ξ∅
1 (T )} = max{∆̃πI ,ξ∅

0 (T ), ∆̃
πI ,ξ∅
1 (T )} =

∆̃πI (T ) =
∑T

t=1 Ẽ
0
1[l̃(Zt)], where the last equality follows from (L.5). Based on this, the rest of the

proof is analyzes the term
∑T

t=1 Ẽ
0
1[l̃(Zt)]. If ρ is fast vanishing (and not necessarily regular), then the

market state Zt is recurrent; see Proposition K.1. In particular, the state {0} is recurrent. As a result,

limT→∞

∑T

t=1 Ẽ
0
1[l̃(Zt)]≥ limT→∞

∑T

t=1 Ẽ
0
1[I{Zt = 0}]l̃(0) =∞. If ρ is slowly vanishing and regular, then

∑T

t=1 Ẽ
0
1[l̃(Zt)] diverges in T at a rate of

∑T

t=1 Ẽ
0
1[l̃(Zt)] =O

(∑T

t=1 ρ(t)
)
; see Proposition K.2.
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Appendix L: Convergence and Regret Analysis for IP in Propositions K.1 and K.2

In this section, we provide the details for the proofs of Proposition K.1 and K.2.

L.1. Preliminaries for the Convergence Analysis

We now introduce some auxiliary lemmas, the proofs of which are deferred to Appendix L.4.

LEMMA L.1. Let {xn, n ∈ Z+} be a sequence satisfying xn ∈ (0, 1
2
) for all n ∈ Z+, and let yn :=

∏n

m=1

1
2−xm
1
2+xm

for all n∈ Z+. Then, we have the following:

• If lim infn→∞{nxn}> 1
4
, then

∑

n yn converges.

• If limsupn→∞{nxn}< 1
4
, then

∑

n yn diverges.

The following definition provides a general condition for a residual probability sequence to be either fast

vanishing or slowly vanishing.

DEFINITION 5. The residual probability sequence {ρ(z), z ∈ Z+} is strictly upper bounded if sup{ρ(z) :
z ∈Z+}< 1

2
−α.

Definition 5 is equivalent to saying that, as Zt diverges to infinity (i.e., there is very strong evidence in

support of one hypothesis), the spread line does not converge to the median under the opposite hypothesis.

In particular, if ρ is either fast vanishing or slowly vanishing, then limz→∞{ρ(z)} = 0, and hence, ρ is

strictly upper bounded.

The next result uses the machinery in Lemma 4 to characterize the quantity
∑T

t=1 Ẽ
z
1I{Zt ≤M} for suffi-

ciently large M , which is interpreted as the expected staying time of Zt away from∞. It is a generalization

of Lemma G.3 under the informed bettor’s generic Z̄-threshold strategy and the market maker’s generic

residual probability sequence {ρ(z), z ∈ Z+}.

LEMMA L.2. Suppose that the residual probability sequence {ρ(z) ∈ (0, 1
2
−α), z ∈ Z+} is strictly upper

bounded. For all Z̄ ∈ Z ∪ {−∞} and M ∈ Z satisfying M > Z̄ − 2, there exists an increasing function

ũ : {z ∈Z : z > Z̄ − 2}→R such that

T∑

t=1

Ẽz
1I{Zt ≤M}= Ẽz

1ũ(ZT+1)− ũ(z) for all z ∈Z satisfying z > Z̄ − 2 and T ∈ Z+. (L.1)

The closed-form expression for ũ(·) is as follows:

ũ(z) =







(

1+
M∑

n=z+1

M∏

m=n

1
2+ρ(m)
1
2−ρ(m)

)

β̃+
M∑

n=z+1

M∑

k=n

1
1
2+ρ(k)

k∏

m=n

1
2+ρ(m)
1
2−ρ(m)

if Z̄ − 2< z ≤M,

0 if z =M +1,
(

1+
z−1∑

n=M+2

n∏

m=M+2

1
2−ρ(m)
1
2+ρ(m)

)

β if z ≥M +2,

(L.2)

where β > 0 and β̃ < 0 are finite constants given by






β̃ =−∏M

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

−∑M

k=Z̄
1

1
2−ρ(k)

∏M

m=k

1
2−ρ(m)
1
2+ρ(m)

,

β =−
1
2−ρ(M+1)
1
2+ρ(M+1)

β̃.
(L.3)

Electronic copy available at: https://ssrn.com/abstract=3283392



Birge et al.: Dynamic Learning and Market Making in Spread Betting Markets with Informed Bettors

Submitted 71

L.2. Preliminaries for the Regret Analysis

As mentioned earlier, we generalize the function l(·) to allow for a generic threshold Z̄ as follows:

l̃(z) = (2− c)ρ(z)I{z < Z̄}+(4− 2c)ρ2(z)I{z≥ Z̄}. (L.4)

The difference between l(·) and l̃(·) is that the former is defined for the informed bettor’s optimal threshold

z̄ while the latter is defined for a generic threshold Z̄. We introduce this new notation so that a generalized

version of (4.12) holds, i.e.,

∆̃πI (T ) =
T∑

t=1

Ẽ0
1[l̃(Zt)]. (L.5)

Next, we introduce some auxiliary lemmas, whose proofs are in Appendix L.5.

LEMMA L.3. Let {xn, n ∈ Z+} be a sequence satisfying xn ∈ (0, 1
2
) for all n ∈ Z+, and let an :=

∑n

k=1

x2k
1
2−xk

∏n

m=k

1
2−xm
1
2+xm

for all n ∈ Z+. Then,
∑

n an diverges. If in addition, lim infn→∞{nxn} > 1
4
,

limn→∞

{(
xn

xn+1
− 1
)
n
}
∈ [0,∞] exists, and limn→∞{xn} ∈ [0, 1

2
] exists, then an =O(xn) as n→∞.

The result below uses the machinery in Lemma 4 to characterize the quantity
∑T

t=1 Ẽ
z
1 l̃(Zt) when Z̄ >−∞,

which is closely related to the market maker’s regret, ∆̃πI (T ).

