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Problem Definition: The Singapore government has recently proposed the concept of “Locker Alliance” (LA), an
interoperable network of public lockers in residential areas and hot spots in community, to improve the efficiency of last
mile parcel delivery operations. This is to complement the existing infrastructure, comprising mainly of proprietary
lockers and collection points in commercial areas set up by large delivery companies. How do we determine the density
and coverage of the LA network, to promote adoption of locker pickup in Singapore? What will be the impact on the
delivery profile in the central business district, far from the residential areas?
Academic/Practical Relevance: We discuss the operational challenges associated with the problem of public locker
installation in a city, following a new smart nation initiative in Singapore. We used data analytics to address the
question: What are the chances that a customer will choose to pickup parcel from a locker, over home or office
deliveries, based on walking distance (to lockers) and a variety of other features? Without knowing the transit routes
of the customers, how do we design the LA network to ensure that the lockers will be well utilized?
Methodology: We use a set of locker usage data from a commercial courier company to calibrate a locker choice
model, to determine the impact of walking distance on locker pickup intentions. We use the current (observed)
parcel delivery profile to develop a facility location model for the LA network. We use this model to extrapolate and
approximate the true adoption and new delivery profiles when the LA network is built.
Results: Contrary to conventional wisdom, our model does not always place lockers near areas with peak parcel
volume (in pre-existing data), because the LA lockers provide another option for customers to pick up from lockers
near residential areas. Furthermore, the model suggests that a coverage of 250 meters is appropriate for the LA network
in Singapore.
Managerial Implications: Commercial parcel locker installation has traditionally focused on hot spots in the transit
routes of the citizens in the city. The LA network is the first attempt in Singapore to allow public lockers in residential
areas. This paper develops analytical method to determine network density and coverage based on a locker choice
model, and argues how useful insights can be gleaned from the model, despite not having the full transit route
information of all citizens in the city.
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“Based on IDA’s findings, the biggest problem faced by our local delivery companies is in making

door-to-door deliveries and finding that no one is at home to receive the goods. Return visits

add to costs and often inconvenience for customers.”1

Singapore Deputy Prime Minister Tharman Shanmugaratnam, April 2016

1 Locker system for parcel deliveries in residential areas to be implemented; retrieved from http://www.
channelnewsasia.com/news/singapore/locker-system-for-parcel/2731536.html
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1. Introduction
The rapid growth of business-to-consumer (B2C) e-commerce has boosted the sales of online retailers.
According to a survey2 reported by Ecommerce Foundation, global sales of B2C reached $2.3 trillion
in year 2015, almost doubled the sales accrued in 2012. Intensive online transactions have given
rise to the present challenges in urban logistics, especially in the last mile delivery of parcels from
distribution center to consumers. This is a challenge that smart cities have to grapple with in their
development into mega business centers to allow growing number of urban population to live and
work in the cities.

E-commerce companies like Google, Amazon, eBay, and Uber etc. are operating and expanding
services that allow shoppers to order goods online and have them delivered to their homes, preferably
on the same day.3 However, in this mode of operations, consumers often have to wait at home for
their parcels. Existing innovations in this space focus on reducing the variability of the delivery time
windows and/or using communication technologies to provide advanced notices prior to the arrival
of the parcels. Despite much effort, unfortunately failed or missed deliveries still arise frequently,
adding costs to last mile operations. In these instances, delivery companies have to either re-schedule
another delivery or direct the customers to pick up the parcels at some designated places, including
customer’s pickup at workplace, retail stores, friends or family members, or locations pre-designated
by customers in case of failure in the deliveries. A recent survey4 conducted by UPS showed clearly
that delivery to home (residential address) is stilled the preferred mode of delivery location choice
(67% in 2015), although a growing number of customers surveyed have shifted their preferred choices
to other non-traditional pickup locations.

A few delivery companies have experimented with the use of innovative technologies such as auto-
mated locker system as an alternate channel for parcel pickup by customers (Faugere and Montreuil
2017). This strategy effectively decouples the parcel delivery and customer’s pickup processes within
the last mile, reducing the coordination cost for a successful transaction, and also the needs for
re-delivery. Song et al. (2009) demonstrated that lockers can indeed provide additional savings in
operational cost and improve the delivery efficiency. In addition, it was also shown that the implemen-
tation of locker system can reduce the number of deliveries in city area and thus can reduce the liter
consumption and CO2 emission (e.g., Edwards et al. 2009, 2010, Iwan et al. 2016). DHL/Deutsche
Post now operates around 2500 lockers in Germany, and Swedish PostNord supplied about 5000
pickup points for customers in Sweden, Norway, Finland, and Denmark (Morganti et al. 2014b).

2 Global B2C E-Commerce report 2016; retrieved from http://www.ecommercefoundation.org.
3 SAME-DAY DELIVERY: E-Commerce Giants Are Battling To Own The ‘Last Mile’; retrieved from http://www.
businessinsider.sg/e-commerce-and-same-day-delivery-2014-9
4 2015 UPS Pulse of the Online Shopper; retrieved from https://www.pressroom.ups.com/assets/
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SingPost in Singapore runs a network of 140 lockers, strategically located to serve exclusively its

customers. A few logistics players have also set up similar, albeit smaller scale parcel locker network

system in Singapore. Most lockers can handle 3 or more parcel sizes, and pre-registration is normally

required for proprietary locker systems.

To maximize utilization, some companies have installed lockers in hot spots near public places

where consumers will congregate to. Amazon for instance puts their lockers in tube stations in

London. Others have opted to put lockers in busy bus terminals/stops and commercial shopping

areas. However, the upfront land and installation cost in these places can be prohibitive for small

players. The location choices are also affected by regulations and policies imposed on the sector.

Singapore government, for instance, prohibits the installation of commercial parcel lockers in train

stations or crowded public areas, due to security concerns.

To level the playing field, and to shape the future of smart last mile operations, the Singapore

government has recently announced its plan to roll out a Locker System (LA Network) as part of its

smart nation vision.5 The locker network allows parcel pickup and return to be performed without

face-to-face contact with carriers. Instead, customers can directly interact with the locker system

via a digital interface (cf. Figure 1). Through the automated infrastructure, the government aims

to build a society of digitally receptive delivery companies and customers so as to provide more

convenient, more cost-effective, and quicker parcel delivery services.6 As a side effect, the government

also targets to streamline the flows of parcels into crowded districts. The LA project will be open to

all parcel delivery companies, making it the first country to do “large scale deployment of common

parcel lockers” at a national level. This is a bold move, and hopefully will allow many logistics

companies to break away from the lack of scale in their respective business models to offer seamless

parcel delivery services to reduce the cost of delivery operations. The latter comes from the fact that

delivery productivity can be expected to increase 3 to 4 folds with the LA Network, since many of

the door-to-door deliveries in the same block can now be consolidated and delivered to a single locker

station.

The LA Network is also expected to increase the volume of e-commerce retail transactions by

making delivery more convenient for the consumers. Companies in several sectors can also re-engineer

their operations to exploit the availability of the lockers. For instance, field service engineers no longer

need to stock spares in their car trunks, but can get the needed spares delivered to the nearest lockers

when the need arises. However, while these are indirect benefits that the LA Network can bring to

5 Singapore’s Smart Nation Initiative; retrieved from the Keynote talk of the “Smart Libraries for Tomorrow” Con-
ference, http://www.las.org.sg/wp/lft/files/0910-TKY-Smart-Libraries-for-Tomorrow-20-Sep-Final.pdf
6 Singapore Locker Alliance; retrieved from https://www.lockeralliance.net
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Figure 1 Automated locker infrastructure deployed in the LA Network pilot.

(a) Singpost Locker (b) Blu Locker
Note. Two companies – Singpost and Blu – were involved in the LA Network pilot launched by Singapore government. Two

towns (Punggol and Bukit Panjang) and eight MRT stations were selected to deploy 70 lockers.
The locker infrastructure figures were retrieved from https://www.lockeralliance.net.

the national economy, the long-term viability of the locker network nevertheless hinges on answers

to the following key fundamental question:

What should be the right density and coverage of the LA network in the city? In

particular, how near should we place a locker to a customer to make usage of the service appealing?

The Singapore government aims to install a locker station within 250 meters of every public housing

block in the city.7 Is this coverage suitable? How will this affect utilization?

How many parcels in other part of the city will be shifted to self-pickup at lockers in
residential areas? It has been argued that growth in parcel deliveries would contribute to slower

city commutes and greater carbon emission. In the case of Singapore, shifting such deliveries away

from the central business district (CBD) in the city will go a long way to curb the problems with

traffic congestion in the CBD. How can a locker in residential areas, far away from the CBD, divert

parcel volume away?

