
Overcoming The Sample Complexity Barrier in Risk Analytics with Debiased
Learning

Abstract. We introduce a new approach for robustifying objectives involving risk measures such as Conditional

Value at Risk (CVaR) against the error introduced by “plugging-in” a model estimated from data. The proposed

estimator seeks to automatically cancel the bias introduced despite not knowing the nature of the error commit-

ted in the estimation step. Interestingly, this bias correction can be achieved without committing to a specific

distribution family and relies only on a sufficiently regular tail behaviour exhibited by a wide-variety of common

probability distributions. Under mild conditions, this debiasing exercise is shown to lead to consistent decisions

with exponentially fewer data samples than required by sample-average approximation. These findings add to

the growing body of evidence on the effectiveness of debiasing towards tackling major challenges in “estimate,

then-optimize” paradigm while optimizing under uncertainty.
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1. Problem Introduction

This work considers a novel approach to tackling the problem of insufficient data in risk analytics. Typically,

the effect of distribution tails is introduced into optimisation paradigms through the incorporation of a tail risk

measure such as Conditional value at risk (CVaR) into the problem formulation. This approach has served

as a primary vehicle for introducing risk aversion in a variety of planning and resource allocation problems in

operations research and quantitative finance (see for instance Rockafellar & Uryasev (2000), Chow et al. (2015),

McNeil et al. (2015)). For a loss `(X,θ) associated with a decision choice θ under a random realization X, let

vβ(θ) denote the (1− β)-th quantile of `(X,θ). Then its CVaR at the tail-level β ∈ (0, 1) measures the average

loss over the worst β-fraction of the realizations. Minimizing CVaR Cβ(θ) over a compact set Θ enjoys the

following variational representation

cβ = inf
u∈R,θ∈Θ

[
u+ β−1EP (`(X,θ)− u)

+
]

= inf
u∈R,θ∈Θ

f(u,θ), (1)

which is a convenient starting point for solving optimization problems.

Since (1) is rarely solvable in closed form, one often constructs a sample average approximation (SAA): given

data X1, . . . ,Xn, one instead solves

ĉβ,n = inf
u,θ

[
u+

1

nβ

n∑
i=1

(`(Xi,θ)− u)+

]
.

Large sample properties for the above SAA formulation have been extensively studied, and show that the limiting

variances scale inversely with the tail level β under consideration. Consequently at even moderate tail levels, for

practical data sizes, errors in CVaR estimation may affect the optimal decision (see Lim et al. (2011)) and data

requirements to solve (1) accurately become unreasonable (see Caccioli et al. (2018)).

One approach to overcome the above difficulty is to commit a-priori to a model for the distribution of X. In

this case, (1) may be solved through using simulation and variance reduction techniques as in Deo et al. (2022),

Barrera et al. (2015), He et al. (2021). Unfortunately, the error incurred in optimal decisions by committing to

the wrong model is often unquantifiable. Alternately, one can estimate a model for the distribution of X from

data, and plug-in the estimated model into the optimisation formulation (1) (that is solve (1) with the estimated

model P̂ rather than P ). However, in many instances, these plug-in models are estimated non-parametrically

(say using kernel density estimation), leading to poor rates of convergence of the optimisation problem with the

plugged in distribution; see Hines et al. (2022) for more details.

Our technique attempts to combat this slow rate of convergence. We systematically characterise the bias

incurred by plug-in estimation, and devise a statistical methodology to eliminate it. Our de-biased estimator

enjoys a variance that is orders of magnitude lower than SAA, as well as a bias that smaller (quantified precisely in

Theorem 3.2) than plug-in estimators. We show that under mild conditions, our estimator achieves the accuracy

guarantees obtained when the underlying distribution of X is known (that is, one can commit to the correct

model), and state of the art variance reduction techniques can be deployed. While such statistical debiaisng
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has been adopted increasingly in settings where non-parametric estimation is required (see Chernozhukov et al.