LEMMA L.4. Let the residual probability sequence {ρ(z), z ∈ Z+} be slowly vanishing and regular, and

Z̄ >−∞. Then, there exists a function v : {Z̄ − 1, Z̄, . . .}→R that satisfies the following:

1. For all z ∈ {Z̄ − 1, Z̄, . . .} and T ∈Z+,

1

4− 2c

T∑

t=1

Ẽz
1 l̃(Zt) = Ẽz

1v(ZT+1)− v(z). (L.6)

2. v(z) is increasing in z.

3. v(z) ↑∞ as z ↑∞ with a rate satisfying v(z) =O
(∑z

k=1 ρ(k)
)
.

The closed-form expression of v(·) is given by

v(z) =







0 if z = Z̄ − 1,
(

1+
z−1∑

n=Z̄

n∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

)

ρ(Z̄−1)

2
+

z−1∑

n=Z̄

n∑

k=Z̄

ρ2(k)
1
2−ρ(k)

n∏

m=k

1
2−ρ(m)
1
2+ρ(m)

if z ≥ Z̄.
(L.7)

The following result uses the construction in Lemma 4 to characterize the quantity
∑T

t=1 Ẽ
z
1 l̃(Zt) when

Z̄ =−∞, in order to analyze ∆̃πI (T ).

LEMMA L.5. Let the residual probability sequence {ρ(z), z ∈ Z+} be slowly vanishing and regular, and

Z̄ =−∞. Then, there exists function ṽ :Z→R+ that satisfies the following:

1. For all z ∈ Z and T ∈Z+:

1

4− 2c

T∑

t=1

Ẽz
1 l̃(Zt) = Ẽz

1ṽ(ZT+1)− ṽ(z). (L.8)

2. ṽ(z) is increasing in z.

3. ṽ(z) ↑∞ as z ↑∞ at a rate satisfying ṽ(z) =O
(∑z

k=1 ρ(k)
)
.
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The closed-form expression of ṽ(·) is given by

ṽ(z) =







(

1+
−1∑

n=z+1

−1∏

m=n

1
2+ρ(m)
1
2−ρ(m)

)

B̃+
−1∑

n=z+1

−1∑

k=n

ρ2(k)
1
2+ρ(k)

k∏

m=n

1
2+ρ(m)
1
2−ρ(m)

if z ≤−1,

0 if z =0,
(

1+
z−1∑

n=1

n∏

m=1

1
2−ρ(m)
1
2+ρ(m)

)

B+
z−1∑

n=1

n∑

k=1

ρ2(k)
1
2−ρ(k)

n∏

m=k

1
2−ρ(m)
1
2+ρ(m)

if z ≥ 1.

(L.9)

where B and B̃ are finite constants.

L.3. Key Steps of the Convergence and Regret Analysis

Proof of Proposition K.1. Fix a residual probability sequence ρ that is fast vanishing. First, observe that

if Z̄ > −∞, then Zt is a standard birth and death chain with a reflecting boundary. Then, {Z̄ − 1} is

recurrent (Durrett 2019, Exercise 5.3.4). Because {Z̄ − 1, Z̄, . . .} is an irreducible class, any state in that

class is recurrent. Second, if Z̄ = −∞, then we may treat {Zt} as a concatenation of two sub-processes:

the first one is {Zt} restricted to Z+ ∪ {0}, and the second is {Zt} restricted to Z− ∪ {0}. We show that

either sub-process visits the state {0} infinitely often. That is, {0} is recurrent. The first sub-process is a

standard birth and death chain with a reflecting boundary {0}. Let τ0 := inf{t > 1 : Zt = 0} be the hitting

time of of state {0}. Then, P̃0
1(τ0 <∞|Z2 > 0)= 1 (Durrett 2019). The second sub-process is a “reflected”

version of a standard birth and death chain. Since the residual probability sequence {ρ(z), z ∈ Z+} is fast

vanishing, it is strictly upper bounded (see Definition 5). Now consider the extended residual probability

sequence {ρ(z), z ∈ Z} in the sense of (E.1). By Lemma E.3, {ρ(z), z ∈ Z−} is bounded away from 0.

Choose ε > 0 such that ρ(z) ≥ ε > 0 for all z ≤ Z−. Then, for all z ∈ Z−, 1
2
+ ρ(z)≥ 1

2
+ ε > 1

2
. Hence,

P̃0
1(τ0 <∞|Z2 < 0) = 1. Combining our findings, we have P̃0

1(τ0 <∞) = 1; i.e., {0} is recurrent. Because

Zt is irreducible when Z̄ =−∞, all states in {z ∈Z : z > Z̄ − 2} are recurrent.

Proof of Statements (PK.2:1) and (PK.2:2) in Proposition K.2. Fix a residual probability sequence ρ that

is slowly vanishing. Without loss of generality, let us assume that the initial value z is greater than Z̄ − 2,

and Zt is a Markov chain restrained in {z ∈ Z : z > Z̄ − 2}; otherwise, Zt increases in a deterministic

manner under P̃z
1 until Zt hits the region {z ∈Z : z > Z̄ − 2}.

To prove Statement (PK.2:1), we choose M > Z̄−2 and verify that
∑T

t=1 Ẽ
z
1I{Zt ≤M} is bounded in T .

Because ρ is slowly vanishing, lim infz→∞{zρ(z)}> 1
4

and limz→∞{ρ(z)}= 0 (see Definition 2). More-

over, ρ is also strictly upper bounded (see Definition 5). Invoking Lemma L.2, we have
∑T

t=1 Ẽ
z
1I{Zt ≤

M} = Ẽz
1ũ(ZT+1)− ũ(z), where ũ(·) is as in (L.2). Thus, it suffices to show that ũ(·) is bounded from

above. Recall from Lemma L.2 that ũ(·) is increasing, which implies that it is sufficient to prove that

limz→∞{ũ(z)} < ∞. By (L.2), it is equivalent to
∑

n

n∏

m=1

1
2−ρ(m)
1
2+ρ(m)

being convergent. This follows from

Lemma L.1 as ρ is slowly vanishing.

