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We present a general framework for robust satisficing that favors solutions for which a risk-aware objective

function would best attain an acceptable target even when the actual probability distribution deviates from

the empirical distribution. The satisficing decision maker specifies an acceptable target, or loss of optimality

compared to the empirical optimization model, as a trade off for the model’s ability to withstand greater

uncertainty. We axiomatize the decision criterion associated with robust satisficing, termed as the fragility

measure, and present its representation theorem. Focusing on Wasserstein distance measure with `1-norm, we

present tractable robust satisficing models for risk-based linear optimization, combinatorial optimization, and

linear optimization problems with recourse. Serendipitously, the insights to the approximation of the linear

optimization problems with recourse also provide a recipe for approximating solutions for hard stochastic

optimization problems without relatively complete recourse. We perform numerical studies on a portfolio

optimization problem and a network lot-sizing problem. We show that the solutions to the robust satisficing

models are more effective in improving the out-of-sample performance evaluated on a variety of metrics,

hence alleviating the Optimizer’s Curse (Smith and Winkler 2006).
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1. Introduction

“Contentment is the Greatest Wealth.” – The Buddha

Optimization under uncertainty, despite its importance and ubiquity in real-world problems, has

been a perennial difficulty in prescriptive analytics. Although empirical distribution from historical

data may be available as input to the optimization model, depending on the length of the planning

horizon, the sample size could be rather limited. For instance, for a one year worth of historical
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data, an optimization problem with a one-week planning horizon may avail to at most 52 empirical

samples, which may be insufficient for characterizing the uncertain outcomes in future weeks to

some desired accuracy. Conceivably, the problem would be aggravated in a non-stationary uncertain

environment, such as in events of pandemic, where some parts of the history may no longer be

relevant for describing future uncertainty. The aphorism in statistics,

“All models are wrong” – Box (1976)

underscores the limitation of statistical models. Despite the best statistical machinery available,

the fact remains that we are still incapable of obtaining the true distribution that Nature uses

to generate the historical samples and future ones. Hence, in real-world data-driven optimization

problems, we must live with the fact that the actual realized objective function may not neces-

sarily be the same as the objective function that the model is optimizing. In fact, if we solve an

optimization problem using an empirical distribution from a dataset and test the out-of-sample

outcome on another, we should also expect inferior results, a phenomenon observed by Smith and

Winkler (2006), who coin the term Optimizer’s Curse.

Similar bias in the model’s objective has been observed in the context of approximating stochastic

optimization problems via Sample Average Approximation (SAA) (Kleywegt et al. 2002). Stochas-

tic optimization typically assumes knowledge of the data generating model, and hence, we can

increase the accuracy of the problem simply by having more samples. In data-driven optimization,

we do not have the luxury of having an arbitrary number of samples to help us improve the precision

of the risk-aware objective function that the model is optimizing. In this paper, we are not focusing

on the tractability issues, granted that if we have sufficient samples, SAA would converge well to

the optimal solution, at least for a two-stage problem with relatively complete recourse (see, for

instance, Shapiro and Nemirovski 2005). Problems without relatively complete recourse are much

harder to solve and they are usually not discussed in the literature. In data-driven optimization,

we are more concerned with alleviating the Optimizer’s Curse, which is a more pertinent issue than

tractability because of the potential scarcity of useful data to describe future uncertainty.

To address this issue, data-driven based robust optimization models have recently been proposed

(see, for instance, Gao and Kleywegt 2016, Gao et al. 2017, Bertsimas et al. 2018a,b, Moha-

jerin Esfahani and Kuhn 2018). Instead of evaluating the risk-aware objective using the empirical

distribution, the robust optimization model evaluates the worst-case risk-aware objective over a

restricted ambiguity set of probability distributions within the vicinity of the empirical distribu-

tion. Mohajerin Esfahani and Kuhn (2018) show that with an appropriate sized ambiguity set

characterized by the Wassersetin distance metric, the ambiguity set is able to capture the true dis-

tribution with high level of confidence. If the data-generation model is known, robust optimization
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can also be used effectively to improve policies in dynamic optimization problems (see, for instance,

Sturt 2021). In practice, the size of the ambiguity set is not usually determined by the theoretical

confidence bound of containing the true distribution. Instead, if sufficient samples are available,

the size parameter determined by cross-validation techniques would provide better out-of-sample

performance.

In this paper, we introduce a new target-oriented model for robust data-driven optimization

termed as robust satisficing. The philosophical concept of robust satisficing has been discussed in

Schwartz et al. (2011), where, in contrast to utility maximization, the goal of robust satisficing

is to maximize the robustness to uncertainty of achieving a satisfactory target. Unlike robust

optimization, our robust satisficing model do not restrict distributions to an ambiguity set, but

allow Nature to take its course and, as much as possible, limit the impact of ambiguity on the risk-

aware objective should the true distribution deviates from the empirical distribution. The decision

maker specifies a target, or an acceptable loss of optimality compared to the empirical optimization

model, as a trade-off for the model’s ability to withstand greater uncertainty. As articulated by

Simon (1959), target satisficing, as opposed to utility maximizing, is prevalent in human decision

making, especially in complex situations facing risks and uncertainty (see, e.g, Mao 1970, Chen

and Tang 2019). Hence, we believe that articulating preference for robustness from a target-driven

perspective is also more interpretable for the decision maker, and may well apply in situations

when data availability is limited for cross validation.

We axiomatize the decision criterion associated with the robust satisficing model, termed as the

fragility measure, which relates to the maximum level of model infeasibility that may occur relative

to the magnitude of deviation from the empirical distribution. A fragility measure satisfies the

properties of monotonicity, positive homogeneity, subadditivity, pro-robustness, and anti-fragility

and it belongs to a class of satisficing measures (Brown and Sim 2009, Brown et al. 2012). We

provide a representation theorem and connect with known satisficing measures in the literature

including the riskiness index of Aumann and Serrano (2008). Fragility measure is related to con-

vex measure of risks characterized by Follmer and Schied (2004), among others. Ben-Tal et al.

(2006) have explored the non-stochastic version of convex risk measure, which they term as com-

prehensive robust optimization or more recently as globalized robust optimization by Ben-Tal et al.

(2017). Incidentally, to provide the parameters of the globalized robust optimization model, Ben-

Tal et al. (2017) introduce a GRC-sum model, which coincides with our robust satisficing model

under Wasserstein distance measure for the case of only one sample.

Focusing on Wasserstein distance measure with `1-norm, we present tractable robust satisfic-

ing models for risk-based linear optimization, combinatorial optimization, and linear optimization

problems with recourse. Interestingly, the insights to the approximation of the linear optimization
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problems with recourse also provide a recipe for solving hard stochastic optimization problems

approximately. In our computational study, we illustrate in a portfolio optimization problem and

a network lot-sizing problem on how we can set targets in the robust satisficing model, which can

be more intuitive and effective than specifying the hyper-parameter used in a robust optimization

model. The numerical studies show that the solutions to the robust satisficing models are more

effective in alleviating the Optimizer’s Curse, and they yield solutions with superior out-of-sample

performance when evaluated on a variety of metrics.

Notation. We use boldface lowercase letters for vectors (e.g., θ), and calligraphic letters for sets

(e.g., X ). We use [N ] to denote the running index {1,2,3, . . . ,N} for N a known integer. We

adopt the convention that inf ∅= +∞, where ∅ is the empty set. A random variable ṽ is denoted

with a tilde sign such as ṽ ∼ P,P ∈ P0, where P0 to represent the set of all possible distributions.

For ṽ1, ṽ2, we use ṽ1 ≥ ṽ2 to imply ṽ1 state-wise dominates ṽ2, i.e., P[ṽ1 ≥ ṽ2] = 1 for all P ∈ P0.

For a multivariate random variable, we use P0(Z) to represent the set of all distributions for the

multivariate random variable that has support Z ⊆ RN . Specifically, we use z̃ ∼ P, P ∈ P0(Z) to

define z̃ as a multivariate random variable with support Z and distribution P. We use EP [ṽ] to

denote expectation of a random variable, ṽ∼ P over its distribution.

2. Data-driven Optimization Models

We consider an optimization problem with decision variable x∈X , and objective function f(x,z) :

X × Z 7→ R, where the input to the second argument is subject to uncertainty. The uncertain

parameters of the problem are collectively denoted by the random variable z̃ over the support

Z ⊆RN , which is generally convex and bounded. Ideally, we should solve the following risk-neutral

optimization problem,

Z∗ = min EP∗ [f(x, z̃)]

s.t. x∈X ,
(1)

where P∗ ∈ P0(Z), z̃ ∼ P∗ is the true distribution that characterizes future outcomes. In manage-

ment decision problems, it is ubiquitous to consider risk-neural objective function, though we can

also consider other common risk-aware criteria such as optimized certainty equivalent of Ben-Tal

and Teboulle (2007) and expected utilities.

Empirical optimization

In practice, we generally do not know P∗, though we have some information on how the uncertain

parameters have evolved from historical records. Let P̂ ∈ P0(Z) denote the empirical distribution

constructed from historical data, i.e., P̂ [z̃ = ẑs] = 1/S and ẑs ∈RN represents a realized data record

under scenario s∈ [S]. We first consider the following empirical optimization problem,

Z0 = min EP̂ [f(x, z̃)]

s.t. x∈X .
(2)
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Here, we distinguish the empirical optimization problem from the stochastic optimization model,

although they coincide when the empirical distribution is the same as the true distribution. In

practice, we would not know the true distribution P∗ ∈ P0(Z) and the distribution P† ∈ P0(Z)

used in stochastic optimization is restricted to a particular family whose parameters are estimated

from historical data, e.g., the empirical distribution, P̂ ∈ P0(Z). For example, if the distribution

is restricted to the Gaussian family, then P† = N (µ̂, Σ̂), where the mean µ̂ and the covariance

matrix Σ̂ are estimated from the historical data. Stochastic optimization solves for the following

optimization problem

Z† = min EP† [f(x, z̃)]

s.t. x∈X ,
(3)

which does not necessarily yield the optimal risk-aware objective value, since the true distribution

P∗ would likely deviate from P†. Nevertheless, the benefit of stochastic optimization is the ability

of leveraging advanced statistical tools to determine P† so that the true distribution P∗ would be

statistically closer to P† than to the empirical distribution P̂. Nevertheless, in the special case where

f(x,z) is an affine function of z, and EP† [z̃] =EP̂ [z̃] = µ̂, then the empirical optimization problem

would coincide with the stochastic optimization model.

Unlike the empirical optimization problem, it may be significantly harder to evaluate the risk-

aware objective function in stochastic optimization (see, for example, Nemirovski and Shapiro 2007,

Hanasusanto et al. 2016). Nevertheless, for many practical problems, stochastic optimization can

be well approximated via Sample Average Approximation (SAA), which is the same format as the

empirical optimization problem, though we can arbitrarily increase the number of samples gener-

ated from the assumed distribution P† in stochastic optimization to improve the approximation.

The Optimizer’s Curse

It has well been known that solving the optimization model with the empirical distribution may

yield solutions that perform poorly against the true distribution (see, for instance, Smith and Win-

kler 2006, Kleywegt et al. 2002). To see this, let P∗ represent the true data generating distribution

for which the empirical distribution is obtained, i.e., z̃s ∼ P∗, s ∈ [S]. The empirical optimization

problem would yield a random objective function as follows

Z0(z̃1, . . . , z̃S) = min
x∈X

1

S

∑
s∈[S]

f(x, z̃s).

Denote PS as the joint distribution of z̃1, . . . , z̃S. Note that for any x∈X , observe that

EPS [Z0(z̃1, . . . , z̃S)]≤EPS

 1

S

∑
s∈[S]

f(x, z̃s)

=
1

S

∑
s∈[S]

EP∗ [f(x, z̃s)] =EP∗ [f(x, z̃)] .
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Hence,

EPS [Z0(z̃1, . . . , z̃S)]≤min
x∈X

EP∗ [f(x, z̃)] ,

though the gap may diminish with larger number of samples (see Shapiro and Nemirovski 2005).

Nevertheless, under limited availability of data, the expected model’s objective value may be sig-

nificantly biased, reflecting an over-optimistic objective value that would never be attainable at

all under the true distribution. As the Optimizer’s Curse (Smith and Winkler 2006) states, the

objective function reflected by the empirical optimization problem is unreliable, and we expect the

actual outcome to be worse off.

Robust optimization

To address this issue, robust optimization aims to reduce over-fitting to the historical dataset by

featuring a probability-distance-based ambiguity set of possible distributions, B(r), defined as

B(r) :=

P∈P0(Z)

∣∣∣∣∣∣ z̃ ∼ P

∆(P, P̂)≤ r

 ,

where ∆(P, P̂) is a probability distance of the actual distribution P from the empirical distribution

P̂ as defined in the following.

Definition 1 (probability distance function). A probability distance function, ∆(P, P̂)

is a nonnegative function on the domain of probability distributions such that ∆(P, P̂) = 0 if P= P̂.

The parameter r controls the size of ambiguity set by limiting the probability distance that

can deviates from the empirical distribution. Under this definition, the probability-distance-based

ambiguity sets would include φ-divergence (Pardo 2006, Ben-Tal et al. 2013, Gotoh et al. 2020, 2018)

and Wasserstein metric, also known as Kantorovich–Rubinstein metric (Gao and Kleywegt 2016,

Mohajerin Esfahani and Kuhn 2018). The choice of ambiguity sets varies in different applications.

In data-driven optimization, a popular ambiguity set is constructed via the Wasserstein metric (of

type-1), defined as follows:

∆W (P, P̂) := inf
Q∈P0(Z2)

{
EQ [‖z̃− ṽ‖]

∣∣∣ (z̃, ṽ)∼Q, z̃ ∼ P, ṽ∼ P̂
}
.

For a fixed size, r, the data-driven robust optimization model can be written as the following:

Zr = min sup
P∈B(r)

EP [f(x, z̃)]

s.t. x∈X .
(4)
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Under the Wasserstein metric and assuming that Z is convex and closed, the above robust opti-

mization model admits an equivalent robust optimization formulation (Mohajerin Esfahani and

Kuhn 2018):

Zr = min kr+
1

S

∑
s∈[S]

ys

s.t. ys ≥ sup
zs∈Z
{f(x,zs)− k‖zs− ẑs‖} ∀s∈ [S]

x∈X , k≥ 0.

(5)

It has well been known that if f(x,z) can be expressed as the maximum of a finite set of tractable

saddle functions, i.e, functions that are convex in x and concave in z, then Problem (5) can also be

expressed as a concise convex optimization problem via their convex conjugate functions, support

function of Z and the dual norm of ‖·‖ (see, for instance, Ben-Tal et al. 2015). Mohajerin Esfahani

and Kuhn (2018) provide the following explicit example.

Proposition 1. (Mohajerin Esfahani and Kuhn 2018). Suppose the support set is a poly-

hedral set given by Z = {z ∈ RN | Cz ≤ h}, the data-driven robust optimization model (5) with

f(x,z) := maxi∈[I]{aix>z+ bi} admits the following equivalent reformulation:

min kr+
1

S

∑
s∈[S]

ys

s.t. ys ≥ aix>ẑs + bi +η>ish−η>isCẑs, ∀i∈ [I], s∈ [S]

k≥ ‖aix−C>ηis‖∗, ∀i∈ [I], s∈ [S]

ηis ≥ 0 ∀i∈ [I], s∈ [S]

x∈X .

Incidentally, if S = 1 and f(x,z) is a saddle function, then by Sion et al. (1958) minmax principle,

Problem (5) becomes the classical stochastic-free robust optimization problem

Zr = min max
z∈U(r)

f(x,z)

s.t. x∈X

where U(r) is a norm-based uncertainty set given by

U(r) = {z ∈Z | ‖z− ẑ‖ ≤ r} ,

for some nominal value ẑ. This is a very well studied problem in the literature of robust optimization

(see, Bertsimas and Sim 2004, Ben-Tal and Nemirovski 1998, Ben-Tal et al. 2015, among others).