(2018), Ichimura & Newey (2022), Foster & Syrgkanis (2019) and the references therein), to the extent of our

knowledge, this is the first work which incorporates these ideas into tail risk analytics.

2. Model Assumptions and Methodology

We make the following very mild assumption on the density of X

Assumption 1.

fX(x) = exp(−ϕ(x)) where n−1ϕ(npx)→ ϕ∗(x) (2)

Assumption 1 simply means that the log of the density of X is asymptotically homogeneous and imposes a

non-restrictive tail regularity constraint. A number of practically occurring light tailed distributions satisfy this;

for a detailed list, we refer the reader to Deo & Murthy (2021). In what follows, assume for simplicity that p = 1.

Observe that in order to accurately solve (1), one needs to estimate Ψ(P ) = EP [`(X,θ)−u]+. A Taylor series

expansion of Ψ shows that (see (Hines et al. 2022, Section 4))

Ψ(P ) = Ψ(P̂ ) + EP [IF(P̂ )]. (3)

The quantity IF(P̂ ) gives the effect of an infinitesimal perturbation of P in the direction of P̂ on the value of

the functional Ψ, and is referred to as the path derivative or influence function of Ψ at P̂ . Unfortunately, using

(3) directly to compute Ψ(P ) simply results in SAA (see (Hines et al. 2022, Example 1)) and does not provide

added benefits. To this end, model information given by Assumption 1 must be leveraged in constructing a more

targeted debiased estimator.

Observe that since the density of X satisfies Assumption 1, the plug-in model P̂ may be restricted to the class

of distributions with log-homogeneous densities. Specifically, the density of P̂ may be restricted to functions of

the form fP̂ (x) = exp(−ϕ̂(x)) where ϕ̂ is a shape parameter estimated from data (under Assumption 1, one can

construct ϕ̂ to be a consistent estimator of the true shape parameter ϕ∗). One can utilise this information to

replace IF(P̂ ) by its restriction to homogeneous functions. The appropriate notion of restriction here is given by

the conditional expectation of IF(P̂ ) given the relevant model information. Let δ(P̂ ) = E[IF(P̂ ) | GHom], where

GHom is the σ-algebra generated by all homogeneous functions that satisfy EP̂ [g] = 0.

Lemma 2.1. Suppose Assumption 1 holds, and let ϕ̂ be an estimate of the tail shape. Then,

Ψ(P ) = Ψ(P̂ ) + EP [δ(P̂ )] +OP (‖ϕ̂− ϕ∗‖2). (4)

Loosely speaking, (4) is a consequence of projection and the Taylor approximation: dP/dP̂ = (1 + [ϕ̂− ϕ∗] +

O(‖ϕ̂−ϕ∗‖2)). An estimator for Ψ(P ) may now be constructed as follows (conditional on the computation of δ,

which we demonstrate shortly):

Ψdb,n(P̂ ) = Ψ(P̂ ) +
1

n

n∑
i=1

δ(Xi, P̂ ), where Xi are i.i.d. data samples. (5)

The CVaR optimisation problem may now be solved by plugging in the debiased estimator (5) into (1).

3. Key Results and Implementation

For any tail model P0, with a homogeneous shape parameter ϕ (i.e., fP0
(x) = exp(−ϕ0(x))), the projected

influence function δ(·, P0) may obtained as the solution to the projection problem:

min
EP0

[g]=0,g(rφ)=rg(φ)
EP0 [IF(P0)− g]2.

For x ∈ Rd, denote ‖x‖∞ = maxi≤d |xi| and x̂ = x/‖x‖∞.