Statement (PK.2:2) follows from Statement (PK.2:1). By the Borel-Cantelli lemma, we deduce that

P̃0
1{Zt ≤M infinitely often} = 0. As a result, Zt→∞ almost surely under P̃0

1. Since ρ is vanishing, this

implies that ρ(Zt)→ 0 and dt = |st−m1|= |F−1
1 ( 1

2
− ρ(Zt))−F−1

1 ( 1
2
)| → 0 almost surely under P̃0

1.
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Proof of Statements (PK.2:3) and (PK.2:4) in Proposition K.2. Fix a residual probability sequence ρ

that is both slowly vanishing and regular. For this proof, it suffices to verify Statement (PK.2:3) because

Statement (PK.2:4) follows from Statement (PK.2:3) and (L.5). We complete the proof in two steps.

Step 1. We claim that
∑T

t=1 Ẽ
0
1[l̃(Zt)] =O

(∑T

t=1 ρ(t)
)
. Observe that, for all T ≥ Z̄ ∨ 1,

1

4− 2c

T∑

t=1

Ẽ0
1[l̃(Zt)]

(a)
=







Ẽ0
1ṽ(ZT+1)− ṽ(0) if Z̄ =−∞,

Ẽ0
1v(ZT+1)− v(0) if −∞< Z̄ ≤ 1,

ẼZ̄−1
1 v(ZT+2−Z̄)− v(Z̄− 1)+

∑Z̄−2

z=0
ρ(z)

2
if 2≤ Z̄,

(b)

≤







ṽ(T )− ṽ(0) if Z̄ =−∞,

v(T )− v(0) if −∞< Z̄ ≤ 1,

v(ZT+1−Z̄)− v(Z̄ − 1)+
∑Z̄−2

z=0
ρ(z)

2
if 2≤ Z̄,

(c)
= O

( T∑

t=1

ρ(t)

)

.

In the derivations above, part (a) follows from invoking (L.6) and (L.8) for the cases where Z̄ =−∞ and

Z̄ >−∞, respectively. Moreover, the third piece of (a) holds because when Z̄ ≥ 2, Zt increments by one

with certainty (i.e., Zt = t− 1) until Zt hits Z̄ − 1; consequently,

T∑

t=1

Ẽ0
1[l̃(Zt)] =

Z̄−1∑

t=1

Ẽ0
1[l̃(Zt)]+

T+1∑

t=Z̄

Ẽ0
1[l̃(Zt)]

=
Z̄−1∑

t=1

l̃(t− 1)+
T∑

t=Z̄

Ẽ0
1[l̃(Zt)]

=
Z̄−1∑

t=1

l̃(t− 1)+
T−Z̄+1∑

t=1

ẼZ̄−1
1 [l̃(Zt)] [by the Markov property of Zt]

(L.4)
=

Z̄−2∑

z=0

(2− c)ρ(z)+
T−Z̄+1∑

t=1

ẼZ̄−1
1 [l̃(Zt)]

(L.6)
=

Z̄−2∑

z=0

(2− c)ρ(z)+ (4− 2c)
[
ẼZ̄−1

1 v(ZT+2−Z̄)− v(Z̄ − 1)
]
.

Part (b) holds because (i) for all z ∈Z and t∈Z+, Zt+1 ≤ t+z almost surely under P̃z
1; and (ii) by Lemmas

L.4 and L.5, v(·) and ṽ(·) are increasing functions. Part (c) holds since v(T ) and ṽ(T ) are O
(∑T

t=1 ρ(t)
)
.

Step 2. We claim that
∑T

t=1 Ẽ
0
1[l̃(Zt)]→∞ as T →∞. To prove this claim, it suffices to show that

Ẽ0
1[v(ZT )]→∞ and Ẽ0

1[ṽ(ZT )]→∞ as T →∞; see part (a) in Step 1. Because ρ is slowly vanishing,

Zt→∞ almost surely under P̃0
1; see Statement (PK.2:2). By Lemma L.4, v(ZT ) is a nonnegative random

variable such that v(ZT )→∞ almost surely as T →∞ under P̃0
1. By Markov’s inequality, Ẽ0

1[v(ZT )] ≥
xP̃0

1(v(ZT )≥ x) for all x> 0. Taking T to∞ and then x to∞, we deduce that Ẽ0
1[v(ZT )]→∞ as T →∞.

Repeating the same arguments for Ẽ0
1[ṽ(ZT )] and invoking Lemma L.5, we obtain the desired result.

L.4. Proofs of Auxiliary Lemmas for Convergence Analysis

Proof of Lemma L.1. Observe that yn
yn+1

=
1
2+xn+1
1
2−xn+1

= 1+
2xn+1

1
2−xn+1

. Thus, we have the following:
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• If lim infn→∞{nxn} > 1
4
, then lim infn→∞

{(
yn

yn+1
− 1

)

n
}

= lim infn→∞

{
2xn+1
1
2−xn+1

n
}

≥
lim infn→∞{4xn+1n}> 1.

• If limsupn→∞{nxn} < 1
4
, then limsupn→∞

{(
yn

yn+1
− 1

)

n
}

= limsupn→∞

{
2xn+1
1
2−xn+1

n
}

=

limsupn→∞{4xn+1n}< 1.

Invoking Raabe’s test of convergence of series with positive terms (Bromwich 1908, p. 33), we complete

the proof.

Proof of Lemma L.2. With the initial point z ∈Z satisfying z > Z̄−2, the Markov chain Zt is contained in

the region {z ∈Z : z > Z̄− 2}. In particular, if Z̄ is finite, the state Z̄− 1 is a reflecting boundary. Invoking

Lemma 4 with S = {z ∈ Z : z > Z̄ − 2}, it is sufficient to solve the difference equation Ẽz
1ũ(Z2)− ũ(z) =

I{z ≤M} for all z ∈ S. The rest of the proof confirms that (L.2) presents such a solution with the desired

monotonicity property. We complete the remainder of the proof in three steps.