The rationale of solving robust optimization model is when the true distribution P∗ lies within

the ambiguity set B(r), then

min
x∈X

EP∗ [f(x, z̃)]≤Zr,
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so that Zr reflects an objective value that is at least achievable under the true probability distribu-

tion P∗. Hence, for an adequately chosen parameter, r, the decision maker can expect the solution

to attain an objective value that is at least as good as the robust optimization objective value, Zr.

However, if r is too large, then Zr may deviate too far from the attainable objective. Therefore,

the performance critically depends on the size parameter r, which may not be easy to interpret

and specify by the decision maker. Without other assumptions on the underlying uncertainty, it is

usually not intuitive for the decision maker to pin down the value of r for the robust optimization

problem. Apart from computational tractability reasons, the consideration of the Wassterstein-

based ambiguity set is also motivated by how we could relate r to some confidence guarantees that

the true distribution, P∗ would be contained within the ambiguity set, B(r). Fournier and Guillin

(2015) provides such an estimate in the following result.

Theorem 1. (Fournier and Guillin 2015). Suppose the true data-generating distribution P∗,

z̃ ∼ P∗ is a light-tailed distribution such that

δ :=EP∗ [exp(‖z̃‖α)]<∞

for some α > 1 and PS is the distribution that governs the distribution of independent samples

ẑ1, . . . , ẑS drawn from P∗. Then

PS
[
∆W (P∗, P̂)> r

]
≤

{
c1 exp(−c2Sr

max{N,2}) if 0< r≤ 1,

c1 exp(−c2Sr
α) if r > 1,

for some positive constants, c1 and c2 that only depend on α, δ, and N .

The bound shows intuitively that as the Wasserstein ambiguity set need not be too large to ensure

with high confidence that the true probability distribution P∗ is contained within it. In data-driven

optimization, S is fixed, the parameters are hard to estimate and the generic probabilistic bound

is expected to be loose. Hence, the bound is typically not used in practice to determine a desired

value of r. Instead, the parameter r is a hyper-parameter that is determined via cross-validation,

which may be difficult to perform if we only have a small data set.

Robust Satisficing

We now present an alternative model, which we call the robust satisficing model,

κτ = min k

s.t. EP [f(x, z̃)]− τ ≤ k∆(P, P̂) ∀P∈P0(Z)

x∈X , k≥ 0,

(6)

where τ ≥Z0 represents a targeted level of cost, or an acceptable loss of optimality relative to the

empirical optimization model. Since the actual distribution P∗ ∈P0(Z) is unknown and may deviate
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from P̂, we do not expect the actual objective Z0 to be achievable. Having a target higher than Z0,

provides more leeway to improve the robustness of the model. A violation from the desired target

level occurs whenever EP [f(x,z)]> τ . As in the case of robust optimization models, the choice of

the probability distance function depends on, among other things, how we could efficiently optimize

the robust counterparts and, more importantly, how well the solutions would perform in empirical

tests. Intuitively, the robust satisficing model minimizes the fragility of the system. Specifically,

the fragility of the system is measured by the worst-case (over all possible distributions P∈P0(Z))

magnitude of expected target violation under a distribution normalized by the statistical distance

of this distribution from P̂. The optimal proportionality factor κτ effectively describes the level of

fragility of the model. As κτ decreases in value, a lower magnitude of expected target violation

could occur under any distribution.

Unlike robust optimization, the robust satisficing model considers all possible distributions in

P0(Z), while controlling the level of expected target violation under any distribution relative to

the distance of this distribution from P̂. In other words, a larger level of expected target violation

can be accepted when the distribution is further away from the empirical distribution P̂. Observe

that the constraint of Problem (6) implies τ ≥ EP̂ [f(x, z̃)], ensuring that the cost function will

meet the desired target over the empirical distribution.

An important difference from the robust optimization model is that the decision maker specifies

the parameter τ , as opposed to setting the size of the ambiguity set r for the robust optimization

model. The input parameter τ , τ ≥ Z0, is directly related to the objective value of the model the

decision maker is addressing, and it can be interpreted as the target objective that she is willing to

accept, relative to a reference, e.g., the empirical optimization problem’s objective, Z0. The model

will then determine the most robust solution which also achieves the target objective. In practice,

one may directly specify the proportionality factor τ/Z0, naturally leading to a consistent range of

model parameters in different model settings and applications. While one may argue that target

τ is hard to specify, it should at least be more tangible and intuitive to specify compared to the

parameter r used in the robust optimization problem (4). In the presence of sufficient data, we can

also determine τ using cross-validation technique.

We emphasize that the robust satisficing model should not be misconstrued as a relaxation of

robust optimization. For instance, when τ =Zr, the robust constraint in Problem (4) indicates

EP [f(x, z̃)]− τ ≤ 0 ∀P∈B(r)

EP [f(x, z̃)]− τ ≤+∞ ∀P∈P0(Z)\B(r),

while the robust satisficing constraint in Problem (6) implies that

EP [f(x, z̃)]− τ ≤ κτ∆(P, P̂) ∀P∈B(r)

EP [f(x, z̃)]− τ ≤ κτ∆(P, P̂) ∀P∈P0(Z)\B(r).
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Hence, while the robust satisficing model accepts some additional losses when P ∈ B(r), it can

safeguard more severe losses when P∈P0(Z)\B(r).

Similar to data-driven robust optimization models, we will mainly focus on using the Wasserstein

probability distance, though in Section 3, we demonstrate that a robust satisficing model can

be systematically defined using other probability distance functions. Having Wasserstein distance

enables us to incorporate available data in the form of empirical distribution and, in many useful

instances, formulate the robust satisficing problem as a tractable linear optimization problem.

Moreover, unlike probability distance measures such as φ-divergence, the Wasserstein distance does

not require the distribution in P0(Z) to be absolutely continuous with respect to the empirical

distribution, P̂. In our model, the robust satisficing constraint

EP [f(x, z̃)]− τ ≤ k∆(P, P̂) ∀P∈P0(Z)

restricts the violation of target τ for all possible distributions on the support Z. If we chose ∆

as the φ-divergence, then ∆(P, P̂) is only well defined for P that is absolutely continuous with

respect to P̂. Hence, we provide no performance guarantee if the true distribution is not absolutely

continuous with respect to P̂. The empirical distribution P̂ is discrete and only takes S possible

scenarios; hence, the set of distributions that are absolutely continuous with respect to P̂ could be

rather limited. As we will show in Proposition 3, the choice of Wasserstein distance in the robust

satisficing model can lead to promising statistical guarantee on the probability of target violation

for all distributions on support set Z.

Although we focus on the Wasserstein distance, we acknowledge that there are problem instances

where other probability distance functions may provide more computationally tractable models

than over Wasserstein distance. For instance, when the reference distribution P̂ is associated with a

collection of independently distributed random variables, then the KL-divergence may sometimes

lead to tractable models. Under the KL-divergence, the fragility measure relates to the riskiness

index (Aumann and Serrano 2008), which has been utilized in many recent works (see e.g., Hall

et al. 2015, Jaillet et al. 2016). In those problem settings, Wasserstein distance would not provide

a tractable optimization because of the exponential sample space.

Observe that the corresponding robust satisficing problem (6) under Wasserstein metric ∆W can

be equivalently written as

κτ = min k

s.t. EQ [f(x, z̃)]− τ ≤ kEQ [‖z̃− ũ‖] ∀Q∈Q

x∈X , k≥ 0,

(7)
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where the ambiguity set of the joint distribution is defined as

Q :=

Q∈P0(Z2)

∣∣∣∣∣∣ (z̃, ũ)∼Q

Q [ũ= ẑs] = 1/S,∀s∈ [S]

 . (8)

When the support set Z is convex and closed, this model admits the following equivalent robust

optimization reformulation:

κτ = min k

s.t.
1

S

∑
s∈[S]

ys ≤ τ

ys ≥ sup
zs∈Z
{f(x,zs)− k‖zs− ẑs‖} ∀s∈ [S]

x∈X , k≥ 0.

(9)

which is remarkably similar to Problem (5), and both models have similar tractable reformulation

if f(x,z) can be expressed as the maximum of a finite set of tractable saddle functions. As a

comparison with Proposition 1, we have the following result.

Proposition 2. Suppose the support set is a polyhedral set Z = {z ∈RN | Cz ≤h}, the robust

satisficing model (7) with f(x,z) := maxi∈[I]{aix>z+ bi} admits the following equivalent reformu-

lation:
min k

s.t.
1

S

∑
s∈[S]

ys ≤ τ

ys ≥ aix>ẑs + bi +η>ish−η>isCẑs ∀s∈ [S], i∈ [I]

k≥ ‖aix−C>ηis‖∗ ∀s∈ [S], i∈ [I]

ηis ≥ 0 ∀s∈ [S], i∈ [I]

x∈X , k≥ 0.

As the consequence of Theorem 1, we can formalize the confidence range of target attainment

that can be associated with the objective of the robust satisficing problem as follows.

Proposition 3. Under the same assumption as in Theorem 1, let x and k be feasible in Problem

(7), then

PS [EP∗ [f (x, z̃)]> τ + kr]≤

{
c1 exp(−c2Sr

max{N,2}) if 0< r≤ 1,

c1 exp(−c2Sr
α) if r > 1,

for some positive constants, c1 and c2 that only depend on α, δ, and N .

Therefore, the solution of the robust satisficing problem ensures a high confidence that the true

risk neutral objective function is within kr from the specified target, such that the probability of

exceeding the confidence range decreases exponentially in r. Hence, regardless of the parameters
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c1, c2, α and δ, the highest level of robustness is consistent with having the lowest possible k, which

is what the robust satisficing model aims to minimize.

We can also extend the framework of robust satisficing to address I multiple risk-based objectives

in meeting their desired targets as follows

min w>k

s.t. EP [fi(x, z̃)]− τi ≤ ki∆(P, P̂) ∀P∈P0(Z), i∈ [I]

x∈X , k≥ 0,

(10)

for some chosen weights parameters wi, i∈ [I]. Note that an equivalent model based on the frame-

work of data-driven robust optimization may require the modeler to fiddle with the sizes of dif-

ferent ambiguity sets to obtain the desired performance, which may be more difficult to do so via

cross-validation. Alternatively, we may adopt the data-driven joint chance-constrained optimiza-

tion modeling framework proposed by Chen et al. (2018) and Xie (2019), but this would result in

non-convex optimization models that are less computationally scalable.

On stochastic-free robust optimization and Pareto efficiency

Consider the following stochastic-free robust optimization problem,

Zr = min max
z∈U(r)

f(x,z)

s.t. x∈X

where U(r) is a norm-based uncertainty set given by

U(r) = {z ∈Z | ‖z− ẑ‖ ≤ r} ,

for some nominal value ẑ. The corresponding stochastic-free robust satisficing model is given by

min k

s.t. f(x,z)≤ τ + k‖z− ẑ‖ ∀z ∈Z

x∈X , k≥ 0,

which coincides with Problem (9) at S = 1 and is a special case of the GRC-sum model of Ben-Tal

et al. (2017).

Iancu and Trichakis (2014) observe a major drawback in classical stochastic-free robust optimiza-

tion models in the potential lack of Pareto optimality in their solutions. Although the corresponding

robust satisficing model does not directly address the Pareto optimality issue, in some cases, it

could improve the Pareto efficiency compared to the robust optimization model. We illustrate this

using the following robust knapsack problem.
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Example 1 (A knapsack problem). We consider a stochastic-free robust continuous knap-

sack problem as follows

max
∑
i∈[M ]

xi

s.t. z>x≤M ∀z ∈ U(r)

x∈ [0,1]N ,

with N >M , N,M ∈N and the norm-based uncertainty set is defined as

U(r) =
{
z ∈ [0,1]N | ‖z‖1 ≤ r

}
.

Observe that there would be multiple optimal solutions to the above problem whenever r ≤M ,

with x∗i = 1 for all i ∈ [M ], though the solution with xi = 0 for all i ∈ [N ]\[M ] would be the most

preferred optimal solution since, in which case, the knapsack constraint will always be feasible for

all z ∈Z.

Now, consider the corresponding robust satisficing model:

min k

s.t. z>x≤M + k‖z‖1 ∀z ∈ [0,1]N∑
i∈[M ]

xi ≥ τ

x∈ [0,1]N , k≥ 0.

The robust satisficing model would not suffer from a similar degeneracy issue. For any τ ≤M , the

optimal solution to the robust satisficing model must satisfy that xi = 0 for i∈ [N ]\[M ], eliminating

the degenerate solutions that are indifferent in the robust optimization framework.

The improvement achieved by the robust satisficing model is not merely because that the robust

satisficing model can lead to more Pareto efficient solutions. In general, the family of solutions

of the robust satisficing model is different from the family of solutions of the robust optimization

model, and the robust satisficing solutions may better protect the system. We illustrate this in the

following lot-sizing example with emergency fulfilment.

Example 2 (Lot-sizing with emergency fulfilment). We consider a simple robust lot-

sizing problem with unit ordering cost and the emergency fulfilment cost being twice the normal

ordering cost as follows:

Zr = min
∑
i∈[N ]

xi + max
z∈U(r)

∑
i∈[N ]

2max{zi−xi,0}


s.t. x≥ 0,

Electronic copy available at: https://ssrn.com/abstract=3478930



Long, Sim, and Zhou: Robust Satisficing

14

where x is the here-and-now ordering decision and the second stage cost is associated with the

emergency fulfilment after the true demand z is realized. We consider N locations and the support

set of demands is given by Z = [0, d]N , and the norm-based uncertainty set U(r) is given by

U(r) = {z ∈Z | ‖z‖1 ≤ r} .

The robust optimization approach could result in inadequate protection, which is caused by the

nature of the uncertainty set rather than by its Pareto inefficiency.

Proposition 4. For any r ≤ d dN/2− 1e, the optimal here-and-now ordering quantity to the

robust lot-sizing problem is zero.

For a concrete example, consider the case of d≥ r > 0 and the uncertainty set U(r) is a simplex.

In the worst case, the demand of r would only occur at one location. If we commit to a here-and-

now ordering of r units of inventory at any location, the worst case demand would occur at another

location. Hence, the unique robustly optimal solution is to order nothing in the first stage, i.e.,

x= 0, resulting in far higher emergency fulfilment costs.

Now, let us focus on the robust satisficing network lot-sizing problem:

κτ = min k

s.t.
∑
i∈[N ]

xi +
∑
i∈[N ]

2max{zi−xi,0} ≤ τ + k‖z‖1 ∀z ∈Z

x≥ 0, k≥ 0.

Observe that Z0 = 0 and Z∞ =Nd.

Proposition 5. For any τ ∈ (0,Nd], the optimal here-and-now ordering decision to the above

robust satisficing lot-sizing problem with emergency fulfilment is non-zero.

By Proposition 5, the robust satisficing model would prefer to fully utilize the cost budget to

order inventory here-and-now and allocate the inventory in a diversified manner. Specifically, the

robust satisficing model would not commit to the no-ordering solution, i.e., x= 0. In our simulation

study, we observe that the family of optimal solutions of the robust satisficing model could often

yield a better efficient frontier.