We propose a locker network design model to provide answers to these questions. To design the

locker network, it is critical to address the issue of locker choice in the problem, using current parcel

delivery dataset obtained in the case without the LA Network (i.e., when the customer does not have

LA network as a choice). Note that we observe only the parcel volume at each delivery location,

but do not know the choice processes underlying the decisions. To understand this, we provide an

example to illustrate how this affects the design of locker networks.

7 As comparison, the city has a public bus stop within 400 meters of every public housing block.
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Example 1. Consider an environment with two groups of customers, all living in one home loca-

tion H = {1}, and working in one of the two office locations W = {2,3} (cf. Figure 2(a)). The

customers currently have their parcels (one parcel delivery for each customer) delivered to either

home or office, leading to two different demand segments (1,2) and (1,3). Note that the demand

segments here correspond to the transit routes taken by the customers. Let D1,2 =D1,3 = 12 denote

the number of such customers in each segment. Furthermore, customers from each demand segment

form a consideration set of parcel delivery options.

We assume that the customers’ preferences towards parcel deliveries follow an attraction model

(e.g., MNL choice model). For ease of exposition, we denote respectively the attraction of delivery-

to-home and delivery-to-office by θH and θW for both groups of customers. Furthermore, we set

θH = 1, θW = 3. Prior to the installation of lockers, customers from segment (1,2) can get their parcels

delivered to either location 1 or location 2, while customers from segment (1,3) can do so at location

1 or location 3. Based on the MNL model, we observe that 6 customers have their parcels delivered

to location 1 (DO
1 = (D1,2+D1,3)× θH

θH+θW
= 6), 9 customers have their parcels delivered to location

2 (DO
2 = D1,2 × θW

θH+θW
= 9), and the other 9 customers have their parcels delivered to location 3

(DO
3 =D1,3× θW

θH+θW
= 9), where we use DO

i to represent the observed parcel volume at each location

i∈ {1,2,3}.

Figure 2 Locker network design example.

(a) Demand Profile (b) Traditional Model (c) Model with Actual Demand D

Note. The circle stands for home location and the squares for offices. Lockers are indicated as triangles. The lockers can be
installed either next to home or offices.

There are three potential locations {1,2,3} for parcel locker installation (cf. Figure 2(b)). Let

θα,k denote the attraction value of the locker installed at location k ∈ {1,2,3} to the customer from

demand segment α = (1,2) or (1,3). We set θ(1,2),1 = θ(1,2),2 = θ(1,3),1 = θ(1,3),3 = 2, and θα,k = 0

otherwise. Suppose our objective is to install one locker so that the volume of delivery to the locker

is maximized. Where should we locate the locker?
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In the traditional facility location model, the volume of delivery to the locker is calculated based
on the observed parcel volume DO, which shows 6 deliveries at location 1, 9 at location 2, and 9

at location 3. Putting locker at location 1 seems to be a bad choice. However, in our example, if a
locker is installed at location 1, customers from both segments (1,2) and (1,3) will put locker 1 as an
alternative delivery option into their considerations sets. As a result, the volume of parcels diverted
to the locker is

θ(1,2),1
θH + θW + θ(1,2),1

×D1,2 +
θ(1,3),1

θH + θW + θ(1,3),1
×D1,3 =

2

1+3+2
× 12+

2

1+3+2
× 12 = 8.

This turns out to be the optimal design to maximize locker utilization, as locker in location 2 or
3 will attract only 4 deliveries. Therefore, it is optimal to locate the parcel locker in area with low
observed parcel volume!

This issue arises because locker at a location will be considered only if it lies on the transit route
α of the customers. Unfortunately, obtaining the transit route of all customers in a city appears to
be a daunting task, and we only have data on the current delivery volume to each location. In this
paper, we develop a robust locker network design model to address this issue, and show how we can
still glean useful insights on the potential impact of the LA network.

Figure 3 Empirical parcel delivery to CBD and non-CBD regions in Singapore over a period of 3 months.

Using real data on observed delivery volume to homes and offices provided by government agency
and industry players, and a set of locker usage data from a commercial courier company, we examine
the impact of the LA Network on the re-distribution of the volume of parcel deliveries into the central
business district (CBD) in Singapore. We note that the delivery profile (cf. Figure 3) clearly indicates
that the parcel density (more than 6000 parcels per day) in CBD is almost 3 times that of the average
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amount delivered to other areas. Given that the Government will allow LA lockers to be installed in
residential blocks and community/transit hot spots like MRT stations outside of the CBD, it will be
important to understand how many of these parcels will be switched to be picked up from lockers
near their residential addresses? In this way, we can maintain high utilization of the lockers and yet
reduce the number of parcels delivered to the CBD area at the same time.

Our key contributions in the paper are summarized as follows:
(1) Customer Choice. Using a set of proprietary locker usage data in a commercial locker

network, we propose and calibrate a locker choice model to capture the appeal of the locker pickup
option for the customers. This allows us to obtain a partial answer to the key question – how close do
we need to locate a locker near the customer to ensure that it will have a high chance of being used?8

The analysis suggests that the planning norm (250 meters) adopted by the Singapore government
seems to be an appropriate trade-off for the design of the LA network.

(2) Network Design. If we know the transit route of each customer in the system, we could
determine the appeal of each locker in the network for the customer, using the customer choice model
developed earlier. However, in the absence of such information, and using only the volume of parcels
delivered to each address in the country, we develop a facility location model to extrapolate and
approximate the utilization of each locker installed in the LA network. We demonstrate that the opti-
mality loss incurred by this approach is bounded above by a constant factor when the attractiveness
of locker pickup is smaller than delivery to homes or offices.

(3) Computational Efficiency. Given the size of the LA Network, standard MIP approaches
using the big-M formulation do not scale well. We propose a SOCP-MIP model for this large-scale
network design problem, reducing drastically the size of the constraints and variables for the problem.

(4) Managerial Insights. With a planning norm of a locker within 250 meters of every public
housing block, we estimated that the LA network (with 1500 lockers) has the ability to divert at
least 7.5% of the parcel volume currently delivered into the CBD.

Outline of this paper. The rest of this paper is organized as follows. We review relevant literature
in Section 2. In Section 3, we describe the dataset we used to study this problem. In Section 4,
we calibrate a locker choice model that we will use in the network design model. In Section 5, we
address the locker network design problem. We apply this model to study the impact of LA Network
on the delivery profile in the CBD area in Section 6. Section 7 concludes the paper. We present a
compact reformulation of the locker network design model in Appendix A. In Appendix B, we focus
in the case when each transit route consists of only home-office pair, and estimate the volume of

8 We assume that consumers enjoy one dollar discount by choosing to pick up at lockers, which is the operating model
for this set of data. We ignore the pricing issue in this paper because such decisions are more operational in nature.
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traffic on each pair, using a set of public transit data in Singapore. This allows us to estimate the
hitherto unknown transit route for each customer and solve the locker network model with the transit
route information incorporated. For completeness, we compare the market share maximization model
(studied in this paper) and the customer welfare maximization model (a plausible alternative for the
network designer) in Appendix C. More details on the Singapore LA Network case are provided in
Appendix D. In Appendix E, we provide the technical proofs.

2. Literature Review
This work is motivated by the announcement of the plan by the Singapore Government to launch a
nation wide LA Network, as part of the Singapore Smart Nation Initiatives. We restrict our focus
to the literature related to locker operations. For other topics on last mile innovation, we refer the
interested readers to Savelsbergh and Van Woensel (2016) and Ranieri et al. (2018).

Torres and Suggs (2015) provided a detailed description of the locker system. For each locker
station, there are multiple compartments of different sizes, used for parcel delivery and retrieval.
Some researches focused on the design and development of smart locker system (e.g., Fee 2015, Irwin
et al. 2015) while some investigated the effect of locker system on city logistics. For example, Song et
al. (2009) quantified the saving of delivery cost if failed deliveries can be diverted to lockers. Morganti
et al. (2014a) described the last mile innovation by using locker networks in European countries, and
Morganti et al. (2014b) demonstrated the effectiveness of locker network as an alternative to home
delivery. Ranieri et al. (2018) introduced the locker system as an innovative strategy to reduce the
externalities cost such as traffic congestion and pollution. In addition, the locker system was also
demonstrated to be effective in reducing the number of deliveries in city area and thus reducing
the liter consumption and CO2 emission (cf. Edwards et al. 2009, 2010, Iwan et al. 2016). Notably,
although it has been widely accepted that the locker can be used to improve the delivery efficiency
and reduce the negative impact on environment, few researches have been done on the locker network
design problem (Savelsbergh and Van Woensel 2016).