Step 1. We verify that both β and β̃ are finite, and hence the function ũ(·) in (L.2) is finitely valued. Note

that it suffices to check that β̃ is finite. As ρ is strictly upper bounded (see Definition 5), we deduce from

Lemma E.3 that there exists ε > 0 satisfying ρ(z)≥ ε > 0 for all z ≤M . Thus,

|β̃|=
M∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

+
M∑

k=Z̄

1
1
2−ρ(k)

M∏

m=k

1
2−ρ(m)
1
2+ρ(m)

=
M∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

︸ ︷︷ ︸

≤1

+
M∑

k=Z̄

1
1
2+ρ(k)
︸ ︷︷ ︸

≤
1

1
2+ε

M∏

m=k+1

1
2−ρ(m)
1
2+ρ(m)

︸ ︷︷ ︸

≤

(

1
2−ε
1
2+ε

)M−k

(a)

≤ 1+
M∑

k=−∞

1
1
2+ε

(
1
2−ε
1
2+ε

)M−k

<∞,

where (a) follows because ρ(z)≥ ε for all z ≤M , which implies that
∏M

m=k+1

1
2−ρ(m)
1
2+ρ(m)

≤
(

1
2−ε
1
2+ε

)M−k

and

1
1
2+ρ(k)

≤ 1
1
2+ε

for all k≤M .

Step 2. We verify that ũ(·) is increasing. That is, ũ(z − 1)− ũ(z)< 0 for all z ∈ Z satisfying z ≥ Z̄. In

particular, when Z̄ > −∞, ũ(Z̄ − 1)− ũ(Z̄) = −1. Since β̃ < 0 and β > 0, we can directly verify from

the expression in (L.2) that ũ(M) = β̃ < 0 = ũ(M + 1)< β = ũ(M + 2)≤ ũ(M +3)≤ ũ(M +4)≤ · · ·
Therefore, it suffices to show that ũ(z− 1)− ũ(z)< 0 for all z satisfying Z̄ − 1< z ≤M . Note that

ũ(z− 1)− ũ(z) = β̃
M∏

m=z

1
2+ρ(m)
1
2−ρ(m)

+
M∑

k=z

1
1
2+ρ(k)

k∏

m=z

1
2+ρ(m)
1
2−ρ(m)

(L.3)
=

(

−
M∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

−
M∑

k=Z̄

1
1
2−ρ(k)

M∏

m=k

1
2−ρ(m)
1
2+ρ(m)

) M∏

m=z

1
2+ρ(m)
1
2−ρ(m)

+
M∑

k=z

1
1
2+ρ(k)

k∏

m=z

1
2+ρ(m)
1
2−ρ(m)

Z̄ ≤ z

≤
(

−
M∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

−
M∑

k=z

1
1
2−ρ(k)

M∏

m=k

1
2−ρ(m)
1
2+ρ(m)

) M∏

m=z

1
2+ρ(m)
1
2−ρ(m)

+
M∑

k=z

1
1
2+ρ(k)

k∏

m=z

1
2+ρ(m)
1
2−ρ(m)

=−
z−1∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

−
M∑

k=z

1
1
2−ρ(k)

k−1∏

m=z

1
2+ρ(m)
1
2−ρ(m)

+
M∑

k=z

1
1
2+ρ(k)

k∏

m=z

1
2+ρ(m)
1
2−ρ(m)
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=−
z−1∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

< 0.

The inequality above is tight when Z̄ >−∞ and z = Z̄.That is, when Z̄ >−∞, ũ(Z̄ − 1)− ũ(Z̄) =−1.

Step 3. As explained above, by Lemma 4, it suffices to show that for all z > Z − 2 satisfying z ≥ Z̄,

Ẽz
1ũ(Z2)− ũ(z) = I{z ≤M}. Let us first look at the left-hand side of the equation:

Ẽz
1ũ(Z2)− ũ(z) =

{[
1
2
+ ρ(z)

]
ũ(z+1)+

[
1
2
− ρ(z)

]
ũ(z− 1)− ũ(z) if z ≥ Z̄,

ũ(z+1)− ũ(z) if z < Z̄.

Let us then look at the right-hand side of the equation:

I{z ≤M}=
{

1 if z ≤M,

0 if z >M.

Note that we only consider the values of M that exceed Z̄ − 2. We study four cases for the value of z:

z ≥M +2, z =M +1, Z̄ − 1< z ≤M , and z = Z̄ − 1 (the last case is valid only when Z̄ >−∞).

1. When z ≥M +2, we show that
[
1
2
+ ρ(z)

]
ũ(z+1)+

[
1
2
− ρ(z)

]
ũ(z−1)− ũ(z) = 0. By Lemma F.1,

ũ(·) restricted to the domain [M +1,∞) solves the difference equation (F.1) with ẑ =M +2, δ = β,

p(z) = 1
2
+ ρ(z), and x(z) = 0 for all z ≥M +1. That is, ũ(·) satisfies the following:
{

ũ(M +1)= 0, ũ(M +2)= β
[
1
2
+ ρ(z)

]
ũ(z+1)+

[
1
2
− ρ(z)

]
ũ(z− 1)− ũ(z) = 0 for all z ≥M +2.

Thus, for all z ≥M +2,
[
1
2
+ ρ(z)

]
ũ(z+1)+

[
1
2
− ρ(z)

]
ũ(z− 1)− ũ(z) = 0.

2. When z = M + 1, the definitions of β and β̃ imply that
[
1
2
+ ρ(M +1)

]
ũ(M + 2) +

[
1
2
− ρ(M +1)

]
ũ(M)− ũ(M +1)=

[
1
2
+ ρ(M +1)

]
β+

[
1
2
− ρ(M +1)

]
β̃ = 0.

3. When Z̄ − 1< z ≤M , we show that
[
1
2
+ ρ(z)

]
ũ(z + 1) +

[
1
2
− ρ(z)

]
ũ(z − 1)− ũ(z) = 1. To that

end, we introduce an auxiliary sequence {y(z), z ∈N} such that

y(z) =







0 if z =0,
(

1+
z−1∑

n=1

n∏

m=1

1
2+ρ(M+1−m)
1
2−ρ(M+1−m)

)

β̃+
z−1∑

n=1

n∑

k=1

1
1
2+ρ(M+1−k)

k∏

m=n

1
2+ρ(M+1−m)
1
2−ρ(M+1−m)

if z ≥ 1.