As we illustrate above, robust satisficing model leads to a different family of solutions from

the robust optimization model. In the two simple examples, the solutions attained by the robust

satisficing model could improve Pareto efficiency and provide a better protection to a certain extent

compared to the robust optimization model. In the simulation study, we would investigate the

model performance more carefully and elucidate that solutions attained by the robust satisficing

model remains efficient in complex problems.
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3. Fragility Measure

Note that the decision criterion of robust optimization belongs to a class of coherent risk measures

of Artzner et al. (1999) and has a set of salient properties. It is desired that the decision criterion

associated with the robust satisficing model should also be characterized. We now justify the

decision criterion associated with the robust satisficing model, which we call the fragility measure,

by laying out some reasonable properties or axioms the criterion is based on. As we will reveal, the

fragility measure belongs to a class of satisficing measures proposed by Brown and Sim (2009). Let

(Ω,F) be a measurable space with σ-algebra F . The empirical probability distribution is given by

P̂, P̂∈P0. Denote L as the space of measurable real-valued functions under all distributions in P0

and let ṽ ∈ L be the random variable representing uncertain outcomes of f(x, z̃)− τ with a fixed

x.

Definition 2 (Fragility Measure). The functional ρ : L 7→ [0,+∞] is a fragility measure

associated with the probability distribution P̂∈P0 if and only if it has the following representation

ρ(ṽ) = min k

s.t. EP [ṽ]≤ k∆(P, P̂) ∀P∈P0

k≥ 0,

(11)

for some probability distance function ∆.

With this definition, Problem (6) is equivalent to

min ρ(f(x, z̃)− τ)

s.t. x∈X ,
(12)

and the more general multiple risk-based objective Problem (10) is equivalent to

min
∑
i∈[I]

wiρ(fi(x, z̃)− τi)

s.t. x∈X .
(13)

We next show that the fragility measure is associated with the salient properties that are con-

sistent with coherent decision making for reducing fragility of the solution and attaining model’s

robustness, while ensuring tractability of the problem when the criterion is to be minimized.

Theorem 2 (Axioms of Fragility Measure). A fragility measure associated with the proba-

bility distribution P̂ ∈ P0 is a lower semi-continuous functional ρ : L 7→ [0,+∞] that satisfies the

following properties:

1. Monotonicity: If P [ṽ1 ≥ ṽ2] = 1 for all P∈P0, then ρ(ṽ1)≥ ρ(ṽ2).

2. Positive homogeneity: For any λ≥ 0, we have ρ(λṽ) = λρ(ṽ).

3. Subadditivity: ρ (ṽ1 + ṽ2)≤ ρ(ṽ1) + ρ(ṽ2).
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4. Pro-robustness: If ṽ≤ 0, then ρ(ṽ) = 0.

5. Anti-fragility: If EP̂ [ṽ]> 0, then ρ(ṽ) =∞.

Under additional technical conditions on L (see Theorem 6 in Follmer and Schied 2002), the

probability distance ∆ associated with ρ can be expressed as

∆(P, P̂) = sup
ṽ∈L
{EP [ṽ] | ρ (ṽ)≤ 1} . (14)

We remark that parts of the technical conditions include restricting L to a space of bounded

measurable real-valued functions under all distributions in P0. Such an assumption is common in

the literature to obtain a useful representation theorem, though it would also rule out the random

variable f(x, z̃), z̃ ∼ P, P ∈ P0(Z) for a support Z with which supz∈Z f(x,z) =∞. As in the

representation of convex risk measures, there are also other technical conditions needed to ensure

that the underlying separation theorem would go through. For further information on the analysis,

we refer interested readers to Follmer and Schied (2002) and the references therein.

The first three properties of the fragility measures coincide with three out of the four axioms

of coherent risk measures of by Artzner et al. (1999). The monotonicity property requires that if

the uncertain outcomes of the model’s constraint are never smaller in values in the direction of

infeasibility compared to another random variable for all scenarios, then its fragility measure should

not reflect a lower value than the other. Positive homogeneity property dictates that the fragility

measure scales accordingly with the underlying uncertainty. Likewise, the property of subadditivity

is synonymous with the preference for risk pooling, which is associated with uncertainty aversion. It

implies that the collective fragility measure of the combined uncertainty in meeting one aggregate

constraint should be smaller than the sum of the fragility measures if the feasibility of the uncertain

constraints are considered separately. Incidentally, positive homogeneity and subadditivity imply

convexity (Follmer and Schied 2004), which is also an important precursor to obtaining a tractable

optimization model when the fragility measure is to be minimized.

The pro-robustness property asserts that if the model’s constraint is always feasible, then the

corresponding fragility measure should be the lowest value at zero. The anti-fragility property

ensures that any solution with finite fragility measure would also be feasible in the model’s con-

straint under the empirical distribution, i.e., EP̂ [ṽ]≤ 0. These two properties would rule out any

monetary risk measure as a candidate for fragility measure, since they would violate the translation

invariance property (see Definition 3).

Theorem 2 shows that any metric that satisfies the salient properties is a fragility measure, even

though it may not have the same explicit probability-distance-based representation. Note that the

fragility measure belongs to the class of satisficing measures of Brown and Sim (2009). Similar

to the satisficing measures, the fragility measure has a risk-based representation via normalized

convex risk measure.
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Definition 3. A normalized convex risk measure is a lower semi-continuous functional µ :L 7→

R, that satisfies the following properties:

1. Monotonicity: If P [ṽ1 ≥ ṽ2] = 1 for all P∈P0, then µ(ṽ1)≥ µ(ṽ2).

2. Translation invariance: For any a∈R, µ(ṽ+ a) = µ(ṽ) + a.

3. Convexity: For any λ∈ [0,1], µ(λṽ1 + (1−λ)ṽ2)≤ λµ(ṽ1) + (1−λ)µ(ṽ2).

4. Normalization: µ(0) = 0.

Proposition 6 (Risk-based Representation). The functional ρ : L 7→ [0,+∞] is a fragility

measure associated with the probability distribution P̂∈P0 if and only if there exists some normal-

ized convex risk measure µ :L 7→R, satisfying

µ(ṽ)≥EP̂ [ṽ] ∀ṽ ∈L, (15)

such that

ρ(ṽ) = inf {k > 0 | kµ(ṽ/k)≤ 0} .

Note that the property associated with the inequality (15) is implied for convex risk measures

that are law-invariant under P̂ (see Follmer and Schied 2004). Proposition 6 implies that apart from

its probability-distance-based representation, we can also construct a fragility measure using convex

risk measure, which is well studied in the literature (see, e.g., Follmer and Schied 2002, 2004).

Some specific examples of fragility measure include the riskiness index of Aumann and Serrano

(2008) and the essential riskiness index of Zhang et al. (2019). We note that several different robust

satisficing models have already been introduced in the literature, including, Zhang et al. (2019),

where a sum of essential riskiness indices is minimized and Chen et al. (2015), where a weighted

sum of riskiness indices are minimized.

As we discussed previously, we focus on the data-driven setting and the robust satisficing prob-

lem would incorporate available data in the from of empirical distribution. In the following, we

present several robust satisficing models under the Wasserstein distance in the context of common

management decision problems.

4. Risk-based Linear Optimization

To motivate a tractable risk-based linear optimization model, we first consider an uncertain linear

optimization problem, for instance in the context of production planning as follows:

max c(z̃)>x

s.t. ai(z̃)>x≤ bi(z̃) ∀i∈ [I]

x≥ 0,

(16)
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where the uncertain parameter aij(z̃) denotes the number of units of ith resource needed to produce

a unit of the jth item, bi(z̃) represents the quantity of the ith resource available for production, and

cj(z̃) is the uncertainty in profit associated with selling a unit of the jth item. These parameters

are affinely depend on some exogenous uncertainty z ∈Z:

ai(z) = ai,0 +
∑
n∈[N ]

ai,nzn = ai,0 +Aiz ∀i∈ [I]

bi(z) = bi,0 +
∑
n∈[N ]

bi,nzn = bi,0 + b>i z ∀i∈ [I]

c(z) = c0 +
∑
n∈[N ]

cnzn = c0 +Cz.

In such representation, we typically normalize the support set to a regular box Z = [−1,1] (see

Bertsimas and Sim 2004), though the results can easily be extended to other polyhedron. The model

determines the optimal profit maximizing decision x, subject to the feasibility of the constraints

under uncertainty. Since z̃ is uncertain, Problem (16) is not well defined. In a chance constrained

programming model (Charnes and Cooper 1959), violations of constraints may be tolerated without

impacting the objective function, as long as their risks are within an acceptable limit specified

by the decision maker. Under the empirical distribution, the chance-constrained programming

problem can be expressed as a mixed-integer optimization problem, which can be computationally

challenging to solve.

To obtain a tractable empirical optimization model that incorporate risk awareness in the objec-

tive function, as well as to the violation of constraints, we consider the following empirical risk-based

linear optimization problem,

Z0 = max −Cε0P̂ [−c(z̃)>x]

s.t. CεiP̂ [ai(z̃)>x− bi(z̃)]≤ 0 ∀i∈ [I]

x≥ 0,

(17)

where CεP [ṽ] denotes the Conditional Value-at-Risk (CVaR) of the random variable ṽ, denoting

uncertain in costs, shortfalls or losses, at level 1− ε evaluated under a given distribution ṽ ∼ P

given by

CεP [ṽ] := inf
α∈R

α+
1

ε
EP
[
(ṽ−α)+

]
.

In finance, CVaR, also known as expected shortfall, quantifies the average loss over a specified time

period of unlikely scenarios beyond the 1− ε confidence level (Rockafellar and Uryasev 2002). For

example, with ε= 0.05, a one-day CVaR of $1 million means that the expected loss of the worst

5% scenarios over a one-day period is $1 million. Hence, with ε= 1, the CVaR criterion reduces

to C1
P [ṽ] = EP [ṽ] and recovers the risk-neutral case. CVaR is a well known convex risk measure
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and the safeguarding constraints in Problem (17) would satisfy the following individual chance

constraints

P̂
[
ai(z̃)>x≤ bi(z̃)

]
≥ 1− ε ∀i∈ [I],

which are nonlinear and non-convex constraints, and hence harder to incorporate in data-driven

optimization models (see Luedtke et al. 2010). In contrast, Problem (17) is equivalent to the

following linear optimization problem

Z0 = max −t

s.t. αi +
1

Sεi

∑
s∈[S]

yis ≤ 0 ∀i∈ [I]

yis ≥ ai(ẑs)>x− bi(ẑs)−αi ∀i∈ [I], s∈ [S]

α0 +
1

Sε0

∑
s∈[S]

y0s ≤ t

y0s ≥−c(ẑs)>x−α0 ∀s∈ [S]

x≥ 0

αi ∈R, yis ≥ 0 ∀i∈ [I]∪{0}, s∈ [S].

Given that the true distribution may deviate from the empirical distribution, it is very likely

that empirical optimization model may under estimate the underlying risks associated with the

model in order to achieve an unattainable risk-adjusted profit. For some acceptable decrease in

the target risk adjusted profit over the empirical optimization model, i.e., τ <Z0, we consider the

following robust satisficing model,

κ0 = min
∑

i∈[I]∪{0}

wiki

s.t. αi +
1

εi
EP
[
(ai(z̃)>x− bi(z̃)−αi)+

]
≤ ki∆W (P, P̂) ∀i∈ [I],P∈P0(Z)

α0 +
1

ε0
EP
[
(−c(z̃)>x−α0)+

]
+ τ ≤ k0∆W (P, P̂) ∀P∈P0(Z)

x≥ 0

αi ∈R, ks ≥ 0, yis ≥ 0 ∀i∈ [I]∪{0}, s∈ [S].

(18)

where wi, i∈ [I]∪{0} are weights to reflect the relative importance of individual constraints. In the

context of production planning, we can choose w0 = 1, and wi to be the cost needed to replenish one

unit of the ith the resource to reflect the relative importance of different resource constraints. We

remark that the robust satisficing solutions are feasible in the empirical optimization problem (17).

Specifically, the set of I risk-based constraints are feasible under the empirical distribution.
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Theorem 3. For a box support Z = [−1,1], the robust satisficing model (18) can be equivalently

written as the following convex optimization problem:

min
∑

i∈[I]∪{0}

wiki

s.t. αi +
1

Sεi

∑
s∈[S]

yis ≤ 0 ∀i∈ [I]

yis ≥ ai(ẑs)>x− bi(ẑs) + (η1is +η2is)
>1− (η1is−η2is)

>ẑs−αi ∀i∈ [I], s∈ [S]

α0 +
1

Sε0

∑
s∈[S]

y0s + τ ≤ 0

y0s ≥−c(ẑs)>x+ (η10s +η20s)
>1− (η10s−η20s)

>ẑs−α0 ∀s∈ [S]

‖A>i x− bi−η1is +η2is‖∗ ≤ ki ∀i∈ [I], s∈ [S]

‖C>x+η10s−η20s‖∗ ≤ k0 ∀s∈ [S]

η1is ≥ 0, η2is ≥ 0 ∀i∈ [I]∪{0}, s∈ [S]

x≥ 0

αi ∈R, ki ≥ 0, yis ≥ 0 ∀i∈ [I]∪{0}, s∈ [S].

Although we focus on a normalized support set Z = [−1,1] for concreteness, this result can be

naturally extended to a box support set Z = [z, z̄] or a polyhedral set Z = {z ∈ RN | Cz ≤ h}.

When the dual norm is `1-norm or `∞-norm (i.e., the distance metric in ∆W is given by `∞-norm

and `1-norm, respectively), the final model in Theorem 3 is a linear optimization model. In our

numerical study, we will apply this model to address a portfolio optimization problem.

5. Combinatorial Optimization

Combinatorial optimization problems, where X ⊆ {0,1}N , have many applications in operations

research and management science such as network design, capital budgeting, among others. They

are inherently difficult optimization problems to solve, though there are many celebrated combina-

torial optimization problems, such as the shortest path problem and the minimum cost spanning

tree problem, that are polynomial time solvable. Extension to uncertainty in the objective function

would general lead to a much harder problem to solve. The seminal work of Bertsimas and Sim

(2003) shows how we can incorporate uncertainty in the objective function that would retain the

tractability of the underlying combinatorial optimization problem. As far as we know, no such

results have been extend to data-driven setting, unless for the trivial case of the following empirical

combinatorial optimization model

Z0 = min EP̂

c>x+
∑
n∈[N ]

dnz̃nxn


s.t. x∈X ,

(19)
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for some c,d≥ 0. We assume EP̂ [z̃] = 0, so that the objective function is simply c>x. We assume

a box support set Z = [−z,1] for any z > 0. The setup is the same as the one in Bertsimas and

Sim (2003).

To obtain a tractable model for the corresponding robust satisficing problem, we focus on the

`1-norm Wasserstein metric, i.e.,

∆W (P, P̂) := inf
Q∈P0(Z2)

{
EQ [‖z̃− ṽ‖1]

∣∣∣ (z̃, ṽ)∼Q, z̃ ∼ P, ṽ∼ P̂
}
.

The robust combinatorial optimization in this setting can be written as:

Zr = min sup
P∈B(r)

EP

c>x+
∑
n∈[N ]

dnz̃nxn


s.t. x∈X ,

(20)

for a given Wasserstein-based ambiguity set,

B(r) :=

P∈P0(Z)

∣∣∣∣∣∣ z̃ ∼ P

∆W (P, P̂)≤ r

 .

Theorem 4. The robust combinatorial model (20) admits the following equivalent reformula-

tion:
Zr = min c>x+ kr+

∑
n∈[N ]

xn(dn− k)+

s.t. x∈X , k ∈ {0, d1, . . . , dN}.

Coincidentally, this reformulation is the same as the reformulation of the classic robust combinato-

rial optimization model in Bertsimas and Sim (2003). Hence, the optimal solution can be obtained

by solving N+1 of the following combinatorial optimization problems with different linear objective

functions:

min
x∈X

c>x+
∑
n∈[N ]

(dn− k)+xn

 , (21)

for k ∈ {0, d1, . . . , dN}. Hence, the robust combinatorial model is polynomial-time solvable if the

underlying combinatorial problem is also polynomial-time solvable (Bertsimas and Sim 2003, The-

orem 3).