Locker network design is essentially a facility location problem, which is a long-standing topic in the
operations management literature. Wu et al. (2015) used public transport data and historical delivery
data to locate the locker stations. The key approach was to estimate transport mobility pattern of
the population and they suggested that lockers should be installed at crowded places to serve more
customers. Wang et al. (2017) developed a covering model to decide the optimal locker network so
that the volume of captured demand could be maximized. Recently, Lin et al. (2020a) studied the
locker location problem and used the multinomial logit (MNL) model to predict customer’s choice
towards different lockers. Moreover, Lin et al. (2020b) introduced a threshold luce model to capture
the zero-probability choice in the locker location problem. Along this direction, we note that the
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MNL model is a natural option to formulate customer choices in the facility location problem. For
example, Zhang et al. (2012) studied the MNL model in a healthcare facility location problem. Aros-
Vera et al. (2013) addressed the park-ride location problem under the MNL framework. In a similar
vein, we adopt the MNL model to capture customer choices in the locker network design problem.
Furthermore, we empirically calibrate the choice parameters and validate the performance of MNL
model using a set of proprietary data.

Based on the data analytics, we observe that substitution effect exists among different lockers.
Glaeser et al. (2019) empirically studied the substitution effect among different pickup points operated
by one online retailer. They showed that the pickup points negatively affect the demands of their
nearby points within 0.5 miles. To capture this effect in their location problem, they developed
a mixed quadratic and integer programming model. A similar location model was also developed
in Kung and Liao (2017). However, Kung and Liao (2017) claimed that a facility would be more
attractive with more nearby facilities. In the present work, we also develop an econometric model to
study the substitution effects across nearby lockers.

In the end, we highlight that we develop a robust location model to address the locker network
design problem since the demand information is not directly observable. Notably, robust optimization
techniques have been used to solve different variants of facility location problems under uncertain
environments. For example, Baron et al. (2011) studied a multi-period facility location problem
with demand uncertainty. Chan et al. (2017) developed a robust model to decide the locations
for automated external defibrillator while the uncertainty comes from the spatial distribution of
potential demands. Wang et al. (2020) studied a robust hub location problem in the face of uncertain
commodity demand and cost information. Under our robust model, we derive a compact formulation
to address the locker network problem.

3. Description of Dataset
Singapore is a heavily urbanized city-state in Southeast Asia and has a total land area of 719.1 square
kilometers.9 Its central business district (CBD) occupies 17.84 square kilometers,10 accounting for
2.5% of the total land area. However, among the average daily volume of parcels delivered, 14.39% of
them are delivered to the CBD area. These estimates are obtained from a set of proprietary delivery
data provided by a commercial operator in Singapore. The average distance of the last mile operation
in Singapore (measured from the distribution center of the operator to the addresses of the delivery
operations) is around 10.16 km for this company. The delivery activities are organized based on a
zonal system. Figure 4(a) shows the delivery activities of different workers on a typical day in the

9 Geography of Singapore; retrieved from https://en.wikipedia.org/wiki/Geography_of_Singapore
10 Central Area, Singapore; retrieved from https://en.wikipedia.org/wiki/Central_Area,_Singapore
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country. The deliveries start usually near the central area, and fan out gradually to the outskirts
near the end of the day. The workers are also organized in the zonal system, and each worker delivers
only to a small zone in the country.

Figure 4 Last mile delivery in Singapore.

(a) Parcel Delivery Activity (b) Demand Distribution over the Island
Note. (a) Each delivery worker, identified by a unique color, is responsible for a specific zone in the country at the end of a

typical day. (b) The yellow/blue (light/dark) bars represent the commercial buildings/residential blocks, respectively.
The height visualizes the volume of delivery at the location.

Our dataset contains three months of parcel delivery records of a parcel delivery company in
Singapore, from January 2016 to March 2016, with deliveries to 28,953 locations over the island. For
each parcel delivery record, we obtain the (unique) delivery ID, delivery time, delivery destination
(address, longitude, and latitude), courier ID, and delivery status (delivered or failed). The estimated
volume of daily average deliveries is 42,650. According to our collected delivery records, more than
20% of parcels could not be physically delivered to their destinations. Among the failed deliveries, we
observe that almost 40% were due to customers not showing up at the pre-arranged time windows. We
also collected the delivery records between January 2017 and February 2017 to examine the predictive
performance of our proposed customer choice model towards the locker usage. The geographical
distributions of delivery to public residential and private/commercial blocks are plotted in Figure
4(b). According to the spatial distribution of these buildings, public residential deliveries are mainly
along the outskirt of the island, while most commercial deliveries are clustered at the downtown areas
(the central part of the island). As Singapore is a densely populated country, we cluster the public
residential and private/commercial blocks (including shopping malls and public transit stations) into
population centers. We use K-Centroids approach to cluster the dataset into 1000 public residential
centers (represented by set H) and 2000 private/commercial centers (represented by set W), based
on geographic proximity. We estimate the daily parcel volume (i.e., market share) to each center,
using the parcel delivery dataset.
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Prior to the announcement of the LA Network, our industry partner has experimented with locker
pickup operations in 29 selected locations, in collaboration with the convenience store 7-11 in Sin-
gapore. As an incentive, customers were given a dollar discount off their delivery charges if they opt
for locker pickup. This dataset provides a unique glimpse into the way customer chooses to pick up
parcels from the lockers. For each parcel delivery (to locker) record, we obtain the delivery ID, parcel
delivery time to locker, parcel collection time from locker, receiver information (customer address),
locker station, locker size (larger, medium, and small), and delivery status (delivered or failed). Note
that some of the reported addresses are in private/commercial estates, indicating that the customers
were picking up parcels at lockers near their work areas. As estimated from the dataset, we observe
that most of the customers collected their parcels from the lockers within one day. The median of
parcel retrieval times is 7.49, 6.36 and 6.97 hours, in January, February and March, respectively.
Around 3/4 customers collected their parcels within 24 hours, while the remaining customers picked
up their parcels much later for various reasons.

Figure 5 Locker usage patterns.

(a) Parcel Collection Pattern (Singapore) (b) Parcel Collection Pattern (CBD Region)
Note. (a) The dots represent the customer addresses while the circles represent the locker locations. The line between the

circle and the dot visualizes the parcel collection pattern of a locker user. The size of each circle corresponds to parcel
volume to the locker. (b) The markers indicate the installed lockers in the CBD region. The blue circles represent the
locations of these locker users while the black dots represent the locations of those customers choosing outside options.
The line between the circle and the marker visualizes the parcel collection pattern of a locker user.

The reported customer addresses and the locker locations selected for pickup are shown in Figure
5. We collected 1680 locker usage observations and plot the customer pickup behavior. The 29 lockers
spread all over the island (determined by the location and suitability of 7-11 outlets), and hence
the dataset is sufficiently representative to characterize the locker usage behaviors of the entire
population. We observe that some lockers are at major shopping centers or close to MRT (subway)
stations, whereas some are at convenience stores in residential areas. Unfortunately, with 29 locker
locations, the volume of parcels picked up at lockers are around 1% of the total parcel volume
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delivered by the company. Many of the lockers were not well utilized at this scale. In addition, we
observe that 69.3% customers chose the lockers within 3 kilometers of their addresses, while some
customers clearly prefer to pick up parcels near the MRT stations that may be far away. Notably,
these lockers located at both shopping malls and MRT stations attract more customers to use. To
capture the effect of locker location type on customer choice, we introduce an index LockerType to
indicate whether the locker is installed near both MRT and Shopping mall or not. Furthermore, we
observe that customers from public residential blocks are more likely to use lockers, compared to the
customers from commercial blocks. Motivated by this observation, we calibrate the choice models for
customers from residential blocks and commercial districts separately.

4. Customer Choice Model
Previous research focuses on exploring the incentives of customers to use lockers, but ignores their
choice behavior in selecting different lockers available to them. Collins (2015) used a survey in Aus-
tralia to investigate customer choice between conventional delivery and lockers. They showed that
the distance to lockers plays a significant role in affecting customer choice. Weltevreden (2008) empir-
ically studied the utilization of lockers in Netherlands and they showed that customers will obtain
higher utility to use lockers when there are more lockers in the vicinity of their home. Based on these
studies, we hypothesize that, the distance from customer reported address to the selected locker loca-
tion has a significant impact on customer locker choice behavior. To be more concrete, we hypothesize
that customer would be more sensitive to distance if the distance is within a certain range. Their
utilities towards lockers decrease drastically with the increase of distance to lockers. But once the
distance exceeds a threshold, customers would be indifferent to all locker options. Therefore, we can
use a concave nondecreasing function to re-scale the distance measurement.