The above construction of y(·) has two desirable properties. First, y(·) is a “reflected” version of ũ(·).

Specifically, for all z ∈ Z satisfying Z̄ − 1< z ≤M ,

y(M +1− z) =

(

1+
M−z∑

n=1

n∏

m=1

1
2+ρ(M+1−m)
1
2−ρ(M+1−m)

)

β̃+
M−z∑

n=1

n∑

k=1

1
1
2+ρ(M+1−k)

k∏

m=n

1
2+ρ(M+1−m)
1
2−ρ(M+1−m)

(a)
=

(

1+
M∑

ň=z+1

M∏

m̌=ň

1
2+ρ(m̌)
1
2−ρ(m̌)

)

β̃+
M∑

ň=z+1

M∑

ǩ=ň

1
1
2+ρ(ǩ)

ǩ∏

m̌=ň

1
2+ρ(m̌)
1
2−ρ(m̌)

= ũ(z),

where (a) holds by the following change of variables: ň = M + 1− n, m̌ = M + 1−m, and ǩ =

M + 1− k. Second, we deduce from Lemma F.1 that y(·) solves the difference equation (F.1) with
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ẑ = 1, δ= β̃, p(z) = 1
2
− ρ(M +1− z). That is,

{

y(0) = 0, y(1) = β̃,
[
1
2
− ρ(M +1− z)

]
y(z+1)+

[
1
2
+ ρ(M +1− z)

]
y(z− 1)− y(z) = 1 for all z ≥ 1.

Substituting ũ(z) = y(M +1− z), we obtain the following for ũ(·):
{

ũ(M +1)= 0, ũ(M) = β̃,
[
1
2
− ρ(z)

]
ũ(z− 1)+

[
1
2
+ ρ(z)

]
ũ(z+1)− ũ(z) = 1 for all Z̄ − 1< z ≤M.

Thus, for all z satisfying Z̄ − 1< z ≤M ,
[
1
2
+ ρ(z)

]
ũ(z+1)+

[
1
2
− ρ(z)

]
ũ(z− 1)− ũ(z) = 1.

4. When z = Z̄ − 1, we show that ũ(Z̄)− ũ(Z̄− 1) = 1 (this case is valid only if Z̄ >−∞). Note that

ũ(Z̄− 1)− ũ(Z̄) = β̃
M∏

m=Z̄

1
2+ρ(m)
1
2−ρ(m)

+
M∑

k=Z̄

1
1
2+ρ(k)

k∏

m=Z̄

1
2+ρ(m)
1
2−ρ(m)

(L.3)
= −1−

M∑

k=Z̄

1
1
2−ρ(k)

k−1∏

m=Z̄

1
2+ρ(m)
1
2−ρ(m)

+
M∑

k=Z̄

1
1
2+ρ(k)

k∏

m=Z̄

1
2+ρ(m)
1
2−ρ(m)

=−1.

Combining our findings in the four cases above, we conclude that Ẽz
1ũ(Z2) − ũ(z) = I{z ≤M} for all

z ∈Z satisfying z > Z̄ − 2.

L.5. Proofs of Auxiliary Lemmas for Regret Analysis

Proof of Lemma L.3. We first derive a recursive relation for {an} as follows:

an+1 =
n+1∑

k=1

x2k
1
2−xk

n+1∏

m=k

1
2−xm
1
2+xm

=
1
2−xn+1
1
2+xn+1

n∑

k=1

x2k
1
2−xk

n∏

m=k

1
2−xm
1
2+xm

︸ ︷︷ ︸

=an

+
x2n+1

1
2+xn+1

=
1
2−xn+1
1
2+xn+1

an +
x2n+1

1
2+xn+1

. (L.10)

We break the rest of the proof into two steps.

Step 1. We claim that
∑

n an diverges. To prove this claim, we deduce from (L.10) the following for

sufficiently large n:

(
an

an+1
− 1
)

n=
(

1
2+xn+1
1
2−xn+1

− x2n+1
1
2−xn+1

1
an+1
− 1
)

n

=
(

2xn+1
1
2−xn+1

− x2n+1
1
2−xn+1

1
an+1

)

n

=

[

−2+ 1
an+1
−
(

1
2−xn+1

an+1
+

1
4an+1

−1

1
2−xn+1

)]

n [rearranging terms]

≤
[

−2+ 1
an+1
− 2

√

1
an+1

(
1

4an+1
− 1
)]

n [a+ b≥ 2
√
ab ∀a, b > 0 ]

= 4n
1

an+1
−2+2

√

1
4a2

n+1

− 1
an+1

≤ 4n
1

an+1
−2

=
4an+1n

1−2an+1
.

Suppose towards a contradiction that
∑

n an converges. This implies that
4an+1n

1−2an+1
→ 0 as n→∞ because

∑

n
1
n

is a divergent series. However, due to the derivations above, this means
(

an
an+1
−1
)

n→ 0 as n→∞.

Applying Raabe’s test of convergence of series with positive terms (Bromwich 1908, p. 33) to {an}, we

note that
∑

n an diverges, leading to a contradiction as desired.
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Step 2. We claim that if limn→∞{xn}> 0, then an =O(xn). Observe that when limn→∞{xn}> 0, there

exists ε0 ∈ (0, 1
2
) and N0 ∈N such that xn ≥ ε0 > 0 for all n≥N0. Thus, to prove our claim in this step, it

suffices to show that {an} is bounded from above. For n≥N0,

an+1 =
1
2−xn+1
1
2+xn+1

an +
x2n+1

1
2+xn+1

≤
1
2−ε0
1
2+ε0

an +
1
2

≤
1
2−ε0
1
2+ε0

(
1
2−ε0
1
2+ε0

an−1 +
1
2

)

+ 1
2

...

≤ limsup
k→∞

{(
1
2−ε0
1
2+ε0

)k

aN0
+ 1

2

(

1+ · · ·+
(

1
2−ε0
1
2+ε0

)k−1
)}

,

which is a finite constant independent of n.