For τ ≥Z0, the combinatorial robust satisficing model would be given by

κτ = min k

s.t. EP

c>x+
∑
n∈[N ]

dnz̃nxn

≤ τ + k∆W (P, P̂) ∀P∈P0(Z)

x∈X .

(22)
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Theorem 5. The combinatorial robust satisficing model (22) admits the following equivalent

reformulation:

κτ = min k

s.t. c>x+
∑
n∈[N ]

xn(dn− k)+ ≤ τ

x∈X .

(23)

Problem (23) can be solved via a bisection search to any accuracy ε > 0 in at most dlog2(‖d‖∞/ε)e

iterations, where each iteration solves a problem with the same complexity as the underlying com-

binatorial problem with a different linear objective function.

By Theorem 5, the combinatorial robust satisficing optimization model (23) is polynomial-time

solvable as long as the underlying combinatorial problems with linear objective is also tractable. In

practice, the number of iterations required in the bisection search is small. As a simple comparison,

consider a shortest path problem with N = 1000 arcs and the largest deviation of travel time

along an arc is ‖d‖∞ = 10. The robust combinatorial model requires solving N +1 = 1001 standard

combinatorial problems with linear objectives, while the combinatorial robust satisficing model

only requires solving 20 of such problems to achieve an accuracy of ε= 10−5.

Assuming uniqueness in solving the underlying combinatorial optimization problem, from Prob-

lem (21), it is interesting to observe that there are at most N + 1 different solutions generated

by the robust optimization problem. In contrast, the number of different solutions generated by

the robust satisficing problem could be much larger. This observation coincides with our numeri-

cal studies that solving the robust satisficing problems generally yield a larger family of different

solutions compared to solving similar robust optimization problems.

6. Linear Optimization with Recourse

Dantzig (1955) proposes the seminal stochastic optimization problem in a linear optimization

framework where recourse decisions adapt to uncertain outcomes, resulting in a risky objective

function for which the model minimises. Such models are ubiquitous in operations research such

as a lot-sizing problem to determine the level of inventories at various locations to meet uncertain

demands in a distribution network. We focus on a linear optimization with recourse. In the first

stage, we set the values of here-and-now variables x ∈ X before the realization of the random

variable z̃. The linear empirical optimization problem with recourse is given by

Z0 = min EP̂

[
c(z̃)>x+Q(x, z̃)

]
s.t. x∈X .

(24)
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Here, Q(x,z) represents the second-stage objective function:

Q(x,z) = min d>y

s.t. A(z)x+By≥ b(z)

y ∈RP ,

(25)

where

A(z) :=A0 +
∑
i∈[N ]

Aizi, b(z) := b0 +
∑
i∈[N ]

bizi, c(z) := c0 +
∑
i∈[N ]

cizi

are affine mappings of z. The goal is to determine the optimal here-and-now decision x ∈ X ,

and after the realization of the random parameters is observed, the optimal continuous wait-and-

see decisions y ∈ RP is determined by solving Problem (25). Equivalently, we have the classical

stochastic optimization problem with recourse (Dantzig 1955) as follows

Z0 = min
1

S

∑
s∈[S]

(
c(ẑs)

>x+d>ys
)

s.t. A(ẑs)x+Bys ≥ b(ẑs) ∀s∈ [S]

ys ∈RP ∀s∈ [S]

x∈X .

(26)

For tractability of the corresponding robust and robust satisficing model, we again focus again

on the `1-norm Wasserstein metric ∆W . The robust optimization model with recourse solves the

following problem:

Zr = min sup
P∈B(r)

EP
[
c(z̃)>x+Q(x, z̃)

]
s.t. x∈X .

(27)

We can express Problem (27) as

Zr = min sup
P∈B(r)

EP
[
c(z̃)>x+d>y(z̃)

]
s.t. A(z)x+By(z)≥ b(z) ∀z ∈Z

y ∈RN,P

x∈X ,

(28)

where the family of recourse functions is defined as

RN,P :=
{
y | y(z) :RN 7→RP ,y is a measurable function

}
.

Problem (28) is generally intractable for r > 0 because the recourse function y(z) is unrestricted

and akin to having infinite number of decision variables. A popular method to tractably solve

Problem (28) is to use affine recourse adaptation, where the recourse function y(z) is restricted
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to an affine function of z (see, e.g., Ben-Tal et al. 2004, Kuhn et al. 2011, Bertsimas et al. 2019,

Chen et al. 2020, Bertsimas et al. 2021) as follows:

LN,P :=

y ∈RN,P
∣∣∣∣∣∣ y(z) = y0 +

∑
i∈[N ]

yizi for some yi ∈RP , i∈ [N ]∪{0}

 .

Chen et al. (2020) propose a tractable scenario-wise lifted affine recourse adaptation to solve the

problem approximately that performs almost as well as the exact model for a multi-item newsvendor

problem.

For a given τ ≥Z0, we propose the adaptive linear robust satisficing model as follows:

min k

s.t. EP
[
c(z̃)>x+Q(x, z̃)

]
− τ ≤ k∆W (P, P̂) ∀P∈P0(Z)

x∈X , k≥ 0.

Theorem 6. The adaptive linear robust satisficing can be equivalently written as:

min k

s.t.
1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

{
c(z)>x+d>ys(z, u)− ku

}
≤ τ

A(z)x+Bys(z, u)≥ b(z) ∀(z, u)∈ Z̄s, s∈ [S]

ys ∈RN+1,P ∀s∈ [S]

x∈X , k≥ 0,

(29)

where the lifted support set associated with each empirical scenario s∈ [S] is defined as

Z̄s := {(z, u)∈Z ×R | ‖z− ẑs‖1 ≤ u}. (30)

Similar to most adaptive optimization problems, Problem (29) is generally intractable. To obtain

the optimal here-and-now solution x ∈ X approximately, we consider a scenario-wise lifted affine

recourse adaptation of Problem (29) as follows:

min k

s.t.
1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

{
c(z)>x+d>

(
ys,0 +

∑
i∈[N ]

ys,izi +ys,N+1u
)
− ku

}
≤ τ

A(z)x+B
(
ys,0 +

∑
i∈[N ]

ys,izi +ys,N+1u
)
≥ b(z) ∀(z, u)∈ Z̄s, s∈ [S]

ys,i ∈RP ∀i∈ [N + 1]∪{0}, s∈ [S]

x∈X , k≥ 0.

(31)

Borrowing the terminology from stochastic optimization, the second stage optimization problem

is said to have relatively complete recourse if for any x∈X and z ∈Z, there exists some y ∈RP such
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that A(z)x+By ≥ b(z). Without the assumption of relatively complete recourse, the empirical

optimization problem with recourse may not necessary yield a here-and-now decision, x that would

ensure that the second-stage problem would always be feasible. Hence, under the true distribution,

this may result in an infinite second stage expected cost under the true distribution, which is not

acceptable. A strong condition called complete recourse is associated with the recourse matrix B.

Specifically, for any right hand side vector, t ∈ RM , there exists a feasible recourse w ∈ RP such

that Bw≥ t.

Theorem 7. Suppose the second stage problem (25) has complete recourse, then for any given

τ ≥Z0, the scenario-wise lifted affine recourse adaptation, Model (31), is feasible and the objective

is finite. Moreover, when P = 1, the scenario-wise lifted affine recourse adaptation would yield the

optimal solution in Problem (29).

This result is quite surprising and important. Despite the adaptive optimization model being

a difficult problem to solve exactly, under complete recourse, the lifted affine recourse adaptation

approximation does not limit the choice of targets τ ≥Z0 for the decision maker. The assumption

of complete recourse is necessary here, and we provide a counter example in Appendix B.

We should note that in the absence of relatively complete recourse, solving the empirical opti-

mization model or the stochastic optimization problem via Sample Average Approximation (SAA)

may not even generate a feasible solution with finite risk when evaluated on the true distribution.

Ben-Tal et al. (2004) observe that finding the here-and-now decision that would ensure that the

second stage problem is always feasible for all realization of the uncertainty is an NP -hard problem.

They propose using affine recourse adaptation as a conservative approximation to ensure feasibility

of the second stage optimization problem for all z ∈Z, which is applicable to solving the empirical

optimization model as follows:

¯̄Z0 = min EP̂

[
c(z̃)>x+d>y(z̃)

]
s.t. A(z)x+By(z)≥ b(z) ∀z ∈Z

y ∈LN,P

x∈X .

In fact, affine recourse adaptation or linear decision rule has appeared in early models of stochastic

optimization, but they have been abandoned due to the lack of optimality concerns (see Garstka

and Wets 1974). We can do better. Inspired by the adaptive robust satisficing, in the absence

of complete recourse, we propose the following empirical optimization model with affine recourse

approximation that will to ensure feasibility of the second stage optimization problem.
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Theorem 8. The empirical linear optimization model with affine recourse approximation given

by

Z̄0 = min φ

s.t.
1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

{
c(z)>x+d>

(
ys,0 +

∑
i∈[N ]

ys,izi +ys,N+1u
)
− ku

}
≤ φ

A(z)x+B
(
ys,0 +

∑
i∈[N ]

ys,izi +ys,N+1u
)
≥ b(z) ∀(z, u)∈ Z̄s, s∈ [S]

ys,i ∈RP ∀i∈ [N + 1]∪{0}, s∈ [S]

x∈X , k≥ 0, φ∈R,
(32)

has the following properties:

1. If x is feasible to Problem (32), then Q(x,z)<∞ for all z ∈Z.

2. ¯̄Z0 ≥ Z̄0 ≥Z0.

3. If complete recourse holds, then Z̄0 =Z0.

4. The adaptive linear robust satisficing is feasible for any τ ≥ Z̄0.

Serendipitously, the robust satisficing model also provides a recipe for solving stochastic optimiza-

tion problems approximately when the second stage problems do not have relatively complete

recourse. The first property of Theorem 8 ensures that Problem (32), if feasible, also generates a

here-and-now decision x that ensures that that the stage problem would be feasible for all z ∈Z.

Moreover, under complete recourse, it automatically recovers the solution of the classical two-stage

stochastic optimization model with empirical distribution. To improve the approximation further,

other more computationally intensive approaches can be used to improve the recourse adaptation,

including piecewise affine recourse adaptation techniques (see, e.g., Goh and Sim 2010, Chen et al.

2008) and Fourier-Motzkin elimination of recourse variables introduced by Zhen et al. (2018).

7. Simulation Study I: Portfolio optimization

We consider a portfolio selection problem under a data-driven setting and derive an explicit robust

satisficing formulation. The decision-maker invests in N risky assets where the portfolio risk is

evaluated using the empirical distribution P̂ constructed from historical data (ẑ1, . . . , ẑS). The

empirical portfolio optimization model is given by

Z0 = max EP̂ [x>z̃]

s.t. CεP̂ [−x>z̃]≤ β

1>x= 1

x∈RN+ ,
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where z̃ represents the daily returns of N stocks with empirical distribution P̂ and support Z =RN .

This portfolio optimization problem maximizes the expected return subject to the 1−ε daily CVaR

being less than a β proportion of the capital.

The robust optimization (RO) solves the following optimization problem:

Zr = max inf
P∈B(r)

EP
[
x>z̃

]
s.t. α+

1

ε
EP
[
(−x>z̃−α)+

]
≤ β ∀P∈B(r)

1>x= 1

x∈RN+ , α∈R,

while the robust satisficing (RS) solves the following optimization problem:

κτ = min k0 +wk1

s.t. EP
[
x>z̃

]
≥ τ − k0∆W (P, P̂) ∀P∈P0(Z)

α+
1

ε
EP
[
(−x>z̃−α)+

]
≤ β+ k1∆W (P, P̂) ∀P∈P0(Z)

1>x= 1

x∈RN+ ,

(33)

for some target, τ ≤Z0, and a penalty parameter w≥ 0.

Theorem 9. Suppose the Wasserstein distance ∆W is defined with `1-norm, and the support set

is given by Z =RN . The optimal portfolio in Problem (33) can be obtained by solving the following

optimization problem:

min ‖x‖∞
s.t.

1

S

∑
s∈[S]

y1s ≥ τ

y1s ≤x>ẑs ∀s∈ [S]

α+
1

εS

∑
s∈[S]

y2s ≤ β

y2s ≥−x>ẑs−α ∀s∈ [S]

y2s ≥ 0 ∀s∈ [S]

1>x= 1

x∈RN+ , α∈R.

(34)

Model (34) is a linear optimization model and has interesting insights in the context of portfolio

optimization. Observe that the solution solution does not depend on the choice of penalty parame-

ter, w. Speaking intuitively, the robust satisficing approach improves the robustness by diversifying

as much as possible, while trying to attain the target level of expected utility, and safeguarding the

CVaR of losses over the empirical distribution. It diversifies the portfolio more aggressively than

the classical mean-variance portfolio selection of (Markowitz 1952).
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Proposition 7. Whenever τ ≤ EP̂ [1>z̃/N ] and β ≥ CεP̂(−1>z̃/N), the optimal portfolio in

Model (34) is the equal-weighted 1/N portfolio.

As the target utility increases, the decision maker commits to less ambiguity-averse portfolio and

diversify less in order to achieve a more ambitious target utility.

Despite the simplicity, it has been well-known from the empirical study of DeMiguel et al. (2009)

that equal-weighted portfolio outperforms many risk models in practice. In particular, when they

compare the equal-weighted portfolio against 14 models across seven empirical datasets, none of the

model is consistently better than the equal-weighted portfolio in out-of-sample perfromance. When

there are 25 assets, they show that mean-variance strategy and its extensions require an estimation

window of over 3,000 months in order to outperform the equal-weighted portfolio, alluding to their

impracticality in addressing actual portfolio selection problems. The optimality of equal weighted

portfolios has also been established in distributionally robust portfolio optimization models (see,

e.g., Pflug et al. 2012, Mohajerin Esfahani and Kuhn 2018) as the Wasserstein ball increases in

size within the ambiguity set. In the robust satisficing model, the optimal portfolio depends on

the target of the decision maker, which we believe is more interpretable for the decision maker to

specify than the radius of the Wasserstein ball.

In the following, we illustrate the model performance. Following a similar setting as in Moha-

jerin Esfahani and Kuhn (2018), we consider N = 10 stocks. We assume the return z̃n, for n∈ [N ],

can be decomposed into a systematic risk εn ∼ N (0,5%) and an idiosyncratic risk δn ∼ N (n ×

2%, n× 3%). By construction, stocks with higher indices provide higher mean returns but at the

same time result in higher risks. The support of the return is RN . We set ε= 0.05, and β varies

in different instances. All optimization models are solved based on a sample of size S ∈ {30,300},

and the out-of-sample performance of solutions is evaluated on a set of verification samples of size

10,000. For each instance, we solve the robust satisficing model (34) over a sequence of expected

utility targets τ and solve the robust optimization model over a sequence of radius r. Then, we

compare the efficient frontier on both out-of-sample CVaR and average return. Here, out-of-sample

CVaR and average return represent CVaR and average return evaluated under the set of verification

samples. Besides robust satisficing and robust optimization models, we also present performance

of the equal-weighted portfolio and the empirical optimization model.