We also notice that the substitution happens across different lockers, i.e., the delivery to one locker
would be affected by the presence of other lockers in the vicinity. Glaeser et al. (2019) demonstrated
that this effect exists in a retail location setting and introduced a regression model to calibrate this
effect (which is called spatial cannibalization effect in their paper). The substitution effect is widely
studied in the assortment literature (e.g., Talluri and Van Ryzin 2004) and the MNL choice model is
commonly used to capture this effect across different products. Motivated by the results in Glaeser
et al. (2019), we use a similar econometric model to demonstrate that the substitution effect exists
in the locker network and then use the MNL model to calibrate customer choice towards the lockers.

Last but not least, we collect an out-of-sample dataset (i.e., the records between January and
February 2017) to test the model, and compare the predicted market share by the econometric model
and our MNL model. It turns out that the MNL model provides better prediction accuracy. Hence,
we calibrate the customer choice using the MNL model in the locker network design study.
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4.1. Substitution Effect in the Locker Network
We combine two sources of delivery datasets from January 2016 to March 2016. The first source
contains the traditional delivery to home/office records, and the second dataset contains the delivery
to locker records. Following Glaeser et al. (2019), we aggregate the monthly average demand to each
location in the following regression model:

(Model 1) ParcelsToLockerk,m = β0 +β1LockerTypek+β2NearbyLockersk

+β3TotalDeliverym(log)+β4LockerLocationk+ ϵk,m.

The subscript k ∈ S0 = {1,2, . . . ,29} refers to each locker station, and m= {1,2,3} represents the
index of month. The response variable ParcelsToLockerk,m represents the total volume of parcels
delivered to locker k during month m. The explanatory variable LockerTypek indicates whether the
locker k is located near both MRT and Shopping mall or not. NearbyLockersk indicates if there
are other lockers within the vicinity (i.e., within stipulated distance). TotalDeliverym represents the
total volume of parcels during month m. We do not use the volume of parcels at the vicinity of each
locker as additional feature, since the variable LockerLocationk has already been used to control for
the locational effect, i.e., the zonal information of each locker location. We assume the error term
ϵk,m captures other factors that are not specified in our model.

Table 1 Substitution effect across neighbor lockers.

Variables Model 1 Model 2 Model 3

Nearby Lockers within 1 km −7.322∗∗ −7.319∗ −7.319∗

(2.208) (2.824) (3.134)
Nearby Lockers from 1 km to 3 km 2.044 −2.383 −2.383

(4.274) (5.409) (6.003)
Nearby Lockers from 3 km to 5 km 3.302 2.901 2.901

(3.885) (4.969) (5.515)
Locker Type 21.122∗∗∗ – –

(2.969) – –
Volume of Total Deliveries (log) 19.643∗∗∗ 19.643∗∗∗ –

(3.495) (4.470) –
(Intercept) −198.225∗∗∗ −189.325∗∗∗ 18.188∗∗

(37.138) (47.476) (5.415)
Location Control True True True

Number of Observations 78 78 78
R-squared 0.555 0.263 0.080

Signif. codes: ∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05

Robust standard errors are provided in parentheses.

The regression results are summarized in Table 1. We observe that the coefficient of
Nearby lockers within 1 km is significantly negative, which implies the existence of substitution
effect among neighbor lockers. In other words, nearby lockers within 1 km will decrease demand
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by 7 on average. However, additional lockers farther than 1 km do not have significant effect. To
check the robustness of this effect, we remove the variables LockerTypek and TotalDeliverym from
Model 1 and develop two simplified models, say Model 2 and 3, respectively. Notably, a consistent
substitution effect can be observed in all models. We also find that these lockers located near both
MRT and Shopping mall are significantly more attractive than the others.

In fact, it is natural to apply this class of econometric models to predict the market share captured
by each locker station, but it is hard to directly capture the customer’s utility. Next, we use the MNL
model to calibrate customer choice towards the lockers.

4.2. Calibration of MNL Choice Model
We use the locker usage dataset to calibrate the MNL choice model for locker operation, to understand
the impact of “distance of the locker from home/office”, and the locational feature like whether the
locker is located near a major shopping mall and/or train station. Besides the option of choosing
lockers for parcel delivery, the outside options (i.e., delivery-to-home and delivery-to-office) are also
considered in the discrete choice model. This forms the basis for our LA Network design model.
Furthermore, to control for wealth effect, we split the whole delivery dataset into residential block
location set (denoted by H0) and commercial district location set (denoted by W0), based on the
addresses reported by the customers, and estimate the choices for two groups of customers separately.
We assume that customers are homogeneous within each group, and they are utility maximizer in
using lockers. Due to space constraint, we describe only the case of customers with reported addresses
at residential blocks to illustrate the model calibration process.

We have 29 lockers (denoted by S0) installed at different locations (cf. Figure 5(a)). We assume
that each customer i ∈H0 can opt to use any locker k ∈ S0 for parcel delivery. Let θi,k denote the
utility obtained from locker k for customer i. Besides, she can choose to receive the parcel at the
reported address (outside option), represented by {0H}. Let θH denote the utility obtained from the
outside option. In this way, the consideration set for customer i∈H0 can be represented by {0H}∪S0.
Here we assume that all the customers share the same consideration set in the locker experiments.
Under the MNL choice model (Talluri and Van Ryzin 2004), the probability that customer i selects
locker k for parcel delivery is given by:

Pi,k = P(customer i selects locker k)

= P(customer i selects locker k|customer chooses to pickup from locker)

×P(customer chooses to pick up from locker)

=
θi,k∑
l∈S0 θi,l

×
∑

l∈S0 θi,l

θH +
∑

l∈S0 θi,l
,

where
∑

l∈S0 θi,l represents the total utility gained from the set of lockers against outside option.
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Indeed, it is standard to jointly estimate the utility from outside option θH together with the

utility of using lockers θi,k. However, our locker experiment dataset is highly imbalanced, with very

few customers using the delivery-to-locker option (cf. Figure 5(b)). To deal with this challenge, we

introduce a two-stage approach to calibrate θi,k and θH, respectively. At stage 1, we implement the

R package mlogit11 to estimate the customer utility towards different lockers, given that customers

have chosen lockers. At stage 2, we apply the maximum likelihood estimation method to estimate the

utility of outside option.

Stage 1: Customer Choices over Different Lockers
We model the utility θi,k obtained from locker k by customer i as

log(θi,k) = β1(Distancei,k)
γ +β2LockerTypek

where the explanatory variable Distancei,k represents the distance from customer location i to the

selected locker k. We let γ ∈ (0,1) model the diminishing effect of distance on locker choice. The best

fit obtained from our dataset is γ = 1/3. The other (binary) explanatory variable LockerType= 1 if

the locker k is installed at a location near both MRT and Shopping Mall; LockerType= 0 otherwise.

{β1, β2} are the coefficients to be estimated.

The model calibrations for customers from public residential blocks and commercial blocks are

provided in Table 2. The coefficients for (Distance) are negative in both choice models, and hence

the utility of using locker decreases with the distance from the locker to customer address. Further-

more, the lockers located at both MRT and Shopping Mall are more attractive to customers. This

observation is consistent with the results from Model 1. We also find that the MRT and Shopping

Mall lockers are more attractive to the customers from residential blocks, compared to those from

commercial blocks.

Table 2 Logit of customers from public residential blocks.

Variables Customers from Public Residential Blocks Customers from Commercial Blocks

(Distancei,k)
1
3 −4.59∗∗∗ −4.47∗∗∗

(0.14) (0.19)
LockerType 1.50∗∗∗ 0.52∗∗∗

(0.11) (0.15)

Number of Observations 1106 574
Log-Likelihood -946.8 -587.4

Signif. codes: ∗ ∗ ∗p < 0.001, ∗ ∗ p < 0.01, ∗p < 0.05

Robust standard errors are provided in parentheses.

11 Please see https://cran.r-project.org/web/packages/mlogit/mlogit.pdf

Electronic copy available at: https://ssrn.com/abstract=3471166



16

Stage 2: Estimation of Outside Option
We estimate next the utility of outside option θH. Let ai denote the population of customers opting
to having the parcels delivered to their home addresses (i.e. outside option), and bi be the population
who opted to picking up parcels from the lockers. We can represent the probability of choosing outside
option for customer i as θH

θH+
∑
l∈S0 θi,l

, which is treated as the likelihood function. Similarly, we can
represent the probability of choosing the existing lockers for delivery as

∑
l∈L θi,l

θH+
∑
l∈S0 θi,l

. We target to
find the optimal θH such that the total likelihood function is maximized by the following model:

max
∑
i∈H

[
ailog

(
θH

θH +
∑

l∈S0 θi,l

)
+ bilog

( ∑
l∈S0 θi,l

θH +
∑

l∈S0 θi,l

)]
s.t. θH ≥ 0

Recall that we let θH denote the utility of outside option for the customers from public residential
blocks, and θW the utility of outside option for the customers from private/commercial blocks. Using
this two-stage calibration approach, we obtain that θH = 7.06 and θW = 17.79. The difference between
these two utilities implies that customers from public residential blocks are more likely to use lockers,
compared to those from private/commercial blocks.