Step 3. We claim that if (i) lim infn→∞{nxn} > 1
4
, (ii) limn→∞

{(
xn

xn+1
− 1

)
n
}

exists, and (iii)

limn→∞{xn}= 0, then an =O(xn). Let us define cn :=
an
xn

. To show that an =O(xn), it suffices to prove

that {cn} is bounded from above. Invoking the recursive relation between an+1 and an in (L.10), we obtain

a recursive relation between cn+1 and cn. That is, cn+1 =
1
2−xn+1
1
2+xn+1

xn
xn+1

cn +
xn+1

1
2+xn+1

. We seek finite con-

stants M1,M0,N1 ∈ N such that for all n ≥ N1, (i) cn ≥M0 implies that cn+1 ≤ cn, and (ii) cn ≤M0

implies that cn+1 ≤M1. If such a tuple (M0,M1,N1) exists, the sequence {cn} is bounded by the value

max{c1, . . . , cN1+1,M0,M1}. To find (M0,M1,N1), let us evaluate the following quantity for every M > 0:

(∗) = 1
xn

(
1
2−xn+1
1
2+xn+1

xn
xn+1

M +
xn+1

1
2+xn+1

−M
)

= n
(

xn
xn+1

− 1
)

M
nxn
− 4

1+2xn+1
M +

xn+1

xn

1
1
2+xn+1

<n
(

xn
xn+1

− 1
)

M
nxn
− 4

1+2xn+1
M +2

(
xn+1

xn

)

.

We claim that (∗) is negative for sufficiently large n and M . To show this claim, recall that
∑

n xn diverges.

Because limn→∞

{(
xn

xn+1
− 1
)
n
}

exists, we apply Raabe’s test to the sequence {xn} and conclude that

limn→∞

{(
xn

xn+1
− 1
)
n
}
≤ 1. That is, there exists a constant A ≤ 1 such that xn

xn+1
= 1 + A

n
+ o

(
1
n

)
.

This implies that limn→∞

{
xn

xn+1

}
= limn→∞

{xn+1

xn

}
= 1. Moreover, limn→∞{xn}= 0. Combining all the

pieces, we know that there exist ε1 > 0 and N1 ∈ N such that for all n≥N1, (i) n
(

xn
xn+1

− 1
)
≤ 1 + 2ε1

1+ε1
,

(ii) nxn ≥ 1
4
+ ε1, (iii) xn+1 ≤ ε1

2(1+4ε1)
, and (iv) 1

2
≤ xn+1

xn
≤ 2. Thus, for all n≥N1,

(∗)<
(

1+ 2ε1
1+ε1

)
M

1
4+ε1

− 4

1+
ε1

1+4ε1

M +4

= 4M

[(

1+ 2ε1
1+ε1

)
1

1+4ε1
− 1+

ε1
1+4ε1

1+
ε1

1+4ε1

]

+4

< 4M
[

1− 2ε1
1+4ε1

− 1+ ε1
1+4ε1

]

+4=− 4ε1
1+ε1

M +4. (L.11)

Choose M0 such that− 4ε1
1+ε1

M +4< 0 for all M ≥M0. This is possible because 4ε1
1+ε1

> 0. By construction,

for all n satisfying n≥N1 and cn ≥M0,

cn+1− cn =
1
2−xn+1
1
2+xn+1

xn
xn+1

cn +
xn+1

1
2+xn+1

− cn
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= xn
1
xn

(
1
2−xn+1
1
2+xn+1

xn
xn+1

cn+
xn+1

1
2+xn+1

− cn

)

<xn

(

− 4ε1
1+ε1

cn +4
)

< 0. [choosing M = cn≥M0 in (L.11)]

Lastly, it is useful to observe that for all n such that n≥N1 and cn≤M0,

cn+1 =
1
2−xn+1
1
2+xn+1
︸ ︷︷ ︸

≤1

xn
xn+1
︸︷︷︸

≤2

cn +
xn+1

1
2+xn+1
︸ ︷︷ ︸

≤1

≤ 2M0+1.

Thus, it suffices to choose M1 = 2M0 +1. We have found (N1,M0,M1) as desired.

Proof of Lemma L.4. With the initial point z ∈ {Z̄ − 1, Z̄, . . .}, the Markov chain Zt is contained in the

region {Z̄− 1, Z̄, . . .}. In particular, if Z̄ is finite, the state Z̄− 1 is a reflecting boundary. Invoking Lemma

4 with S = {Z̄− 1, Z̄, . . .}, it suffices to solve the difference equation Ẽz
1v(Z2)− v(z) = l̃(z)

4−2c
for all z ∈ S.

The remainder of the proof verifies that (L.7) provides such a solution with the desired monotonicity and

growth properties. We complete the rest of the proof in three steps.

Step 1. We claim that when v(·) is as in (L.7), Ẽz
1v(Z2)−v(z) = l̃(z)

4−2c
for all z ∈ {Z̄−1, Z̄, . . .}. Observe

that v(·) solves the difference equation (F.1) with ẑ = Z̄, δ = ρ(Z̄−1)

2
, x(z) = ρ2(z), and p(z) = 1

2
+ ρ(z).

That is,
{

v(Z̄ − 1) = 0, v(Z̄) = ρ(Z̄−1)

2
,

[
1
2
+ ρ(z)

]
v(z+1)+

[
1
2
− ρ(z)

]
v(z− 1)− v(z) = ρ2(z) for all z ≥ Z̄.

As a result, for all z ∈ {Z̄ − 1, Z̄, . . .},

Ẽz
1[v(Z2)]− v(z) =

{

v(z+1)− v(z) if z = Z̄ − 1,
[
1
2
+ ρ(z)

]
v(z+1)+

[
1
2
− ρ(z)

]
v(z− 1)− v(z) if z ≥ Z̄,

=

{
ρ(Z̄−1)

2
if z = Z̄ − 1,

ρ2(z) if z ≥ Z̄,

(L.4)
=

l̃(z)

4− 2c
.