Proposition 3.1. The efficient influence function δ(·, P0) of model with shape parameter ϕ0 is given by,

δ(x, P0) = ‖x‖∞
ζ3
(
x̂, P0

)
− µ(P0)ζ1

(
x̂, P0

)
ζ2
(
x̂, P0)

where (6)

ζ1(φ, P0) := EP0
[R | Φ = φ] , ζ2(φ, P0) := EP0

[
R2 | Φ = φ

]
, ζ3(φ, P0) := EP0

[R× IF(RΦ, P0) | Φ = φ] ,

and the constant µ(P0) := µ2(P0)/µ1(P0), with µ1(P0) := EP0
[‖X‖∞ζ1(X̂, P0)/ζ2(X̂, P0)] and µ2(P0) :=

EP0
[‖X‖∞ζ3(X̂, P0)/ζ2(X̂, P0)], and where the density of P0 is fP0

(r, φ) ∝ exp(−rϕ0(φ)).



3

1.5 1.85 2.2 2.55 2.91.5 1.85 2.2 2.55 2.91.5 1.85 2.2 2.55 2.9
-Log beta

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

%
 R

eg
re

t

 
Plug-In
De-biased
SAA - Average Regret

Figure 1. Box-plots for the errors for % regret for plug-in and debiased estimators are shown.
To compare to sample averages, we also plot the average regret incurred by sample average
approximation. In this experiment, we have used n = 50 samples to estimate the shape parameter
ϕ for the former two methods, and n = 500 samples for SAA.

The expression for the efficient influence function δ(·, P̂ ) given by Proposition 3.1 allows us to formulate an

asymptotic expansion for Ψdb(P )−Ψ(P ), in terms of the error in estimation of the shape parameter ϕ∗ and the

variance of the efficient influence function δ. This may be further utilised to give an error bound on the quality

of solution obtained by debiasing:

Theorem 3.2. Suppose Assumption 1 holds, and assume that the error in estimation of the shape parameter

‖ϕ̂−ϕ∗‖ = O(n−c(d)). Let ĉβ,n,db = infu,θ

[
u+ β−1Ψdb(P̂ )

]
. Then we have [ĉβ,n,db−cβ ] = OP (n−1/2σβ+n−2c(d)).

In particular, whenever c(d) > 1/4, we obtain a central limit theorem:
√
n[ĉβ,n,db − cβ ]⇒ N(0, σ2

β), where σ2
β = o(β−ε) for any ε > 0.

An important observation from Theorem 3.2 is that when the tail parameter ϕ∗ can estimated sufficiently well

(c(d) > 1/4), the debiased estimator converges at the canonical rate, with an error smaller than SAA. When the

convergence of ϕ̂ is slow, that is the n−2c(d) term dominates, the debiased estimator has a significantly smaller

error than its plug-in counterpart (it can be shown that in this case, the plug in would incur a bias of n−c(d)).

Table 1 offers a more detailed comparison. A key point is that when the estimated shape ϕ̂ converges to ϕ∗

sufficiently fast, the debiased estimator performs as well as the one where the distribution of X is known, and

state of the art variance reduction methods (for e.g. He et al. (2021), Deo et al. (2022)) can be deployed.

Table 1. Comparing various methods

Method Asymptotic Error Samples required for vanishing error

SAA n−1/2β−1/2 β−1

Debiased SAA, c(d) > 1/4 n−1/2σβ o(β−ε), for ε small
Model known, Importance Sampling n−1/2σβ o(β−ε), for ε small

Numerical Exploration: We consider a simple setup where `(x,θ) = θᵀx and X is exponentially distributed

with independent marginals. Figure 1 compares the relative errors in CVaR optimisation using the respective

methods. Notice that the use of debiasing helps significantly reduce out of sample errors: for instance, with

β = 3/1000, debiasing gives a relative error in the range 1− 2.4%, while the plug-in estimator gives of 4− 5%.

Conclusion: In this work, we present a novel approach to estimate tail risk measures. We leverage the theory of

semi parametric estimation to propose a debiased Sample Average Approximation based estimator for Conditional

Value at Risk Optimisation. We show the our estimator enjoys a low variance, and also incurs a bias which is

orders of magnitude smaller than the plug-in estimators widely used in practice. A simple numerical example

validates our theoretical findings.
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