First, we fix sample size S = 30. In this case, the historical sample is not large enough to

accurately reflect the true distribution of returns; therefore, one should expect that the in-sample

and out-of-sample metrics would vary by a lot, indicating the need of robustness. To begin with,

we evaluate the in-sample performance of the equal-weighted 1/N portfolio—the in-sample average

return is 0.119 and the in-sample CVaR is −0.008. When β <−0.008, the equal-weighted portfolio
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is infeasible for both robust satisficing and robust optimization models. When β ≥ −0.008, the

equal-weighted portfolio is always feasible and optimal for the robust satisficing model when τ ≤

0.119. However, an equal-weighted portfolio may not be attained as an optimal solution to the

robust optimization model for some radius r. In our experiments, the empirical optimization leads

to a higher in-sample return than the equal-weighted portfolio. For the robust satisficing, we vary

τ ∈ [0.119,Z0], and we can guarantee that the robust satisficing has a non-empty feasible set for

τ ∈ [0.119,Z0]. In practice, we can vary τ as a percentage of Z0, which is intuitive to specify. For

the robust optimization, we vary the radius r ∈ [0, r̄], where r̄ is the largest radius such that the

robust optimization model has a non-empty feasible set. Note that r̄ varies for different instances,

and this value has to be tuned manually.

In Figure 1, we compare the efficient frontiers of robust satisficing and robust optimization when

β = 0.1. Robust satisficing approach achieves a dominant efficient frontier. For the same out-of-

sample average utility, the robust satisficing solutions often achieves a lower out-of-sample CVaR.

In this figure, we also mark the performance of the empirical optimization model and the equal-

weighted portfolio. The empirically optimized solution coincides with the robust solution when

r = 0 and the robust satisficing solution when τ = Z0. As we can see, the empirically optimized

solution overfit to the sample and produce a high risk. The out-of-sample CVaR is 0.25, which

significantly exceeds the imposed acceptable level of β = 0.1. This indicates the importance of

obtaining robustness to improve the empirical optimization model and control the out-of-sample

CVaR, because of the huge discrepancy between in-sample and out-of-sample metrics.

From Figure 1, we also notice that the efficient frontier of the robust satisficing model is smoother

than that of the robust optimization model. This is because the solutions to the robust optimization

model is more sensitive to the parameter r. In Figure 2, we show the out-of-sample metrics with

respect to model parameters, i.e., τ in robust satisficing and r in robust optimization. As we can

see, the out-of-sample metrics of robust optimization model can experience some sudden jumps

within a small neighborhood of r, or they can stay constant for a large range of r. On the contrary,

the out-of-sample metrics of the robust satisficing model is smooth in parameter τ .

We provide two more instances in Figure 3, where we keep S = 30 and vary β ∈ {−0.05,0.0}. In

both comparisons, we tune the upper bound of radius, r̄, until the robust optimization model is no

longer feasible. We observe that the robust satisficing models again lead to better efficient frontiers

than those of the corresponding robust optimization models, further illustrating the potentiality

of our approach.

Then, we consider the case with a large sample, S = 300. In this example, the equal-weighted

portfolio has an in-sample average return of 0.118 and an in-sample CVaR of 0.016. In Figure 4,

we compare the efficient frontiers of robust satisficing and robust optimization when β = 0.05.
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Figure 1 Comparison of efficient frontiers by RO and RS: S = 30 and β = 0.1.

We observe that the efficient frontier of the robust satisficing model dominates that of the robust

optimization model. Although the differences between in-sample and out-of-sample metrics are

smaller than those when S = 30, there is still a non-negligible gap, e.g., the out-of-sample CVaR

of the empirically optimized solution exceeds that acceptable level of β = 0.05. This indicates the

need of robustness to reduce the out-of-sample risk of the empirical optimization model even when

we have a large sample. We provide two more instances in Figure 5, where we keep S = 300 and

vary β ∈ {0.01,0.1}. We observe that the robust satisficing model again leads to better efficient

frontiers than that of the robust optimization model when β = 0.01. When β = 0.1, the empirical

CVaR constraint is rather loose in both models, reducing the differences in solutions and leading

to similar efficient frontiers.

Finally, we investigate the effect of β. In Figure 6, we plot the efficient frontiers of the robust

satisficing models under different β values. As β decreases, the set of feasible solutions diminishes.

In addition, the solution will tend to over-fit to the sample as β decreases. This is because we face

an ambitious constraint on in-sample CVaR, and one must over-fit to the sample to achieve it. It

is important to note that β is a parameter that the decision maker prescribes to reflect his risk

attitude; hence, this should be treated differently as τ , which is a model parameter that we tune.

8. Simulation Study II: Adaptive network lot-sizing

We consider a similar network lot-sizing context as in Bertsimas and de Ruiter (2016). The decision

maker sells a single item at N different stores. We must determine the initial stock allocation
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(a) RS out-of-sample metrics w.r.t. normalized target τ/Z0.
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(b) RO out-of-sample metrics w.r.t. Wasserstein radius parameter r.
Figure 2 Out-of-sample metrics with respect to model parameters: S = 30 and β = 0.1.
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(a) β =−0.05
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(b) β = 0.0
Figure 3 Comparison of efficient frontiers by RO and RS: S = 30; β = −0.05 (left), and β = 0 (right).
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Figure 4 Comparison of efficient frontiers by RO and RS: S = 300 and β = 0.05.
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(a) β = 0.01
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(b) β = 0.1
Figure 5 Comparison of efficient frontiers by RO and RS: S = 300; β = 0.01 (left) and β = 0.1 (right).

xi ∈ [0, δ̄i] at a unit ordering cost ci, for different stores i∈ [N ], prior to the realization of random

demands z̃i for i ∈ [N ]. After observing the demands, we can transport stock yij from store i to

store j at a unit transportation cost dij to better satisfy demands. We use wi to represents the

emergency orders at store i, at a unit cost li > ci. We randomly generate the N stores in a 10× 10

grid. The transportation cost dij is set to be proportional to the euclidean distance, Dij, between

stores i and j.
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Figure 6 Effect of β on the solution frontier of RS: S = 30 (left) and S = 300 (right).

Following Theorem 6, the adaptive robust satisficing with scenario-wise affine recourse adaptation

can be written as follows:

min k

s.t. c>x− τ +
1

S

∑
s∈[S]

vs ≤ 0∑
i∈[N ]

d>i y
(s)
i (z, u) + l>w(s)(z, u)− ku≤ vs ∀(z, u)∈ Z̄s, ∀s∈ [S]

xi +w
(s)
i (z, u) +

∑
j∈[N ]

y
(s)
ji (z, u)−

∑
j∈[N ]

y
(s)
ij (z, u)− zi ≥ 0 ∀(z, u)∈ Z̄s, ∀s∈ [S], ∀i∈ [N ]

y(s)(z, u)≥ 0, w(s)(z, u)≥ 0 ∀(z, u)∈ Z̄, s∈ [S]

0≤x≤ δ̄

y(s) ∈LN+1,N×N , w(s) ∈LN+1,N ∀s∈ [S],

where the lifted uncertainty set associated with each scenario s∈ [S] is as defined in Equation (30).

Similarly, we can formulate the benchmark robust optimization model under the Wasserstein

metric and lifted affine recourse adaptation as:

Zr = min kr+ c>x+
1

S

∑
s∈[S]

vs

s.t.
∑
i∈[N ]

d>i y
(s)
i (z, u) + l>w(s)(z, u)− ku≤ vs ∀(z, u)∈ Z̄s, ∀s∈ [S]

xi +w
(s)
i (z, u) +

∑
j∈[N ]

y
(s)
ji (z, u)−

∑
j∈[N ]

y
(s)
ij (z, u)− zi ≥ 0 ∀(z, u)∈ Z̄s, ∀s∈ [S], ∀i∈ [N ]

y(s)(z, u)≥ 0, w(s)(z, u)≥ 0 ∀(z, u)∈ Z̄s, s∈ [S]

0≤x≤ δ̄

y(s) ∈LN+1,N×N , w(s) ∈LN+1,N ∀s∈ [S].
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As r approaches zero, the robust model becomes the empirical optimization model:

Z0 = min c>x+
1

S

∑
s∈[S]

vs

s.t.
∑
i∈[N ]

d>i y
(s)
i + l>w(s) ≤ vs ∀s∈ [S]

xi +w
(s)
i +

∑
j∈[N ]

y
(s)
ji −

∑
j∈[N ]

y
(s)
ij − zi ≥ 0 ∀s∈ [S], ∀i∈ [N ]

y(s) ≥ 0, w(s) ≥ 0 ∀s∈ [S]

0≤x≤ δ̄.

Note that with the provision of the emergency orders in the model would make this a complete

recourse problem. In this study, we set N = 20 and Z = [0,40]N . For all i ∈ [N ], j ∈ [N ], we set

ci = 10, li = 30, δi = 40, dij = 2Dij. We let S=5, i.e., the empirical distribution consists of five

historical samples. To test the solutions, we generate 10,000 samples as the testing data. In each

sample, demands at different locations are independently generated. We use a normal distribution,

N (20,102), to generate these demands, and the demands are truncated to ensure they lie in the

support set Z.

We solve the robust optimization (RO) model with different values of Wasserstein radius r

and the robust satisficing (RS) model with different values of target τ . Then, we compare the

out-of-sample costs with respect to the first-stage ordering cost. We also benchmark the baseline

empirical optimization model. We present the performance comparison in Figure 7. The data-

driven optimization only gives a single solution, and it performs poorly because it over-fits to the

historical data. In many practical settings, the historical data is not rich enough to depict the

true distribution; therefore, the performance of data-driven optimization is inferior in these cases.

With different input parameters, both RO and RS models can improve cost metrics significantly,

especially cost at higher quantiles. Furthermore, RS model outperforms RO model in terms of both

average cost and costs at different quantiles. For the average total cost, the standard deviations of

sample mean of the robust satisficing solutions under different targets range from one to five, which

are small enough to conclude the improvement is statistically significant. We have tried varying

the standard deviation of the underlying normal distribution and generating demands from some

uniform distributions and Poisson distributions, and we observe similar results. We present results

for an example where demands are generated from a normal distribution N (20,122) in Appendix C.

In Appendix D, we present a sample code on how to model RO and RS in this problem using

RSOME (Chen et al. 2020).

Another benefit of robust satisficing is that it is much easier to select a target parameter, as

opposed to selecting a radius parameter for the Wasserstein ball. The target is a management-

related parameter while the Wasserstein radius is an abstract tuning parameter. We present how
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the out-of-sample cost metrics changes with respect to the two model parameters in Figure 8. We

plot both the average cost and the cost at the 90th percentile. The curve for the 95th percentile

is similar to the 90th percentile (see Figure 7) and is therefore omitted. The parameter r is not

interpretable operationally, and the out-of-sample performance is sensitive to the choice of this

parameter. As we can see, the average cost and 90th percentile change rapidly within a small range

of radius r. In other words, a small change in r can lead to a very different solution. On the other

hand, the change in out-of-sample performance is much more smooth with respect to the change

in target in RS. Hence, a small change in the target parameter will not lead to a significant change

in solution.

In addition, the “nice” range of target τ/Z0 is relatively stable with respect to changes in other

model parameters, e.g., support set. However, the “nice” range of radius r can change significantly

as other parameters change. We provide an illustration in Figure 9, where we expand the capacity

of store i ∈ [N ] to 200 + 10i and expand the support set of demand at this store from [0,40] to

[0,200 + 10i], for i ∈ [N ]. We plot the out-of-sample cost metrics with respect to model parame-

ters and overlay with the curves in Figure 8 to present the difference. The cost metrics of each

instance are normalized by the respective baseline out-of-sample average cost so that they are on

a similar scale. Clearly, the robust satisficing approach is far less sensitive to the specification of

support set compared to the robust optimization model. As we observe, the “nice” range of radius

r changes significantly while the performance with respect to the normalized target τ/Z0 is very

stable to this change. Given the interpretation of the model parameter τ ≥Z0 in robust satisficing,

decision maker can always choose the target as a percentage of Z0. However, the radius param-

eter r is usually a hyper-parameter that does not have a physical meaning. Hence, in addressing

data-driven optimization problems, there are remarkable challenges faced by robust optimization

models to determine to right hyper-parameter for the ambiguity set, which can be highly sensitive

to how the support set is being specified. In contrast, besides the target parameter being more

interpretable and intuitive to specify in management decision problems, it is also far less sensitive

to the specification of the support set of the random parameters.
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Figure 7 Summary of performance: RS and RO models at different first-stage costs
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Figure 8 Out-of-sample cost metrics w.r.t. Wasserstein radius r in RO (left) and target τ in RS (right).
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Figure 9 Change of the “nice” range of radius in RO (left) and normalized target in RS (right).
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9. Conclusion

In this paper, we introduce the data-driven optimization robust satisficing framework that mini-

mizes the model’s fragility to uncertainty in achieving its prescribed target. We establish tractable

robust satisficing models for risk-based linear optimization, combinatorial optimization, and linear

optimization problems with recourse. In these problem contexts, we show that the robust satisficing

model is at least as easy to solve as the corresponding data-driven robust optimization models. We

perform numerical studies on portfolio optimization and network lot-sizing problems to elucidate

that robust satisficing model is more effective than the data-driven robust optimization model in

improving the out-of-sample performance. While we have illustrated the rationale of using our

robust satisficing model and its potential benefits over several numerical experiments, we have

not ruled out problem instances where robust optimization could attain better performance than

robust satisficing. We hope our work could inspire others to explore robust satisficing as one of the

candidates approaches, alongside robust optimization and stochastic programming, for addressing

real world optimization problems under uncertainty.
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A. Proof of Results

Proof of Proposition 2. The robust satisficing model under this setting is given by

κτ = min k

s.t.
1

S

∑
s∈[S]

ys ≤ τ

ys ≥ sup
zs∈Z
{max
i∈[I]
{aix>z+ bi}− k‖zs− ẑs‖} ∀s∈ [S]

x∈X , k≥ 0.

First, for any s∈ [s], we focus on

ys ≥ sup
zs∈Z
{max
i∈[I]
{aix>z+ bi}− k‖zs− ẑs‖},

which is then equivalent to:

ys ≥ sup
zs∈Z
{aix>z+ bi− k‖zs− ẑs‖} ∀i∈ [I].

Now, for any i∈ [I], s∈ [S], we focus on the inner maximization:

sup
zs∈Z
{aix>z+ bi− k‖zs− ẑs‖}

= sup
z∈Z

{
aix

>z+ bi− sup
‖γis‖∗≤k

γ>is(z− ẑs)

}
= sup

z∈Z
inf

‖γis‖∗≤k

{
aix

>z+ bi−γ>is(z− ẑs)
}

= inf
‖γis‖∗≤k

sup
z∈Z

{
aix

>z+ bi−γ>is(z− ẑs)
}
,

where the interchange of maximization and minimization follows because the function is affine in

both variables, the set {γis ∈ RN | ‖γis‖∗ ≤ k} is compact, and the set Z is convex and closed.

Now, we focus on the inner maximization. For any i∈ [I], s∈ [S], let Zis = supz∈Z
{
aix

>z−γ>isz
}

,

where Z = {z ∈RN | Cz ≤h}. By strong duality, we have:

Zis = inf η>ish

s.t. C>ηis = aix−γis
ηis ≥ 0.

Finally, by above reformulations, the robust satisficing model becomes:

min k

s.t.
1

S

∑
s∈[S]

ys ≤ τ

ys ≥ aix>ẑs + bi +η>ish−η>isCẑs ∀s∈ [S], i∈ [I]

k≥ ‖aix−C>ηis‖∗ ∀s∈ [S], i∈ [I]

ηis ≥ 0 ∀s∈ [S], i∈ [I]

x∈X ,

which gives the final formulation in Proposition 2. �
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Proof of Proposition 3. By the definition of Problem (6), we know

EP [f(x, z̃)]≤ τ + k∆W (P, P̂) ∀P∈P0(Z). (35)

Therefore,

PS [EP∗ [f (x, z̃)]> τ + kr]≤ PS
[
k∆W (P∗, P̂)>kr

]
≤ PS

[
∆W (P∗, P̂)> r

]
,

where the inequality and equality are due to (35). Hence, our result follows from Theorem 1. �

Proof of Proposition 4. Note that
∑

i∈[N ] 2max{zi − xi,0} is convex in z; hence, the worst-

case scenario must occur at the extreme points of the uncertainty set. Specifically, the worst-case

scenario must satisfy that ‖z‖1 = r and at least N−1 components of z are either 0 or d. In addition,

demand could only occur at dr/de locations. Because r≤ d dN/2− 1e, we know dr/de ≤ dN/2− 1e.