Step 2. We claim that with v(z) increases in z. This follows from the fact that v(z) defined in (L.7) is a

partial sum of nonnegative terms.

Step 3. We claim that v(z)→∞ as z→∞ with a rate such that limsupz→∞

{
v(z)

∑z
k=1 ρ(k)

}

<∞. To prove

this claim, we analyze v(z) by introducing two auxiliary sequences. First, let ak :=
∞∑

n=k

n∏

m=k

1
2−ρ(m)
1
2+ρ(m)

for k ∈
{Z̄ − 1, Z̄, . . .}. Because ρ is slowly vanishing (see Definition 2), we invoke Lemma L.1 with xm = ρ(m),

and deduce that a1 <∞. Moreover, since ak satisfies the inductive relation ak =
1
2−ρ(m)
1
2+ρ(m)

(1+ak+1), we also

deduce that ak <∞ for all k ∈Z. We introduce our second auxiliary sequence as follows: for z ≥ Z̄ ∨2, let

bz :=

z−1∑

n=Z̄

n∑

k=Z̄

ρ2(k)
1
2−ρ(k)

n∏

m=k

1
2−ρ(m)
1
2+ρ(m)

(a)
=

z−Z̄∑

ň=1

ň∑

ǩ=1

ρ2(ǩ+Z̄−1)
1
2−ρ(ǩ+Z̄−1)

ň∏

m̌=ǩ

1
2−ρ(m̌+Z̄−1)
1
2+ρ(m̌+Z̄−1)

,

where (a) holds by the following change of variables: ǩ := k− Z̄+1, ň := n− Z̄+1 and m′ :=m− Z̄+1.

We claim that {bz} is a sequence that diverges at a rate satisfying bz =O(ρ(Z̄)+ . . .+ ρ(z− 1)). Invoking
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the first part of Lemma L.3 with xm = ρ(m+ Z̄ − 1), we know that bz ↑∞ as z ↑∞. Moreover, since ρ is

regular and slowly vanishing, the following three conditions hold:

1. lim infm→∞{mρ(m+ Z̄−1)}≥ lim infm→∞{ m
m+Z̄−1

} lim infm→∞{(m+ Z̄−1)ρ(m+ Z̄−1)}> 1
4
,

because ρ is slowly vanishing.

2. limm→∞

{(
ρ(m+Z̄−1)

ρ(m+Z̄)
− 1
)
m
}
= limm→∞

{(
ρ(m+Z̄−1)

ρ(m+Z̄)
− 1
)
(m− Z̄ + 1)

}
limm→∞

{
m

m−Z̄+1

}
exists,

because ρ is regular.

3. limm→∞{ρ(m+ Z̄ − 1)}= limm→∞{ρ(m)}= 0, because ρ is slowly vanishing.

Therefore, we deduce from the second part of Lemma L.3 that bz = O(ρ(Z̄) + . . .+ ρ(z − 1)). With the

introduction of {ak} and {bz}, let us evaluate v(z) below for every z ≥ Z̄ ∨ 2:

v(z) =

(

1+
z−1∑

n=Z̄

n∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

)

ρ(Z̄−1)

2
+

z−1∑

n=Z̄

n∑

k=Z̄

ρ2(k)
1
2−ρ(k)

n∏

m=k

1
2−ρ(m)
1
2+ρ(m)

≤
(

1+
∞∑

n=Z̄

n∏

m=Z̄

1
2−ρ(m)
1
2+ρ(m)

)

ρ(Z̄−1)

2
+

z−1∑

n=Z̄

n∑

k=Z̄

ρ2(k)
1
2−ρ(k)

n∏

m=k

1
2−ρ(m)
1
2+ρ(m)

=(1+ aZ̄)
ρ(Z̄−1)

2
+ bz.

Now, note that Z̄ and aZ̄ are finite constants independent of z, and {bz} is a sequence that diverges at a rate

satisfying bz =O(ρ(Z̄)+ . . .+ ρ(z− 1)). This completes the proof.

Proof of Lemma L.5. Because ρ is slowly vanishing, it is also strictly upper bounded. Thus, by Lemma

E.3, there exists ε0 > 0 such that ρ(z)≥ ε0 for all z ∈N−. Let

B := ρ2(0)
1
2+ρ(0)

+
1
2−ρ(0)
1
2+ρ(0)

1
2+ε0
8ε0

and B̃ :=−
1
2+ε0
8ε0

. (L.12)

To complete the proof, we invoke Lemma 4 with S = Z, and deduce that it suffices solve the difference

equation Ẽz
1ṽ(Z2) − ṽ(z) = l̃(z)

4−2c
for z ∈ Z. Due to the dynamics of {Zt} and the definition of l̃(·) in

(L.4), this simplifies to
[
1
2
− ρ(z)

]
ṽ(z− 1)+

[
1
2
+ ρ(z)

]
ṽ(z+1)− ṽ(z) = ρ2(z) for z ∈Z. The rest of the

proof confirms that (L.9) presents such a solution with the desired monotonicity and growth properties. We

complete the remainder of the proof in three steps.

Step 1. We claim that when ṽ(·) is as in (L.9),
[
1
2
− ρ(z)

]
ṽ(z− 1)+

[
1
2
+ ρ(z)

]
ṽ(z+1)− ṽ(z) = ρ2(z)

for all z ∈ Z. We can view this function as a concatenation of two one-sided functions: one defined on

N and the other one defined on Z− ∪ {0}. For the first piece (defined on N), we invoke Lemma F.1 and

observe that ṽ(·) restricted to N satisfies the difference equation (F.1) with ẑ = 1, δ=B, x(z) = ρ2(z), and

p(z) = 1
2
+ ρ(z). That is,

{

ṽ(0) = 0, ṽ(1) =B,
[
1
2
+ ρ(z)

]
v(z+1)+

[
1
2
− ρ(z)

]
v(z− 1)− v(z) = ρ2(z) for all z ≥ 1.