To summarize, the calibrated MNL choice models for the two groups of customers are given by:{
log(θi,k) = −4.59× (Distancei,k)

1
3 +1.50×LockerTypek, θH = 7.06, (i∈H0)

log(θj,k) = −4.47× (Distancej,k)
1
3 +0.52×LockerTypek, θW = 17.79, (j ∈W0)

(1)

We acknowledge that the time-variant attributes (e.g., weekday effect) and the price were not
controlled in the locker experiments. The MNL model can be extended to incorporate the pricing
issue if this information is available. Next, we show the impact of parcel pickup distance and locker
type on the relative utility of using lockers (i.e., the value of θi,k/θH for i ∈ H0, and θj,k/θW for
j ∈W0) in Figure 6. It shows that: (1) the utility of using lockers decreases in the distance from the
customer address to the locker. In particular, the utility drops fast when the distance exceeds 250

meters; (2) customers become indifferent to the lockers far away from them (e.g., over 2000 meters
away from them); (3) Lockers, especially those located near both major shopping mall and train
station, are more attractive to the customers from residential blocks.

4.3. Out-of-Sample Prediction Performance
We use the delivery records collected between January 2017 and February 2017 for out-of-sample
performance test. Note that the choice model is calibrated based on the delivery data from January
to March 2016, given the locker pickup operations in 29 selected locations.

To predict the volume of delivery-to-locker, one straightforward approach is to use the historical
volume. However, this approach is unable to estimate the volume of delivery to new lockers. For
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Figure 6 Relative utility of using lockers.

(a) Customers from Public Residential Blocks (b) Customers from Commercial Blocks

example, the company expanded the locker network to 34 lockers in January 2017. 7 lockers were
removed from previous 7-11 stores and 12 lockers were installed to another stores. Only 22 lockers
were still installed at the same locations. In February 2017, the company removed one more locker
from the network. In fact, the company conducted a trial-and-error experiment to roll out the locker
network. The lockers with low utilization were removed from the network and some new locations
were explored.

Given the observed parcel volumes in January/February 2017 and the expanded locker network,
we predict the monthly volume of delivery to locker using the MNL choice model. The total volume of
delivery-to-locker is 989 from January to February 2017, while the predicted volume is 984. Clearly,
the MNL model performs well in predicting the total market share captured by the locker network.
Furthermore, we calculate the monthly volume of delivery to each locker as well as the predicted
volume to each locker. It shows that the correlation coefficient between the set of actual volumes and
predicted volumes is 0.77. This result demonstrates the good prediction performance of our MNL
choice model in terms of the individual locker market share.

To make the discussion clearer, we provide the density plot of prediction errors under the MNL
model in Figure 7. The absolute prediction error is defined as the absolute difference between the
(monthly) actual volume and predicted volume; and the relative prediction error is defined as the
absolute prediction error divided by the actual volume (×100%). We also apply the linear regression
(LR) model (i.e., the Model 1 in Table 1) to predict the volume of delivery-to-locker. As shown
in Figure 7, the LR model suffers from larger prediction errors, compared with the MNL model.
The average absolute prediction errors under the LR model and MNL model are 8.33 and 5.63,
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respectively. The average relative prediction errors under the LR model and MNL model are 93.02%
and 54.40%, respectively. This result indicates better prediction performance of the MNL choice
model in our locker network design problem.

Figure 7 Density plot of prediction errors.

(a) Absolute Prediction Error (b) Relative Prediction Error

5. Network Design Model
Let Dα denote the number of parcel deliveries for customers in segment α. For instance, customers
who live in home i and work at office j, and will consider picking up parcels at either location i or j
are clustered into the same demand segment α= (i, j).

Let the binary decision variable xk denote the decision whether to locate a locker station in location
k or not. We use gα(x) to denote the (convex) disutility of the network design solution x for this
segment, i.e., the proportion of deliveries in segment α that will not be picked up at the LA network.
In general, Dα is unknown to the planner.

We consider two disjoint sets of locations – the set of public residential housing blocks H and the
set of private/commercial buildings W . The demand segments can be separated into the following
three classes:

• Class I: Customers who will consider home delivery option, for some i ∈H, and pickup from
lockers, if there is one installed in the neighborhood of location i (denoted Ni). This segment of
demand is denoted by α = (i) for i ∈ H. Let Di,i denote the parcel volume of such customers in
the population, and θi,k denote the attraction of locker station k to customers in segment i. Let θH
denote the attraction of delivery-to-home for this class of customers, identical for all segment i∈H.
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The disutility function, representing the proportion of parcels that will not be using the lockers by
these customers, is given by:

gi,i(x) =

{
θH

θH +
∑

k∈Ni
θi,kxk

}
;

and the proportion of pickup in locker station k ∈Ni is given by:

gi,k(x) =

{
θi,kxk

θH +
∑

k∈Ni
θi,kxk

}
;

• Class II: Customers who will consider delivery to office, for j ∈W , and pickup from lockers if
one is installed in the neighbor set Nj . This segment of demand is denoted by α= (j) for each j ∈W .
Let Dj,j denote the parcel volume of such customers in the population, and θj,k denote the attraction
of locker station k to customers in segment j. Let θW denote the attraction of delivery-to-office for
this class of customers. The proportion of customers who continue to request for office delivery is
given by:

gj,j(x) =

{
θW

θW +
∑

k∈Nj
θj,kxk

}
;

and the proportion of pickup in locker station k ∈Nj is given by:

gj,k(x) =

{
θj,kxk

θW +
∑

k∈Nj
θj,kxk

}
;

• Class III: Customers who live in home block i∈H and work at office building j ∈W , and will
consider pickup at locker stations near either home i (denoted by Ni) or office j (denoted by Nj).
This segment of demand is denoted by α= (i, j) for each i∈H, j ∈W . Let Di,j denote the volume of
such customers in the population, and θ(i,j),k denote the attraction of locker station k to customers
in segment (i, j). The proportion of customers in this class who continue to request for home or office
delivery is given by:

gi,j(x) =

{
θH + θW

θH + θW +
∑

k∈Ni∪Nj
θ(i,j),kxk

}
,

and

θ(i,j),k =


θi,k k ∈Ni \Ni ∩Nj,

θj,k k ∈Nj \Ni ∩Nj,

θi,k+ θj,k k ∈Ni ∩Nj.

This gives rise to

gi,j(x) =

{
θH + θW

θH + θW +
∑

k∈Ni
θi,kxk+

∑
k∈Nj

θj,kxk

}
.

For these three classes of customers, there are |H| + |W| + |H| × |W| customer segments in our
demand model, with gα(·) represented by gi,i(·), gj,j(·), and gi,j(·), respectively.

Note that there could be other type of demand segments, corresponding to different transit routes
(with multiple stops in transit hotspots besides home and office addresses). These customers may
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consider lockers installed near their transit routes, other than homes or offices. This results in a wider
set of lockers in the consideration sets of these customers. For ease of exposition, we focus only on
the three classes of customers identified above in this paper. Our results can be extended directly to
the more general case.

The empirical delivery profile is obtained in the case x = 0. i.e., prior to the installation of the
LA Network. Hence we observe only DO

i and DO
j , the original number of parcels delivered to each

location i ∈ H and j ∈W in our dataset, when x= 0. Furthermore, let DO
i,j denote possibly lower

bound on the volume in the (i, j) segment.12 Based on the definition of the three classes of customers,
we have

DO
i :=Di,i+

∑
j∈W

θH
θH + θW

Di,j, i∈H, (2)

and
DO
j :=Dj,j +

∑
i∈H

θW
θH + θW

Di,j, j ∈W, (3)

where Di,i, Dj,j , and Di,j represent the actual demand at each customer segment (i), (j), and (i, j),
respectively. However, the data Di,i, Dj,j and Di,j are not directly observable, since the home-office
pair information of each customer in the population might not be available. In what follows, we
present two locker network design models – one deterministic model with actual demand profile D

and one robust model with unknown demand profile. By comparing the two models, we explicitly
characterize the performance loss if the demand profile D is not available.