Consider any here-and-now ordering decision x̄. Without loss of generality, we order the com-

ponents of x̄ with respect to the ordering quantity in a descending order, i.e., x̄1 ≥ x̄2 ≥ · · · ≥

x̄N ≥ 0. In this case, the worst-case demand would occur only at the last dr/de locations such that

zN−dr/de+1 = r− d dr/de and zN−dr/de+2 = · · ·= zN = d.

Suppose x̄ only orders inventory at less than or equal to N −dr/de locations, i.e., x̄N−dr/de+1 =

· · ·= x̄N = 0. One could see that such an ordering decision is strictly dominated by a no-ordering

decision. Suppose x̄ only orders inventory at more than N −dr/de locations, i.e., x̄N−dr/de+1 > 0.

By reverting to a no-ordering decision, we would save a here-and-now ordering cost of∑
i∈[N ]

xi,

while incurring an additional emergency fulfillment cost of at most

2
∑

i∈[N ]\[N−dr/de]

xi ≤
∑
i∈[N ]

xi.

The last inequality is due to that N ≥ 2 dr/de and the ordering of x̄. Hence, any non-zero ordering

decision is dominated by a no-ordering decision. �

Proof of Proposition 5. To prove this proposition, we consider two candidate solution x1 = 0

and x2 = τ1/N and show that x2 would always achieve a better objective value than x1.

When we fix the here-and-now solution as x1 = 0, we have

κ(1)
τ = max

z∈[0,d]N

{
2− τ

‖z‖1

}
= 2− τ

Nd
.
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When we fix the here-and-now solution as x2 = τ1/N , we have

κ(2)
τ = max

z∈[0,d]N


2
∑
i∈[N ]

max{zi− τ/N,0}

‖z‖1

= 2− 2τ

Nd
.

Because κ(2)
τ < κ(1)

τ , we know that x2 is strictly better than x1. Hence, the optimal here-and-now

ordering quantity in the above robust satisficing network lot-sizing problem is non-zero. �

Proof of Theorem 2. Given a fragility measure ρ defined by Equation (11), we first show that

it has all the five properties in this theorem and is lower semi-continuous, i.e., {ṽ | ρ(ṽ)≤ a} is a

closed set for any a≥ 0. For convenience, we define

K(ṽ) :=
{
k≥ 0 | EP [ṽ]≤ k∆(P, P̂), ∀P∈P0

}
, (36)

and hence ρ(ṽ) = infK(ṽ).

1. Monotonicity. If ṽ1 ≥ ṽ2, then EP [ṽ1]≥EP [ṽ2] for any P∈P0. That is, for any k ∈K(ṽ1), we

must have k ∈K(ṽ2). Therefore, K(ṽ1)⊆K(ṽ2). Taking the infimum gives ρ(ṽ1)≥ ρ(ṽ2).

2. Positive homogeneity. The case of λ= 0 is trivial. Consider any λ> 0. Notice that

ρ(λṽ) = inf
{
k > 0 | EP [λṽ]≤ k∆(P, P̂), ∀P∈P0

}
= inf

{
k > 0 | EP [ṽ]≤ k

λ
∆(P, P̂), ∀P∈P0

}
= λ inf

{
β > 0 | EP [ṽ]≤ β∆(P, P̂), ∀P∈P0

}
= λρ(ṽ).

3. Subadditivity. Suppose k1 ∈K(ṽ1) and k2 ∈K(ṽ2). It is not hard to see that

EP [ṽ1 + ṽ2]≤ (k1 + k2)∆(P, P̂), ∀P∈P0,

which indicates (k1 + k2)∈K(ṽ1 + ṽ2). The subadditivity then follows by taking the infimum.

4. Pro-robustness. If ṽ ≤ 0, then for all P ∈ P0 and k > 0 we have EP [ṽ]≤ 0≤ k∆(P, P̂). That

implies ρ(ṽ) = 0.

5. Anti-fragility. Suppose EP̂ [ṽ] > 0, then K(ṽ) = ∅ because ∆(P̂, P̂) = 0. Therefore, ρ(ṽ) =

infK(ṽ) = inf ∅=∞.

The σ(L∞(P̂),L1(P̂))-lower semi-continuity of ρ can be shown as follows. Consider any converging

sequence of random variable ṽ1, . . . , ṽn such that ṽn→ ṽ in probability as n→+∞. For any fixed

value a≥ 0, we need to show that ρ(ṽ)≤ a if ρ(ṽn)≤ a for all n> 0. Note that we assume that L is

the space of bounded real-valued function, and |ṽ| ≤M for some positive constant M for all ṽ ∈L.

Under this assumption, the above statement is true because lim
n→+∞

EP̂ [ṽn] =EP̂ [ṽ].
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We now prove that the function ∆ defined by Equation (14) is exactly the probability distribution

function associated with ρ. To this end, we first show that the function ∆ defined by Equation

(14) is a probability distance function. Then, we show with such ∆, we have infK(ṽ) = ρ(ṽ), i.e.,

the representation (14) is valid.

We note that since ρ(0) = 0< 1 by pro-robustness property, ∆(P, P̂)≥ EP [0] = 0 for all P ∈ P0.

Moreover, due to the property of anti-fragility, ρ(ṽ) =∞> 1 for all ṽ with EP̂ [ṽ]> 0. Therefore, by

Equation (14),

∆(P̂, P̂) = sup
ṽ∈L
{EP̂ [ṽ] | ρ(ṽ)≤ 1,EP̂ [ṽ]≤ 0} ≤ 0;

together with ∆(P, P̂)≥ 0 for all P ∈ P0 we know ∆(P̂, P̂) = 0. Hence, ∆ is a probability distance

function.

Now, given any ṽ ∈ L and with ∆ defined as in Equation (14), we define the set K(ṽ) as in

Equation (36). It remains to show infK(ṽ) = ρ(ṽ). To prove the result, we start from the case where

ρ(ṽ)∈ (0,∞).

We first show infK(ṽ) ≤ ρ(ṽ). Consider any k ≥ ρ(ṽ). By Positive homogeneity, ρ(ṽ/k) =

ρ(ṽ)/k ≤ 1. Given any P ∈ P0, ∆(P, P̂) = supw̃∈L {EP [w̃] | ρ(w̃)≤ 1} ≥ EP [ṽ/k], which implies

EP [ṽ]≤ k∆(P, P̂). Hence, k ∈K(ṽ). This indicates infK(ṽ)≤ ρ(ṽ).

We then show infK(ṽ) ≥ ρ(ṽ). Consider any 0 < k < ρ(ṽ), and hence ρ(ṽ/k) = ρ(ṽ)/k > 1.

Denote a set W = {w̃ ∈ L | ρ(w̃) ≤ 1}. We next apply Hahn-Banach separation theorem simi-

larly to the proof for Theorem 6 in Follmer and Schied (2002). Specifically, by the convexity and

σ(L∞(P̂),L1(P̂))-lower semi-continuity of ρ, W is a weak*-closed, convex set and ṽ/k 6∈W. There-

fore, by Hahn-Banach separation theorem in the locally convex space (L∞(P̂), σ(L∞(P̂),L1(P̂))),

there exists a linear functional l with

∞> l(ṽ/k)>β > l(w̃), ∀w̃ ∈W

for some β ∈R. Consider any w̃≤ ε with a ε < 0, then for all λ> 0, λw̃≤ λε < 0 and hence λw̃ ∈W

by pro-robustness property. Therefore, β > l(λw̃) = λl(w̃), where the equality holds since l is a

linear functional. As it is true for all λ> 0, we know l(w̃)≤ 0. It further implies that l is a positive

linear functional. WLOG, we can normalize l such that l(1) = 1. In this case there exists P ∈ P0

such that l(w̃) = EP [w̃] for all w̃ ∈ L. With this particular P, EP [ṽ/k]> β ≥ sup
w̃∈W

EP [w̃] = ∆(P, P̂).

This indicates EP [ṽ]>k∆(P, P̂) and k 6∈ K(ṽ). Therefore, infK(ṽ)≥ ρ(ṽ).

We hence conclude infK(ṽ) = ρ(ṽ) whenever ρ(ṽ)∈ (0,∞). For the case of ρ(ṽ) = 0, we just need

the above proof of infK(ṽ)≤ ρ(ṽ) to conclude infK(ṽ) = 0. For the case of ρ(ṽ) =∞, we just need

the above proof of infK(ṽ)≥ ρ(ṽ) to conclude infK(ṽ) =∞. �
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Proof of Proposition 6. The proof follows largely from existing proofs, see, e.g., Hall et al.

(2015). For the purpose of completeness, we include the proof here nevertheless.

First, we prove the “if” direction. Suppose there exists some normalized convex risk measure

µ as stated in the proposition, and let ρ(ṽ) = inf{k > 0 | kµ(ṽ/k) ≤ 0}. For convenience, define

Kµ(ṽ) := {k > 0 | kµ(ṽ/k)≤ 0}. We show that ρ has the desired properties as follows.

1. Monotonicity. If ṽ1 ≥ ṽ2, then ∀k > 0, we have ṽ1/k ≥ ṽ2/k, kµ(ṽ1/k)≥ kµ(ṽ2/k). Hence, for

any k ∈Kµ(ṽ1), we must have k ∈Kµ(ṽ2). Taking the infimum gives us ρ(ṽ1)≥ ρ(ṽ2).

2. Positive homogeneity. The case of λ = 0 is trivial and now we consider any λ > 0. ρ(λṽ) =

inf{k > 0|kµ(λṽ/k)≤ 0}= inf{λk̂ > 0|λk̂µ(λṽ/λk̂)≤ 0}= λ inf{k̂ > 0|k̂µ(ṽ/k̂)≤ 0}= λρ(ṽ).

3. Subadditivity. Consider any ṽ1, ṽ2 ∈L and k1 ∈Kµ(ṽ2), k2 ∈Kµ(ṽ2). Then, by the convexity of

µ, we have (k1 +k2)µ((k1ṽ1/k1 +k2ṽ2/k2)/(k1 +k2))≤ k1µ(ṽ1/k1)+k2µ(ṽ2/k2)≤ 0. Therefore,

we have (k1 + k2)∈Kµ(ṽ2 + ṽ2). Taking the infimum gives us ρ(ṽ2 + ṽ2)≤ ρ(ṽ1) + ρ(ṽ2).

4. Pro-robustness. Because ṽ≤ 0, we have µ(ṽ/k)≤ µ(0) = 0 for any k > 0. Therefore, kµ(ṽ/k)≤

0 for all k > 0, which indicates ρ(ṽ) = 0.

5. Anti-fragility. Suppose EP̂ [ṽ] > 0 and consider any k > 0. Then EP̂ [ṽ/k] > 0, and hence

µ(ṽ/k)≥ EP̂ [ṽ/k]> 0. Therefore, Kµ(ṽ) is an empty set. Taking the infimum gives us ρ(ṽ) =

+∞.

The lower semi-continuity of ρ can be shown as follows. Consider any converging sequence of

random variable ṽ1, . . . , ṽn such that ṽn→ ṽ as n→ +∞. For any fixed value a ≥ 0, we need to

show that ρ(ṽ) ≤ a if ρ(ṽn) ≤ a for all n > 0. This is true because µ is a lower semi-continuous

function, i.e., lim
n→+∞

µ(ṽn) = µ(ṽ). Specifically, if ρ(ṽn) ≤ a for all n > 0, then µ(ṽn/a) ≤ 0 for all

n> 0, indicating µ(ṽ/a)≤ 0. Therefore, we have ρ(ṽ)≤ a.

We now prove the “only if” direction. Consider any fragility measure ρ. Then we need to

prove that there exists a normalized convex risk measure µ satisfying µ(ṽ) ≥ EP̂ [ṽ] and ρ(ṽ) =

inf {k > 0 | kµ(ṽ/k)≤ 0} ∀ṽ ∈L. To this end, we consider the µ defined as follows,

µ(ṽ) = inf {a | ρ(ṽ− a)≤ 1} .

We now show that such µ satisfies the requirement. First, we prove that this µ is a convex risk

measure. Define Kρ(ṽ) := {a | ρ(ṽ− a)≤ 1}.

1. Monotonicity. For any ṽ1 ≥ ṽ2, we have ρ(ṽ1 − a) ≥ ρ(ṽ2 − a) for all a ∈ R. Then, for any

a∈Kρ(ṽ1), we must have a∈Kρ(ṽ2). Taking the infimum gives us µ(ṽ1)≥ µ(ṽ2).

2. Translation invariance. For any a′ ∈ R, we have µ(ṽ + a′) = inf {a | ρ(ṽ− (a− a′))≤ 1} =

a′+ inf {a− a′ | ρ(ṽ− (a− a′))≤ 1}= a′+µ(ṽ).
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3. Convexity. Consider any ṽ1, ṽ2 ∈L, λ∈ [0,1], a1 ∈Kρ(ṽ1) and a2 ∈Kρ(ṽ2). Then, ρ(ṽ1−a1)≤ 1

and ρ(ṽ2−a2)≤ 1. Therefore, ρ(λṽ1 +(1−λ)ṽ2−(λa1 +(1−λ)a2)) = ρ(λ(ṽ1−a1)+(1−λ)(ṽ2−

a2)) ≤ λρ(ṽ1 − a1) + (1− λ)ρ(ṽ2 − a2) ≤ 1, where the first inequality is due to Subadditivity

and Positive homogeneity of ρ. It indicates λa1 + (1−λ)a2 ∈Kρ(λṽ1 + (1−λ)ṽ2). Taking the

infimum gives us the convexity.

4. Normalization. Because of the property of anti-fragility, we have ρ(a′) = +∞ for all a′ > 0.

Therefore, µ(0) = 0.

To show µ(ṽ)≥ EP̂ [ṽ], notice that ∀a < EP̂ [ṽ], EP̂ [ṽ− a]> 0 and hence ρ(ṽ− a) =∞, a 6∈ Kρ(ṽ).

Therefore, µ(ṽ) = infKρ(ṽ)≥EP̂ [ṽ].

To show ρ(ṽ) = inf {k > 0 | kµ(ṽ/k)≤ 0}, we observe inf {k > 0 | kµ(ṽ/k)≤ 0}= inf{k > 0|∃a≤

0 : ρ(ṽ/k− a)≤ 1}= inf{k > 0|ρ(ṽ/k)≤ 1}= inf{k > 0|ρ(ṽ)≤ k}= ρ(ṽ). �

Proof of Theorem 3. For generality, we consider a support set Z = [z, z̄] in this proof. For any

i∈ [I], the robust satisficing constraint in Problem (18) can be written as:

EQ

[
αi +

1

ε
(ai(z̃)′x− bi(z̃)−αi)+− ki‖z̃− ũ‖

]
≤ 0 ∀Q∈Q,

where

Q :=
{
Q∈P0(Z2)

∣∣∣ (z̃, ṽ)∼Q, z̃ ∼ P, ṽ∼ P̂
}
.

The above constraint can be equivalently written as

sup
Q∈Q

EQ

[
αi +

1

ε
(ai(z̃)′x− bi(z̃)−αi)+− ki‖z̃− ũ‖

]
≤ 0

⇐⇒ αi +
1

Sε

∑
s∈[S]

sup
zs∈Z
{(ai(zs)′x− bi(zs)−αi)+− ki‖zs− ẑs‖} ≤ 0.