For the second piece (defined on Z−∪{0}), let us introduce an auxiliary sequence {y(z), z ∈N} as follows:

y(z) :=







0 if z = 0,
(

1+
z−1∑

n=1

n∏

m=1

1
2+ρ(−m)
1
2−ρ(−m)

)

B̃+
z−1∑

n=1

n∑

k=1

ρ2(−k)
1
2+ρ(−k)

k∏

m=n

1
2+ρ(−m)
1
2−ρ(−m)

if z ≥ 1.
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First, we verify that y(·) is a “reflected” version of ṽ(·) restricted to Z− ∪{0}. That is, for all z ∈ Z−,

ṽ(z) =

(

1+
−1∑

n=z+1

−1∏

m=n

1
2+ρ(m)
1
2−ρ(m)

)

B̃+
−1∑

n=z+1

−1∑

k=n

ρ2(k)
1
2+ρ(k)

k∏

m=n

1
2+ρ(m)
1
2−ρ(m)

(a)
=

(

1+
ž−1∑

n=1

ň∏

m̌=1

1
2+ρ(−m̌)
1
2−ρ(−m̌)

)

B̃+
ž−1∑

ň=1

ň∑

ǩ=1

ρ2(−ǩ)
1
2+ρ(−ǩ)

ǩ∏

m̌=ň

1
2+ρ(−m̌)
1
2−ρ(−m̌)

= y(−z)

where (a) holds by the following change of variables: m̌ :=−m, ň :=−n, ž :=−z. Second, note that y(·)
solves the difference equation (F.1) with ẑ = 1, δ = B̃, x(z) = ρ2(−z), and p(z) = 1

2
− ρ(−z); i.e.,

{

y(0) = 0, y(1) = B̃,
[
1
2
− ρ(−z)

]
y(z+1)+

[
1
2
+ ρ(−z)

]
y(z− 1)− y(z) = ρ2(−z) for all z ≥ 1.

Because ṽ(z) = y(−z) for all z ∈ Z−, we have
{

ṽ(0) = 0, ṽ(−1) = B̃,
[
1
2
− ρ(z)

]
ṽ(z− 1)+

[
1
2
+ ρ(z)

]
ṽ(z+1)− ṽ(z) = ρ2(z) for all z ≤−1.

Lastly, it suffices to verify that B and B̃ are such that
[
1
2
− ρ(0)

]
ṽ(−1)+

[
1
2
+ ρ(0)

]
ṽ(1)− ṽ(0) = ρ2(0).

In fact,
[
1
2
− ρ(0)

]
ṽ(−1)+

[
1
2
+ ρ(0)

]
ṽ(1)− ṽ(0)

=
[
1
2
− ρ(0)

]
B̃+

[
1
2
+ ρ(0)

]
B

=−
[
1
2
− ρ(0)

] 1
2+ε0
8ε0

+
[
1
2
+ ρ(0)

][
ρ2(0)
1
2+ρ(0)

+
1
2−ρ(0)
1
2+ρ(0)

1
2+ε0
8ε0

]

[by (L.12)]

= ρ2(0).

This completes the proof of our claim in Step 1.

Step 2. We claim that ṽ(z) increases in z. To prove this claim, we directly verify that ṽ(·) increases on N,

as ṽ(z) is a partial sum of nonnegative terms for z ∈N according to (L.9). For all z ∈ Z−, note that

ṽ(z)− ṽ(z+1)
∏−1

m=z+1

1
2+ρ(m)
1
2−ρ(m)

=
1

∏−1

m=z+1

1
2+ρ(m)
1
2−ρ(m)

[(
−1∏

m=z+1

1
2+ρ(m)
1
2−ρ(m)

)

B̃+
−1∑

k=z+1

ρ2(k)
1
2+ρ(k)

k∏

m=z+1

1
2+ρ(m)
1
2−ρ(m)

]

= B̃+

−1∑

k=z+1

ρ2(k)
1
2+ρ(k)

−1∏

m=k+1

1
2−ρ(m)
1
2+ρ(m)

(b)

≤ B̃+

−1∑

k=−∞

ρ2(−∞)
1
2+ρ(−∞)

−1∏

m=k+1

1
2−ε0
1
2+ε0

= B̃+
1
2+ε0
8ε0

(c)
= 0,

where: (b) follows because ρ(z)≥ ε0 for all z ∈N− and the function x 7→ x2

1
2+x

increases in x when x≥ 0,

and (c) follows because B̃ =−
1
2+ε0
8ε0

by definition; see (L.12).

Step 3. We claim that ṽ(z)→∞ as z→∞ with a rate such that limsupz→∞

{
ṽ(z)

∑z
k=1 ρ(k)

}

<∞. To prove

this claim, we first note that because ρ is regular and slowly vanishing, the following three conditions hold:

1. lim infm→∞{mρ(m)}> 1
4
, because ρ is slowly vanishing.
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2. limm→∞

{(
ρ(m)

ρ(m+1)
− 1
)
m
}
∈ [0,∞] exists, because ρ is regular.

3. limm→∞{ρ(m)}= 0, because ρ is slowly vanishing.

Hence, invoking Lemma L.1 and Lemma L.3 with xn = ρ(n), we have the following for z ≥ Z+,

z−1∑

n=1

n∑

k=1

ρ2(k)
1
2−ρ(k)

n∏

m=k

1
2−ρ(m)
1
2+ρ(m)

≤ ṽ(z) =

(

1+
z−1∑

n=1

n∏

m=1

1
2−ρ(m)
1
2+ρ(m)

)

B+
z−1∑

n=1

n∑

k=1

ρ2(k)
1
2−ρ(k)

n∏

m=k

1
2−ρ(m)
1
2+ρ(m)

≤
(

1+
∞∑

n=1

n∏

m=1

1
2−ρ(m)
1
2+ρ(m)

)

B+M
z−1∑

n=1

ρ(n)

≤
(

1+
∞∑

n=1

n∏

m=1

1
2−ρ(m)
1
2+ρ(m)

)

B+M
z∑

n=1

ρ(n)

≤ Č +M
(
ρ(1)+ · · ·+ ρ(z)

)

where Č,M are finite constants independent of z. This completes the proof.
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