Locker Network Design with Locker Choice
We formulate the LA Network Design model with demand profile D as follows:

(P) min
x

V (x,D) :=

{∑
i∈H

Di,igi,i(x)+
∑
i∈W

Dj,jgj,j(x)+
∑

i∈H,j∈W

Di,jgi,j(x)

}

s.t.
∑
k∈S

xk ≤C∑
k∈Mi

xk ≥ 1, ∀i∈H

xk ∈ {0,1}, ∀k ∈ S

where the objective minimizes the proportion of parcels not delivered to the lockers among all the
demand segments {Di,i,Dj,j,Di,j}. In the Singapore LA Network case, the desired goal is to ensure
that there is always a locker station within the vicinity of every public residential block (e.g., 250
meters). Therefore, the second set of “egalitarian” constraints forces that

∑
k∈Mi

xk ≥ 1, ∀i ∈ H,

12 In Appendix B, we provide a systematic way to estimate the volume of DO
i,j in each segment (i, j), using a set of

public transit data in Singapore.
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where Mi denotes the locker sets within the vicinity of the residential block i. We numerically examine

the impact of egalitarian constraint on the design of locker network in Appendix D.1.

We need the demand profile {Di,i,Dj,j,Di,j} to solve problem (P). In the Singapore LA Network

case, we observe that the volume of parcel delivery is (weakly) positively correlated to the volume

of public transit records on origin-destination trips. Therefore, we can use a set of public transit

data to obtain a rough estimate of the value of {Di,j}, to solve problem (P). The numerical study is

detailed in Appendix B. We also develop an exact second-order cone programming & mixed integer

programming (SOCP-MIP) reformulation for this problem in Appendix A. This reformulation allows

us to use available solver to construct a locker network solution in a reasonable computational time,

provided D can be reasonably estimated.

Robust Locker Network Design with Locker Choice

Recall that the data Di,i, Dj,j and Di,j are not directly observable, since the home-office pair infor-

mation of each customer in the population is not available. To overcome this information gap and

issues associated with unknown demand profile, we introduce a robust model (P) to address the LA

Network Design problem:

(P) min
x

max
E∈D

V (x,E) =

{∑
i∈H

Ei,igi,i(x)+
∑
i∈W

Ej,jgj,j(x)+
∑

i∈H, j∈W

Ei,jgi,j(x)

}

s.t.
∑
k∈S

xk ≤C∑
k∈Mi

xk ≥ 1, ∀i∈H

xk ∈ {0,1}, ∀k ∈ S

where the demand uncertainty set (assume D ̸= ∅) is represented as:

D :=


E ∈R|H|+|W|+|H|×|W|

+ :

Ei,i+
∑
j∈W

θH
θH + θW

Ei,j =DO
i , ∀i∈H,

Ej,j +
∑
i∈H

θW
θH + θW

Ei,j =DO
j , ∀j ∈W,

Ei,i ≥ 0, Ej,j ≥ 0, Ei,j ≥DO
i,j, ∀i∈H, j ∈W.


.

We note that this model is more general than model (P) as we consider more flexible demand

profiles. Interestingly, the worst case scenario in the robust model is independent of the solution x.

The result is formally stated in Proposition 1.
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Proposition 1. In the worst case solution to model (P), assuming D ̸= ∅, we have closed-form
demand profile:

E ∈R|H|+|W|+|H|×|W|
+ :

Ei,i =DO
i −

∑
j∈W

θH
θH + θW

DO
i,j, ∀ i∈H,

Ej,j =DO
j −

∑
i∈H

θW
θH + θW

DO
i,j, ∀j ∈W,

Ei,j =DO
i,j, ∀i∈H, j ∈W.


(4)

In the case when DO
ij = 0 for ∀i ∈H and j ∈W , the worst case solution to problem (P) reduces

to Ei,i =DO
i ,Ej,j =DO

j , and Ei,j = 0 for ∀i ∈H and j ∈W . We denote this by the demand profile
EO. This is indeed the observed delivery profile to each location. Proposition 1 implies that model
(P) with the worst case demand profile is equivalent to the robust model (P). Furthermore, in the
case of DO

i,j = 0 for ∀i∈H, j ∈W , we represent D as D0, and model (P) as (P0) to avoid confusion.
Similarly, it is straightforward to show that model (P0) is equivalent to the robust model (P0). Note
that for any demand profile E ∈D, we must have E ∈D0. Therefore, we claim that D⊆D0.

With a slight abuse of notation, we denote respectively the objective values for model (P0) and
(P) as V 0(x) := V (x,EO) and V (x) := V (x,D), given a feasible locker network solution x. It is
straightforward to show that the performance gap between V 0(x) and V (x) is always nonnegative.

Theorem 1. V 0(x)−V (x)≥ 0 holds for any feasible locker network solution x.

Theorem 1 implies that the market share of the volume of parcels delivered to the lockers, obtained
using the demand profile EO, is a lower bound to the locker network design problem under the
unknown demand profile D, since the disutility of the former is higher. Next, we formally characterize
the performance gap between model (P0) and (P).

Given a feasible locker network solution x, we define the gap between V 0(x) and V (x) as:

Gap(x) := V 0(x)−V (x)∑
i∈HD

O
i +

∑
j∈WDO

j

, (5)

where
∑

i∈HD
O
i +

∑
j∈WDO

j refers to the total delivery volume observed from data sets.
For the sake of notational simplicity, let δiH(x) :=

∑
k∈Ni

θi,kxk denote the total utility of using
lockers under the solution x for customers living at residential block i∈H, and δjW(x) :=

∑
k∈Nj

θj,kxk

denote the total utility for customers working at office building j ∈W . Furthermore,

χi,j(x) :=

[
θHδ

j
W(x)− θWδiH(x)

]2[
θH + δiH(x)

][
θW + δjW(x)

][
θH + θW

][
θH + θW + δiH(x)+ δjW(x)

]
measures the discrepancy between δiH(x) and δjW(x) for each pair (i, j). It is easy to see that χi,j(x)∈
[0,1] for all (i, j)’s and x’s. After some algebra, we can obtain the following results to characterize
Gap(x) under the locker network x.
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Proposition 2. For any feasible solution x, we have V 0(x)−V (x) =
∑

i∈H,j∈W χi,j(x)Di,j.

Let ρiH(x) = δiH(x)/θH and ρjW(x) = δjW(x)/θW denote respectively the relative attractiveness of
locker pickup at home i and office j for the network x. Next, we formally show that the performance
gap between model (P0) and (P) can be upper bounded in Theorem 2.

Theorem 2. Gap(x) ≤ max
i∈H,j∈W

{ [
ρ
j
W (x)−ρiH(x)

]2[
1+ρiH(x)

][
1+ρ

j
W (x)

]}{ θHθW
(θH+θW )2

}
holds for any feasible locker

network solution x.

We observe that in the case of locker delivery services, the attractiveness of locker pickup is usually
smaller than delivery to homes or offices, regardless of the density of the locker network. In this case,
we have ρiH(x)≤ 1, and ρjW(x)≤ 1. Therefore, our result guarantees that for any feasible solution x,
the gap between model (P0) and (P) is bounded above by 1

8
, since[

ρjW(x)− ρiH(x)
]2[

1+ ρiH(x)
][
1+ ρjW(x)

] ≤ 1

2
, whenever ρiH(x)≤ 1, ρjW(x)≤ 1,

and {
θHθW

(θH + θW)2

}
≤ 1

4
, for θH ≥ 0, θW ≥ 0.

Corollary 1. When ρiH(x) ≤ 1, ρjW(x) ≤ 1 for ∀i ∈ H and j ∈W, Gap(x) ≤ 1
8

holds for any
feasible locker network solution x.

5.1. Performance of the Optimal Solution
The previous result shows that planning based on EO, the observed delivery profile before the
installation of the LA network, can be used to estimate the amount of demand lost to home and
office deliveries, under the unknown demand profile D, when the network x(EO) is built. Here we
denote x(EO) as the optimal solution to problem (P0). By optimizing the network over the demand
profile EO, we can obtain a good estimation of the amount of parcels shifted in the network. In the
rest of this section, we analyze the “regret”, using the solution x(EO), under the true demand D.
This is formally defined as follows.

Definition 1. Let x(D) denote the optimal solution obtained in problem (P) when the demand
profile D is known. For any feasible network x, Reg(x,D) := V (x,D)− V (x(D),D) denotes the
performance loss from solution x, compared with the optimal solution x(D).