Similarly, for i= 0, we have

EQ

[
α0 +

1

ε
(−c(z̃)′x−α0)+− k0‖z̃− ũ‖

]
≤ 0 ∀Q∈Q

⇐⇒ α0 +
1

Sε

∑
s∈[S]

sup
zs∈Z
{(−c(zs)′x−α0)+− k0‖zs− ẑs‖} ≤ 0.
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Hence, the model can be written as:

min
∑

i∈[I]∪{0}

wiki

s.t. αi +
1

Sε

∑
s∈[S]

yis ≤ 0 ∀i∈ [I]

α0 +
1

Sε

∑
s∈[S]

y0s + τ ≤ 0

yis ≥ sup
zs∈Z
−ki‖zs− ẑs‖ ∀i∈ [I]∪{0}, s∈ [S]

yis ≥ sup
zs∈Z
{ai(zs)′x− bi(zs)−αi− ki‖zs− ẑs‖} ∀i∈ [I], s∈ [S]

y0s ≥ sup
zs∈Z
{−c(zs)′x−α0− k0‖zs}− ẑs‖ ∀s∈ [S]

x≥ 0

αi ∈R, ki ≥ 0, yis ≥ 0 ∀i∈ [I]∪{0}, s∈ [S].

First, we focus on supzs∈Z −ki‖zs− ẑs‖. For any i∈ [I]∪{0}, s∈ [S], we have

sup
zs∈Z
−ki‖zs− ẑs‖= 0.

Then, we focus on supzs∈Z{ai(zs)
′x− bi(zs)−αi− ki‖zs− ẑs‖}. For any i∈ [I], s∈ [S], we have

sup
zs∈Z

ai(zs)
′x− bi(zs)−αi− ki‖zs− ẑs‖

= sup
zs∈Z

a>i,0x+
∑
n∈[N ]

a>i,nxzsn− bi,0−
∑
n∈[N ]

bi,nzsn−αi− ki‖zs− ẑs‖

= sup
zs∈Z

(A>i x− bi)>zs +a>i,0x− bi,0−αi− ki‖zs− ẑs‖

= sup
zs∈Z

inf
‖γis‖∗≤ki

(A>i x− bi−γis)>zs +a>i,0x− bi,0−αi +γ>isẑs

= inf
‖γis‖∗≤ki

{ sup
zs∈Z
{(A>i x− bi−γis)>zs}+a>i,0x− bi,0−αi +γ>isẑs},

where the interchange of sup and inf is valid because the function is biaffine, Z is convex and

closed, and the set {γis ∈ RN | ‖γis‖∗ ≤ ki} is convex and compact. Now, we focus on the inner

maximization problem:

sup (A>i x− bi−γis)>zs
s.t. zs ≤ z̄

−zs ≤−z.

By strong duality in linear optimization, the above is equivalent to:

inf η>1isz̄−η>2isz

s.t. η1is−η2is =A>i x− bi−γis
η1is ≥ 0, η2is ≥ 0.
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Hence, we know

inf
‖γis‖∗≤ki

sup
zs∈Z
{(A>i x− bi−γis)>zs}+a>i,0x− bi,0−αi +γ>isẑs

is equivalent to

inf (η>1isz̄−η>2isz+a>i,0x− bi,0−αi) + (A>i x− bi−η1is +η2is)
>ẑs

s.t. ‖A>i x− bi−η1is−η2is‖∗ ≤ ki
η1is ≥ 0, η2is ≥ 0.

After re-arranging the terms, the above is

inf η>1isz̄−η>2isz− (η1is−η2is)
>ẑs + (A>i x− bi)>ẑs +a>i,0x− bi,0−αi

s.t. ‖A>i x− bi−η1is +η2is‖∗ ≤ ki
η1is ≥ 0, η2is ≥ 0.

Similarly, for s∈ [S], we have

sup
zs∈Z
{(−c(zs)′x−α0)+− k0‖zs− ẑs‖}

= inf
‖γ0s‖∗≤k0

{ sup
zs∈Z
{(−C>x−γ0s)

>zs}− c>0 x−α0 +γ>0sẑs}

By strong duality of the inner maximization problem, the above is equivalent to

inf η>10sz̄−η>20sz− (η10s−η20s)
>ẑs− (C>x)>ẑs− c>0 x−α0

s.t. ‖−C>x−η1is +η2is‖∗ ≤ k0

η1is ≥ 0, η2is ≥ 0.

Hence, after replacing z̄ = 1 and z =−1, the final reformulation for the robust satisficing prob-

lem (18) becomes:

min
∑

i∈[I]∪{0}

wiki

s.t. αi +
1

Sεi

∑
s∈[S]

yis ≤ 0 ∀i∈ [I]

yis ≥ ai(ẑs)>x− bi(ẑs) + (η1is +η2is)
>1− (η1is−η2is)

>ẑs−αi ∀i∈ [I], s∈ [S]

α0 +
1

Sε0

∑
s∈[S]

y0s + τ ≤ 0

y0s ≥−c(ẑs)>x+ (η10s +η20s)
>1− (η10s−η20s)

>ẑs−α0 ∀s∈ [S]

‖A>i x− bi−η1is +η2is‖∗ ≤ ki ∀i∈ [I], s∈ [S]

‖C>x+η10s−η20s‖∗ ≤ k0 ∀s∈ [S]

η1is ≥ 0, η2is ≥ 0 ∀i∈ [I]∪{0}, s∈ [S]

x≥ 0

αi ∈R, ki ≥ 0, yis ≥ 0 ∀i∈ [I]∪{0}, s∈ [S].

�
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Proof of Theorem 4. We first focus on the maximization problem:

sup
B(r)

EP̂

c>x+
∑
n∈[N ]

dnz̃nxn

 .
By classic results (Mohajerin Esfahani and Kuhn 2018), the above can be written as:

inf
k≥0

kr+
1

S

∑
s∈[S]

sup
zs∈Z

c>x+
∑
n∈[N ]

dnzsnxn− k‖zs− ẑs‖1


 ,

which can be further reduced to

c>x+ inf
k≥0

kr+
1

S

∑
s∈[S]

∑
n∈[N ]

sup
zsn∈[−zn,1]

{dnzsnxn− k|zsn− ẑsn|}

 .

We can now focus on the inner maximization problem, for s∈ [S], n∈ [N ]:

sup
zsn∈[−zn,1]

{dnzsnxn− k|zsn− ẑsn|}

= xn sup
zsn∈[−zn,1]

{dnzsn− k|zsn− ẑsn|}

= xnmax{dnẑsn, dn− k(1− ẑsn)}

= xn(dnẑsn + (dn− k)+(1− ẑsn)),

where the first equality follows because xn ∈ {0,1} and k ≥ 0, and the second equality follows by

noticing that d≥ 0 and the maximum can only occur at zsn ∈ {ẑsn,1}. Hence, we have

1

S

∑
s∈[S]

∑
n∈[N ]

sup
zsn∈[−zn,1]

{dnzsnxn− k|zsn− ẑsn|}

=
∑
n∈[N ]

1

S

∑
s∈[S]

(dnẑsn + (dn− k)+(1− ẑsn))xn

=
∑
n∈[N ]

(dnEP̂ [z̃n] + (dn− k)+(1−EP̂ [z̃n]))xn

=
∑
n∈[N ]

(dn− k)+xn,

where the last equality is due to EP̂ [z̃] = 0. Hence, the reformulation in the theorem follows from

the results of Bertsimas and Sim (2003) that it suffices to restrict k ∈ {0, d1, . . . , dN}. �

Proof of Theorem 5. First, the robust satisficing constraint

EP

c>x+
∑
n∈[N ]

dnz̃nxn

≤ τ + k∆W (P, P̂) ∀P∈P0(Z)
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can be equivalently written as

1

S

∑
s∈[S]

sup
zs∈Z
{c>x+

∑
n∈[N ]

dnzsnxn− k‖zs− ẑs‖1} ≤ τ

⇐⇒ c>x+
1

S

∑
s∈[S]

sup
zs∈Z

∑
n∈[N ]

(dnzsnxn− k|zsn− ẑsn|)

≤ τ
⇐⇒ c>x+

1

S

∑
s∈[S]

∑
n∈[N ]

sup
zsn∈[−zn,1]

{dnzsnxn− k|zsn− ẑsn|} ≤ τ.

By the proof of Theorem 4, the inner maximization can be written as

sup
zsn∈[−zn,1]

{dnzsnxn− k|zsn− ẑsn|}= xn(dnẑsn + (dn− k)+(1− ẑsn)).

Hence, we can write the robust satisficing constraints as:

c>x+
1

S

∑
s∈[S]

∑
n∈[N ]

xn(dnẑsn + (dn− k)+(1− ẑsn))≤ τ

⇐⇒ c>x+
∑
n∈[N ]

1

S

∑
s∈[S]

(dnẑsn + (dn− k)+(1− ẑsn))xn ≤ τ

⇐⇒ c>x+
∑
n∈[N ]

(dnEP̂ [z̃n] + (dn− k)+(1−EP̂ [z̃n]))xn ≤ τ

⇐⇒ c>x+
∑
n∈[N ]

(dn− k)+xn ≤ τ,

where the last equality is due to EP̂ [z̃] = 0. Hence, we arrive at Problem (23).

Because we minimize k in Problem (23), we can use a bisection search algorithm. Whenever

k ≥ ‖d‖∞, Problem (23) is feaisible because τ ≥ Z0. Hence, we can safely set the upper bound of

the bisection search to be ‖d‖∞. Finally, for each fixed k, the complexity of the resulting feasibility

subproblem has the same conplexity as the empirical combinatorial optimization problem. �

Proof of Theorem 6. Based on the definition of Wasserstein metric, we can rewrite the stochas-

tic linear robust satisficing model as

min k

s.t. EQ
[
c(z̃)>x+d>y(z̃)− k‖z̃− ṽ‖1

]
− τ ≤ 0, ∀Q∈Q,

A(z)x+By(z)≥ b(z), ∀z ∈Z,

y ∈RN,P , x∈X , k≥ 0

where the ambiguity set Q is defined as

Q :=
{
Q∈P0(Z2)

∣∣∣ (z̃, ṽ)∼Q, z̃ ∼ P, ṽ∼ P̂
}
.
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Given the structure of P̂, we can rewrite the above problem as

min k

s.t.
1

S

∑
s∈[S]

EQs [c(z̃)>x+d>y(z̃)− k‖z̃− ẑs‖1]≤ τ, ∀Qs ∈P0(Z), s∈ [S],

A(z)x+By(z)≥ b(z), ∀z ∈Z,

y ∈RN,P , x∈X , k≥ 0,

where Qs can be seen as the conditional probability distribution of z̃ given ṽ = ẑs. The worst

case distribution Q∗s ∈ P0(Z), s ∈ [S], is a one-point distribution. Therefore, the above problem is

equivalent to

min k

s.t.
1

S

∑
s∈[S]

sup
z∈Z

{
c(z)>x+d>y(z)− k‖z− ẑs‖1

}
≤ τ,

A(z)x+By(z)≥ b(z), ∀z ∈Z,

y ∈RN,P , x∈X , k≥ 0,

(37)

We will show that for any optimal solution in (37) we can find a feasible solution in (29) with

the same objective value and vice versa.

Consider any optimal solution (k̄, x̄, ȳ) in Problem (37). We define ŷs(z, u) := ȳ(z) for all (z, u)∈

Z̄s, s ∈ [S]. Because A(z)x̄+Bȳ(z)≥ b(z) for all z ∈ Z, we also have A(z)x̄+Bŷs(z, u)≥ b(z)

for all (z, u)∈ Z̄s, s∈ [S].

In addition,
1

S

∑
s∈[S]

sup
z∈Z

{
c(z)>x̄+d>ȳ(z)− k̄‖z− ẑs‖1

}
≤ τ

indicates
1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

{
c(z)>x̄+d>ŷs(z, u)− k̄u

}
≤ τ

because of the definition of ŷ and Z̄s, s∈ [S]. Therefore, (k̄, x̄, ŷ1, . . . , ŷS) is feasible in Problem (29)

and leads to the same objective value.

Now, consider any optimal solution (k̄, x̄, ȳ1, . . . , ȳS) in Problem (29). We define ŷ(z) :=

ȳs∗(z)(z,‖z− z̃s∗(z))‖1) for all z ∈Z, where

s∗(z) := arg min
s∈[S]

{d>ȳs(z,‖z− ẑs‖1)}.

Because A(z)x̄+Bȳs(z, u)≥ b(z) for all (z, u)∈ Z̄s, s∈ [S], we must have

A(z)x̄+Bȳs(z,‖z− ẑs‖1)≥ b(z), ∀z ∈Z, s∈ [S].
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By the definition of ŷ, we have

A(z)x̄+Bŷ(z)≥ b(z), ∀z ∈Z.

Notice that
1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

{
c(z)>x̄+d>ȳs(z, u)− k̄u

}
≤ τ,

which indicates

1

S

∑
s∈[S]

sup
z∈Z

{
c(z)>x̄+d>ȳs(z,‖z− ẑs‖1)− k̄‖z− ẑs‖1

}
≤ τ.

Then, by the definition of ŷ, we have

1

S

∑
s∈[S]

sup
z∈Z

{
c(z)>x̄+d>ŷ(z)− k̄‖z− ẑs‖1

}
≤ τ.

The above follows from the definition of ŷ; specifically,

d>ŷ(z)≤ d>ȳs(z,‖z− ẑs‖1), ∀z ∈Z, ∀s∈ [S].

Therefore, from (k̄, x̄, ȳ), we can get a feasible solution (k̄, x̄, ŷ) for Problem (37) that leads to the

same objective value. �

Proof of Theorem 7. Because τ ≥Z0, there exists some x̄∈X and ȳs ∈RP , s∈ [S] such that

1

S

∑
s∈[S]

(c(ẑs)
>x̄+d>ȳs)≤ τ,

A(ẑs)x̄+Bȳs ≥ b(ẑs), ∀s∈ [S].

Because matrix B has complete recourse, we can find a ŷsN+1 such that:

Bŷs,N+1 ≥


max
i∈[N ]
{|[bi−Aix̄]1|}

...

max
i∈[N ]
{|[bi−Aix̄]M |}

 .

Therefore, for any (z, u)∈ Z̄s, s∈ [S] and m∈ [M ], we have

[BŷN+1]mu≥
∑
i∈[N ]

[BŷN+1]m|zi− ẑsi| ≥
∑
i∈[N ]

|[bi−Aix̄]m||zi− ẑsi| ≥
∑
i∈[N ]

[bi−Aix̄]m(zi− ẑsi),

which indicates

BŷN+1u≥
∑
i∈[N ]

(bi−Aix̄)(zi− ẑsi), ∀(z, u)∈ Z̄s, ∀s∈ [S].
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Notice that we can rewrite A(z)x and b(z) as:

A(z)x=A(z− ẑs + ẑs)x=A(ẑs)x+
∑
i∈[N ]

Aix(zi− ẑsi), ∀s∈ [S], ∀z ∈Z,

b(z) = b(z− ẑs + ẑs) = b(ẑs) +
∑
i∈[N ]

bi(zi− ẑsi), ∀s∈ [S], ∀z ∈Z.

Let us define ŷs,0 := ȳs and ŷs,i := 0 for i∈ [N ]. By above inequality and the alternative form of

A(z)x and b(z), we have

A(z)x̄+B(ŷs,0 + ŷs,N+1u+
∑
i∈[N ]

ŷs,izi)≥ b(z), ∀(z, u)∈ Z̄s, ∀s∈ [S].

Next, we define

k̂ := max

{
0, max
i∈[N ],s∈[S]

{|c>i x̄|+d>ŷs,N+1}
}
,

which satisfies

∑
i∈[N ]

c>i x̄(zi− ẑsi) +d>ŷs,N+1u− k̂u≤ 0, ∀(z, u)∈ Z̄s, ∀s∈ [S].

Notice that we can rewrite c(z)>x as

c(z)>x= c(z− ẑs + ẑs)
>x= c(ẑs)

>x+
∑
i∈[N ]

c>i x(zi− ẑsi), ∀s∈ [S], ∀z ∈Z.

By above inequality and alternative form of c(z)>x, we have

1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

{
c(z)>x̄+d>

(
ŷs,0 +

∑
i∈[N ]

ŷs,izi + ŷs,N+1u
)
− k̂u

}
≤ 1

S

∑
s∈[S]

(c(ẑs)
>x̄+d>ȳs)

≤ τ.

Therefore, (k̂, x̄, ŷs,0, . . . , ŷs,N+1) constitutes a feasible solution to Problem (31).

Now, we show that the scenario-wise lifted affine recourse adaptation would yield the exact

objective value as Problem (29) when P = 1. In this case, matrix B has dimension M ×1, i.e., B ∈

RM,1 and it is either strictly positive or negative. When dB ≤ 0, the solutions to both Problem (31)

and Problem (29) are trivial and their objective values coincide. For non-trivial cases, we can,

without loss of generality, focus on d> 0 and B > 0.

In Problem (29), the recourse function ys(z) must satisfy

ys(z, u)≥ max
m∈[M ]

{
[b(z)−A(z)x]m

[B]m

}
, ∀(z, u)∈ Z̄s, ∀s∈ [S].
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In addition,
1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

{
c(z)>x+ dys(z, u)− ku

}
≤ τ

can be equivalently written as

1

S

∑
s∈[S]

vs ≤ τ

vs ≥ c(z)>x+ dys(z, u)− ku, ∀(z, u)∈ Z̄s, ∀s∈ [S].

The above indicates that the recourse function ys(z) must satisfy

ys(z, u)≤ vs− c(z)>x+ ku

d
, ∀(z, u)∈ Z̄s, ∀s∈ [S].

Therefore, an optimal recourse function for any s∈ [S] would be

ys(z, u) :=
vs− c(z)>x+ ku

d
,

which is an affine function of z and u for a given scenario s. Therefore, there exists an optimal

scenario-wise lifted affine function for Problem (31) that achieves the same optimal solution as

Problem (29). �

Proof of Theorem 8. To see the first property, consider any x,ys,i, k,φ which are feasible to

Problem (32). For any z ∈Z, there exists s∈ [S] and u∈R such that (z, u)∈ Z̄s. Correspondingly,

choose y= ys,0 +
∑

i∈[N ] ys,izi +ys,N+1u, we have A(z)x+By=A(z)x+B
(
ys,0 +

∑
i∈[N ] ys,izi +

ys,N+1u
)
≥ b(z), where the inequality is due to the feasibility of x,ys,i for Problem (32). Therefore,

Q(x,z)<∞.

To see ¯̄Z0 ≥ Z̄0, we consider an optimal x,y(z) = y0 +
∑

i∈[N ] yizi ∈ LN,P for the problem

in defining ¯̄Z0. We then choose ys,i = yi,∀i ∈ {0,1, . . . ,N}, ys,N+1 = 0,∀s ∈ [S], φ = ¯̄Z0, k =

maxi∈[N ]{|x>ci + d>yi|}, and show that they are feasible to Problem (32). Consider any s ∈ [S]

and (z, u)∈ Z̄S,c(z)>x+d>

ys,0 +
∑
i∈[N ]

ys,izi +ys,N+1u

− ku
−

c(ẑs)>x+d>

y0 +
∑
i∈[N ]

yiẑsi


=
∑
i∈[N ]

(ci (zi− ẑsi))>x+d>

∑
i∈[N ]

yi (zi− ẑsi)

− ku
=
∑
i∈[N ]

(
x>ci +d>yi

)
(zi− ẑsi)− ku

≤
∑
i∈[N ]

(
x>ci +d>yi

)
(zi− ẑsi)− k

∑
i∈[N ]

|zi− ẑsi|

≤
∑
i∈[N ]

k|zi− ẑsi| − k
∑
i∈[N ]

|zi− ẑsi|

= 0,
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where the first two inequalities are due to the definition of Z̄S and k, respec-

tively. Therefore, we always have
(
c(z)>x+d>

(
ys,0 +

∑
i∈[N ] ys,izi +ys,N+1u

)
− ku

)
≤(

c(ẑs)
>x+d>

(
y0 +

∑
i∈[N ] yiẑsi

))
, and hence

1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

{
c(z)>x+d>

(
ys,0 +

∑
i∈[N ]

ys,izi +ys,N+1u
)
− ku

}
≤ 1

S

∑
s∈[S]

c(ẑs)>x+d>

y0 +
∑
i∈[N ]

yiẑsi


= ¯̄Z0

= φ.

Hence, the first constraint in Problem (32) is satisfied. The second constraint in Problem (32)

follows directly from the feasibility of x,y(z) = y0 +
∑

i∈[N ] yizi ∈LN,P for the problem in defining

¯̄Z0. Therefore, we conclude that such x,ys,i, φ,k are feasible to Problem (32), and hence Z̄0 ≤ φ=

¯̄Z0.

To see Z̄0 ≥Z0, consider any x,ys,i, φ, k which are feasible to Problem (32). For any s∈ [S], choose

ys = ys,0 +
∑

i∈[N ] ys,iẑsi. Noticing that x,ys,i are feasible to the second constraint in Problem

(32) and choosing (z, u) = (ẑs,0), we have A(ẑs)x+B
(
ys,0 +

∑
i∈[N ] ys,iẑsi +ys,N+1 · 0

)
≥ b(ẑs),

the left-hand-side of which is indeed A(ẑs)x+Bys. Therefore, x,ys are feasible to Problem (26).

Consequently,

Z0 ≤
1

S

∑
s∈[S]

(
c(ẑs)

>x+d>ys
)

=
1

S

∑
s∈[S]

c(ẑs)>x+d>

ys,0 +
∑
i∈[N ]

ys,iẑsi +ys,N+1 · 0

− k · 0


≤ 1

S

∑
s∈[S]

sup
(z,u)∈Z̄s

c(z)>x+d>
(
ys,0 +

∑
i∈[N ]

ys,izi +ys,N+1u
)
− ku


≤ φ,

where the first inequality is due to the feasibility of the x,ys to Problem(26), the second inequality

holds since (ẑs,0) ∈ Z̄s, the last inequality follows from the feasibility of x,ys,i, φ, k to Problem

(32). Since it holds for all feasible φ, we conclude Z0 ≤ Z̄0.

In the case of complete recourse, by Theorem 7, φ=Z0 is feasible to Problem (32), which implies

Z̄0 ≤Z0; together with Z0 ≤ Z̄0, we conclude Z0 = Z̄0.

The last property is straightforward. Specifically, with the optimal x,ys,i, k for Problem (32), we

can construct ys(z, u) = ys,0 +
∑

i∈[N ] ys,izi + ys,N+1u. Then x,ys(z, u), k are feasible to Problem

(29) with any τ ≥ Z̄0. �
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Proof of Theorem 9. We first look at the first set of constraints:

EP
[
x>z̃

]
≥ τ − k0∆W (P, P̂) ∀P∈P0(Z),

which is equivalent to

EP
[
−x>z̃

]
≤−τ + k0∆W (P, P̂) ∀P∈P0(Z).

Then, the reformulation of this constraint follows from the proof of Proposition 2 by noticing I = 1,

a1 =−1, b1 = 0, C = 0, h= 0. Specifically, this constraint is equivalent to that ∃y1 such that

1

S

∑
s∈[S]

y1s ≤−τ

y1s ≥−x>ẑs ∀s∈ [S]

k0 ≥ ‖x‖∞.

By replacing the variable y1 with −y1, the above is equivalent to

1

S

∑
s∈[S]

y1s ≥ τ

y1s ≤x>ẑs ∀s∈ [S]

k0 ≥ ‖x‖∞.

Now, we focus on the second set of constraints

α+
1

ε
EP
[
(−x>z̃−α)+

]
≤ β+ k1∆W (P, P̂) ∀P∈P0(Z),

which is equivalent to

EP

[
max

{
α,−1

ε
xz̃− ε− 1

ε
α

}]
≤ β+ k1∆W (P, P̂) ∀P∈P0(Z).

Then, we can reformulate this by the proof of Proposition 2, noticing that I = 2, a1 = 0, b1 = α,

a2 =−1/ε, b2 =−α(ε− 1)/ε, C = 0, h= 0. Specifically, after rearranging the term, this constraint

is equivalent to that ∃y2 such that

α+
1

εS

∑
s∈[S]

y2s ≤ β

y2s ≥−x>ẑ−α ∀s∈ [S]

y2s ≥ 0 ∀s∈ [S]

k1 ≥ ‖x‖∞.

From these reformulations, we see that the objective function is only subject to one constraint: k0 +

wk1 ≤ (1+w)‖x‖∞, for which the ranking only depends on ‖x‖∞. Hence, the final formulation (34)

follows. �
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Proof of Proposition 7. This follows because the objective is essentially ‖x‖∞ and 1>x = 1.

Hence, the best possible objective is achieved by a equal-weighted portfolio 1/N . Since τ ≤

EP̂ [1>z̃/N ] and β ≥CεP̂(−1>z̃/N), the equal-weighted portfolio is feasible in Model (34) and it is

also optimal. �
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B. Infeasibility of Lifted Affine Recourse Adaptation under Relatively
Complete Recourse

We adopt the example used in Bertsimas et al. (2019). Consider the case of unbounded support

Z = [−1,1]2 and

min k

s.t. 0× y(z)− 0≤ k‖z‖1, ∀z ∈Z

y(z)≥ z1− z2 ∀z ∈Z

y(z)≥ z2− z1 ∀z ∈Z

y(z)≤ z1 + z2 + 2 ∀z ∈Z

y(z)≤−z1− z2 + 2 ∀z ∈Z

y ∈R3,1, k≥ 0,

for which a feasible recourse function would be y(z) = |z1− z2|. Hence, this is a relatively complete

recourse problem. Under the lifted affine recourse adaptation, we solve the following problem:

min k

s.t. 0≤ ku, ∀(z, u) : u≥ ‖z‖1,z ∈Z

y0 + y1z1 + y2z2 + y3u≥ z1− z2 ∀(z, u) : u≥ ‖z‖1,z ∈Z

y0 + y1z1 + y2z2 + y3u≥ z2− z1 ∀(z, u) : u≥ ‖z‖1,z ∈Z

y0 + y1z1 + y2z2 + y3u≤ z1 + z2 + 2 ∀(z, u) : u≥ ‖z‖1,z ∈Z

y0 + y1z1 + y2z2 + y3u≤−z1− z2 + 2 ∀(z, u) : u≥ ‖z‖1,z ∈Z

y0, y1, y2, y3 ∈R, k≥ 0.

For z = 0, the pair of semi-infinite constraints y0 +y3u≥ 0 and y0 +y3u≤ 2 for all u≥ 0, implies that

y3 = 0. With z1 = z2 = 1, we have y0 + y1 + y2 = 0, and with z1 = z2 =−1, we have y0− y1− y2 = 0,

both implying y0 = 0. Moreover, with z1 = 1, z2 = −1, we would require y1 − y2 = 2. However,

infeasibility occurs when z1 = −1, z2 = 1, which mandates −y1 + y2 = 2. Hence, no lifted affine

recourse function would be feasible in the above problem.
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C. Additional Simulation Results

The adaptive network lot-sizing problem In the main text, we used a normal distribution,

N (20,102), to generate the test data. Here, we use a normal distribution N (20,122). The results

are summarized in Figure 10, Figure 11, and Figure 12.
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Figure 10 Summary of performance: RS and RO models at different first-stage costs
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(b) Cost metrics w.r.t. target τ
Figure 11 Out-of-sample cost metrics w.r.t. Wasserstein radius r in RO (left) and target τ in RS (right).
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Figure 12 Change of the “nice” range of radius in RO (left) and normalized target in RS (right).
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D. A Sample Code for RS and RO using RSOME

RSOME is a Matlab modeling package for distributionally robust optimization (Chen et al. 2020),

which can be used to solve robust satisficing and robust optimization. Here, we provide a sample

code of the adaptive network lot-sizing problem. The sample code for the RO model is as follows:

%%%% Parameters %%%%
% S: number of samples
% N: number of stores
% D: maximum possible demand
% c: cost of ordering
% l: cost of emergency ordering
% t: transportation cost
% d: historical samples of demands
% r: radius of the Wasserstein ball

%%%% Variables %%%%
% x: initial stock allocation
% w: second -stage emergency ordering
% y: second -stage transhipment

%%%% Model %%%%
model = rsome(’RO’);

% Define random variables
z = model.random(N,1); %demand
u = model.random; %lifted variable

% Define scenarios and the lifted joint ambiguity set
P = model.ambiguity(S);
for s = 1:S

P(s).suppset (0 <= z, z <= D, norm(z - d(s,:) ’) <= u);
end
pr = P.prob;
P.probset(pr == 1/S);

% Define event -wise expectation
P.exptset(expect(u) <= r);

% Declare Warsserstein ambiguity set
model.with(P);

% Define decision variables
x = model.decision(N,1);
y = model.decision(N,N);
w = model.decision(N,1);

% Define scenario -wise adaptation
for s = 1:S

y.evtadapt(s);
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w.evtadapt(s);
end
% Define affine adaptation
y.affadapt(z);
y.affadapt(u);
w.affadapt(z);
w.affadapt(u);
% Define objective function
model.min(c’*x+expect(sum(sum(t.*y)) + c2 ’*w));

% Define constraints
for i = 1:N

model.append(z(i)-x(i)-w(i)+sum(y(i,:))-sum(y(:,i)) <= 0);
end

model.append(y >= 0);
model.append(w >= 0);
model.append(x >= 0);
model.append(x <= D);

% Solution
model.solve;

The sample code for the RS model is as follows:

%%%% Parameters %%%%
% S: number of samples
% N: number of stores
% D: maximum possible demand
% c: cost of ordering
% l: cost of emergency ordering
% t: transportation cost
% d: historical samples of demands
% T: target

%%%% Variables %%%%
% x: initial stock allocation
% w: second -stage emergency ordering
% y: second -stage transhipment

%%%% Model %%%%
model = rsome(’RS’);

% Define random variables
z = model.random(N,1); %demand
u = model.random; %lifted variable

% Define scenarios and the lifted joint ambiguity set
P = model.ambiguity(S);
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for s = 1:S
P(s).suppset (0 <= z, z <= D, norm(z - d(s,:) ’,1) <= u);

end

pr = P.prob;
P.probset(pr == 1/S);
% Declare ambiguity set
model.with(P);

% Define decision variables
k = model.decision ();
x = model.decision(N,1);
y = model.decision(N,N);
w = model.decision(N,1);

% Define scenario -wise adaptation
for s = 1:S

y.evtadapt(s);
w.evtadapt(s);

end
% Define affine adaptation
y.affadapt(z);
y.affadapt(u);
w.affadapt(z);
w.affadapt(u);
% Define objective function
model.min(k);

% Define constraints
model.append(c’*x+expect(sum(sum(t.*y)) + c2 ’*w - k*u) <= T)
for i = 1:N

model.append(z(i)-x(i)-w(i)+sum(y(i,:))-sum(y(:,i)) <= 0);
end

model.append(y >= 0);
model.append(w >= 0);
model.append(x >= 0);
model.append(x <= D);

% Solution
model.solve;
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