Next, we analyze maxD∈D Reg(x(EO),D) in the rest of this section.
According to Proposition 1, we have

V (x(D),EO)−V (x(D),D) =
∑

i∈H,j∈W

χi,j(x(D))Di,j.
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Note that V (x(D),EO)≥ V (x(EO),EO) since x(D) is also feasible to problem (P0). Therefore,

∑
i∈H,j∈W

χi,j(x(D))Di,j ≥ V (x(EO),EO)−V (x(D),D)

= V (x(EO),D)+
∑

i∈H,j∈W

χi,j(x(E
O))Di,j −V (x(D),D).

Altogether, it is straightforward to see

Reg(x(EO),D) = V (x(EO),D)−V (x(D),D)≤
∑

i∈H,j∈W

(
χi,j(x(D))−χi,j(x(EO))

)
Di,j.

By the previous results, we have:

Corollary 2. When ρjW(x)≤ 1, ρiH(x)≤ 1 for ∀i∈H and j ∈W,

max
D∈D

Reg(x(EO),D)≤ 1

8

(∑
i∈H

DO
i +

∑
j∈W

DO
j

)
.

5.2. Extension to More General Demand Profile
Note that we have only considered two disjoint classes of locations (i.e., home set H and office
W) in the model, and assume that only lockers near these locations will appeal to the users. In
practice, the users may consider lockers in hot spots near their transit routes, and hence the demand
segments in our problem may consist of more than the three classes as described in the earlier section.
We generalize next the locker network design model to {1,2, . . . ,Γ} disjoint sets of choices in the
consideration set, to allow for pickup near hot spots13 other than home or office. There are in total up
to |Φ|=

(
Γ
1

)
+
(
Γ
2

)
+ . . .+

(
Γ
Γ

)
classes of customers. We let ϕ∈Φ (ϕ ̸= ∅) denote each class (subset) of

customers and Φ denote the collections of all non-empty subsets. With a slight abuse of notation, we
let Φ(γ) denote the collections of all the subsets of customers who at least use location γ (and may
also use some other locations) for pick up or delivery of parcels. For example, the pair (γ,ψ)∈Φ(γ)

represents the class of customers who use both location γ and some other locations in set ψ.
Note that we can only observe the empirical demand volume DO

γ to each location γ when the
facilities have not been installed, as we cannot directly observe the volume of different classes of
customers Dγ,ψ, ∀(γ,ψ)∈Φ(γ) (e.g., the home-office pair information is not observable). Hence, we
have

DO
γ :=Dγ,γ +

∑
(γ,ψ)∈Φ(γ)

θγ
θγ +

∑
j∈ψ θj

Dγ,ψ, ∀γ = 1,2, . . . ,Γ,

13 In the dataset, some customers pickup their parcels near hot spots such as 7-11 stores that are located at/nearby
public transit stations. Beside the consideration sets H and W, we introduce one more set K to represent the delivery
option at hot spots K, and we also use DO

k to represent the observed delivery volume at location k ∈K. In this setting,
there are 7 classes of customers who may opt for 1, 2, or 3 consideration sets, respectively.
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where Dγ,γ denotes the demand volume to location γ from the class of customers who only use the
location γ, while Dγ,ψ denotes the demand volume to location γ from the class of customers who use
both the location γ and some other locations in set ψ. The parameter θj represents the attraction of
delivery to location j for this class of customers.

Given the customer at location γ and nearby facility {xk, k ∈Nγ} if it is installed, the proportion
of customers in class γ who reject to use the facilities x is given by:

gγ,γ(x) =

{
θγ

θγ +
∑

k∈Nγ θγ,kxk

}
.

To avoid confusion, we remark that the subscript (γ, γ) is used to highlight the customer segments
who consider only delivery to location γ, and pickup from lockers if there is one nearby γ. This is
consistent with the notion (i, i) and (j, j) in the home-office setting. For these customers who come
from the demand segment (γ,ψ) ∈ Φ(γ), we denote ψ(j) as the location belong to class j ∈ ψ and
Nψ(j) as the neighbor set of location ψ(j). The proportion of customers in class (γ,ψ) who reject to
use the facilities x is given by:

gγ,ψ(x) =

{
θγ +

∑
j∈ψ θj

θγ +
∑

j∈ψ θj +
∑

k∈Nγ θγ,kxk+
∑

j∈ψ
∑

k∈Nψ(j)
θj,kxk

}
.

Similar to the home-office setting, we represent the demand profile D as:{
D ∈R|Φ|

+ : Dγ,γ +
∑

(γ,ψ)∈Φ(γ)

θγ
θγ +

∑
j∈ψ θj

Dγ,ψ =DO
γ , ∀γ = 1,2, . . . ,Γ

}
. (6)

We develop the following generic framework to address the class of locker network design problems
with actual demand information D:

(G) min
x

U(x,D) :=


Γ∑
γ=1

gγ,γ(x)Dγ,γ +
∑

(γ,ψ)∈Φ(γ)

1

|{γ,ψ}|
gγ,ψ(x)Dγ,ψ


s.t.

∑
k∈S

xk ≤C∑
k∈Mi

xk ≥ 1, ∀i∈H

xk ∈ {0,1}, ∀k ∈ S

where |{γ,ψ}| denotes the number of elements in set {γ,ψ}. In the objective function, we divide the
second term by |{γ,ψ}| to account for “double-counting”.

In the case when Dγ,ψ = 0 for all pair (γ,ψ), we can represent Eγ,γ = DO
γ , and Eγ,ψ = 0 for

∀(γ,ψ) ∈ Φ(γ), γ = 1,2, . . . ,Γ. We denote this by the demand profile EO. Next, we formulate the
locker network design problem based on the observed demand profile EO as:

(G0) min
x

U(x,EO) :=

{
Γ∑
γ=1

[
gγ,γ(x)D

O
γ

]}
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s.t.
∑
k∈S

xk ≤C∑
k∈Mi

xk ≥ 1, ∀i∈H

xk ∈ {0,1}, ∀k ∈ S

With a slight abuse of notation, we denote respectively the objective values for model (G0) and
(G) as U0(x) :=U(x,EO) and U(x) :=U(x,D), given a feasible network solution x. We show that
Theorem 1 can be extended to this generic case, i.e., the volume of demands covered by the lockers,
obtained using the observed demand profile EO, is a lower bound to the locker network design
problem under the unknown demand profile D.

Theorem 3. U0(x)−U(x)≥ 0 holds for any feasible locker network solution x.

6. Impact of Singapore LA Network
In the Singapore LA Network case, we cluster the country into 3000 delivery points, including 1000
residential locations (|H|= 1000) and 2000 commercial locations (|W|= 2000). Since the access to
public residential blocks can be granted by the Authority, the 1000 public residential centers can be
used as locker locations. In addition, as suggested by the senior manager of the delivery company,
convenience stores such as 7-11 outlets and DBS ATM locations are also feasible locations to install
the lockers. We manually collected 980 such locations. Some of these are located in busy shopping
malls, or near train stations. In total, the whole locker set contains 1980 locations (|S| = 1980).
Therefore, there would be 1980 binary decision variables in our problem. We allow all the customers
to choose any of the available lockers, i.e., we let the neighbor set Ni =Nj = S for each i ∈H and
j ∈W in the case study. However, the utility obtained from those lockers far away from them would
be negligible, based on Equation (1). The parameter Mi in the egalitarian constraint is defined as the
collection of locker stations within 250 meters to block i. In the numerical experiments, we formulate
the locker network design models using Java language and solve the optimization problems using
Gurobi on a 2.70 GHz i7-6820HQ CPU Windows PC with 16GB RAM.

We first evaluate the value of Gap(x) in the Singapore LA Network case. By varying the budget C
from 400 to 1900, we solve problem (P0) to obtain a set of locker network solutions. Our numerical
results show that the performance gaps are consistently less than 0.07 under different budgets in this
range. The result holds in our case due to the small attractiveness of locker pickup (i.e., small values
of ρiH(x) and ρjW(x)). It implies that the observed delivery profile EO can be appropriately used
for locker network design, without scarifying too much optimality. Therefore, we solve problem (P0)

based on the observed profile EO in the rest of this paper, unless otherwise stated.
We proceed next to evaluate the impact of locker networks on the volume of parcels delivered to

the CBD area. Note that the parcel density in CBD is almost 3 times that of the average amount
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delivered to other areas (cf. Figure 3), it is natural to look for ways to reduce the volume of parcels
delivered to the CBD area. We show that with a well-chosen LA Network, we can hope to reduce the
volume of parcels delivered to the CBD by at least 7.5%. However, if the commercial goal dominates
and more lockers are installed in the CBD area because of the high volume of parcel deliveries there,
the volume of parcels into the CBD area may actually increase in that case! This illustrates the
importance of a well crafted locker network strategy in the Singapore LA Network.

We compare different locker network strategies and study the impact on the delivery to CBD:
• No Locker: the case when no locker is installed;
• Without CBD Lockers: lockers are not allowed to be installed at CBD. We rule out these CBD

lockers from the potential locker set;
• With CBD Lockers: lockers are allowed to be installed at CBD. When we plot the volume of

parcels to CBD, we consider two cases. The first case excludes the volume of delivery to the CBD
lockers (i.e., only the deliveries to CBD residential blocks and commercial buildings are counted),
whereas the second one includes the volume of delivery to the CBD lockers.

The current volume of parcels delivered to the CBD (i.e. without lockers) is used as the benchmark.
We define the Delivery Change (%) as:

Delivery Change := Vol. delivered to CBD (Lockers) −Vol. delivered to CBD (w/o Lockers)
Volume delivered to CBD (w/o Lockers) ×100%.

If the change is negative, then fewer parcels are delivered to the CBD areas, which may go a long
way in reducing traffic congestion there. We also compare the total volume of parcels covered by the
LA Network, which is defined as:

Covered Delivery :=
Total Delivery Volume−V 0(x)

Total Delivery Volume × 100%.

We plot the delivery change and the total volume of parcels covered by different LA Networks in
Figure 8(a) and (b), respectively.

The findings are summarized as follows:
• If lockers are not allowed to be installed at CBD, the deliveries to CBD decrease with the

expansion of locker network. For example, when the budget is around 1500, at least 7.5% of the
deliveries to CBD will be diverted out (cf. the +-dotted curve).

• If lockers are allowed to be installed at CBD, the delivery of parcels to CBD may also be shifted
to the lockers inside. As a result, with the expansion of network, the total delivery to CBD (including
delivery to lockers and home/office in CBD) actually increases in the optimal network!

• It turns out that the locker network will divert some traffic to lockers in the CBD zone, reducing
the parcel traffic to the public or commercial buildings in the CBD. When only the parcel deliveries
to residential blocks and commercial buildings in CBD are counted (cf. the triangle-dotted curve),
the reduction in the CBD parcel volume is almost 17.5%, with 1500 lockers.

Electronic copy available at: https://ssrn.com/abstract=3471166



28

Figure 8 Effects of different LA networks on the deliveries to CBD.

(a) Delivery Change at CBD (b) Covered Delivery by the LA Network
Note. There are 184 lockers located in the CBD area. For ease of comparison, we vary the budget C from 400 to 1700.

• The LA Network without CBD lockers maintains similar utilization (i.e., total volume of covered
deliveries) as the one with CBD lockers. As shown in Figure 8(b), the performance gaps in terms of
covered deliveries between these two sets of locker solutions are consistently below 1.5%.

To summarize, we numerically show that the delivery to CBD is significantly affected by the LA
Network. If lockers are allowed to be installed at CBD, some deliveries, originally to residential blocks
and commercial buildings, would partially shift to lockers at CBD, but this in turn increases the total
parcel volume into CBD. A natural way to reduce the CBD deliveries is to exclude the CBD lockers
from the potential locker set and attract customers to pick up their parcels at these lockers near
their homes outside the CBD. In this way, our numerical experiment shows that 7.5% of deliveries to
CBD can be reduced if the budget is around 1500, without scarifying too much utilization of the LA
Network. We note that the locker network solution x(E0) above is obtained from model (P0), and
the Delivery Change is estimated based on the observed delivery profile E0. Indeed, this is different
from the actual Delivery Change under the true demand D. We show that the estimated CBD parcel
volume reduction with E0 is a lower bound on the actual one with D in the Singapore LA Network
case (under mild conditions). In other words, the actual parcel volume to CBD could be reduced for
more than 7.5% given a well-chosen LA Network with budget 1500. Therefore, we can extrapolate
the reduced parcel volume to CBD based on solution x(E0). More detailed discussions on this issue
are provided in Appendix D.2.

In the end, we highlight that if the lockers are not allowed to be installed at CBD, customers from
CBD in turn may need to travel a longer distance for parcel pickup from lockers; otherwise they will
continue to use delivery-to-office at the CBD area. As a result, the customer welfare, measured by
the parcel pickup distance from the nearest locker, will decrease in the LA Network without CBD
lockers. To see this, we calculate the average parcel pickup distance (from the nearest locker) across
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different customer segments in the CBD area. As shown in Figure 9(a), the average parcel pickup
distance decreases with the number of lockers in both LA Networks with/without CBD lockers.
This is intuitive since customers have more locker options in a larger scale network. However, these
customers have slightly longer pickup distance in the network without CBD locker. Taking the case
of 1500 lockers for illustration (cf. Figure 9(b)), the parcel pickup distance from the nearest locker is
longer than 250 meters for more than 75% of CBD customers if lockers are not allowed to be installed
at CBD. In such a case, the utility of using locker would be very low, and delivery-to-office is still
the better option.

Figure 9 Parcel pickup distance from the nearest locker for CBD customers.

(a) Average Parcel Pickup Distance at CBD (b) Density Plot for the Case of 1500 Lockers
Note. The shaded region in the Figure (a) indicates the distance interval from 25 percentile to 75 percentile.

7. Concluding Remarks
Last mile innovation has piqued a surge of interests in the smart nation initiatives. To improve the
efficiency of last mile operations, the automated parcel lockers are already widely used in the US,
Europe, and China etc. However, relatively few studies have been done to address the optimal locker
network design challenge. Inspired by the proposal of Singapore LA Network, we study the locker
network design problem to maximize the utilization as well as to serve the public residents.

We develop a robust framework to solve the class of facility location problems in the absence of
the transit route information of all customers. Interestingly, we show that the volume of parcels
delivered to the LA Network, obtained under the observed delivery profile, provides a lower bound to
the case when we know the actual demand information. Furthermore, we explicitly characterize the
optimality loss if the LA network is built based on the observed delivery profile. We also numerically
show that we can hope to reduce the volume of parcels delivered to the CBD by at least 7.5% with a
well-chosen LA Network. In fact, if the utility of using lockers increases 3 times in the Singapore LA
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Network case, more than 19% deliveries to CBD would be attracted to lockers given a well-chosen
LA Network with budget 1500. Therefore, the planning agencies need to incentivize customers to use
lockers, for example, by compensating the delivery fees.

Last but not least, we highlight that some lockers suffer from low utilization issue even in the
case when we attempt to maximize the total utilization. In the LA network case, we observe that
some lockers can cover around 20 parcels per day, whereas some only witness 2 parcels. The median
utilization is between 6 and 8 parcels. Furthermore, with the increase of network scale, the median
utilization decreases gradually because of the competition effect in the locker network. To boost
the utilization of LA Network, commercial operators can use the LA Network as a storage option
to avoid another visit, to serve customers whose parcels were not delivered due to various reasons,
for example, those estates that are far away from the distribution hub are known to have higher
incidences of failed deliveries. This is a particularly appealing option for the LA Network, since there
is already a station within the vicinity of every public residential block. The utilization of lockers
will be boosted if failed deliveries to these blocks can be channeled to the lockers.

In this paper, we have focused solely on network design from the consumer end. With the LA
Network, we expect to see an increasing trend in the volume of e-commerce retail transactions. It
will be interesting to examine the impact of the open locker system on the entire e-commerce value
chain, and how to incentivize e-commerce vendors to consider the usage of lockers in their delivery
operations. At the national scale, it will be interesting to understand how this solution concept can
help to streamline traffic flows into congested zones in the city, and the associated impact on the
environment. We leave these and other issues to our future research.
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Appendix
Organization of the Appendix. In Appendix A, we present a compact reformulation of the locker network
design model to solve large-scale problem. In Appendix B, we use a set of Singapore public transit data to
estimate the volume of traffic on each home-office pair. This allows us to estimate the hitherto unknown
transit route for each demand segment and solve the locker network model with the transit route information
incorporated. For completeness, we compare the market share maximization model (studied in this paper)
and the customer welfare maximization model (a plausible alternative) in Appendix C. More details on the
Singapore LA Network case are provided in Appendix D. In Appendix E, we provide the technical proofs.

A. Computational Approach for Large-Scale Problems
To facilitate the analysis, we first simplify the “heavy” notations in model (P). Let B denote the whole
demand segment set (H∪W∪H×W) and S the set of possible locker locations. We normalize the utility of
outside option to be 1 and denote µi,k as the utility of using locker k for customer from segment i. We allow
the locker consideration set Ni for block i to be the entire set S, and remove the egalitarian constraints. Next,
we replace the volume of parcel delivery by d̂i. Therefore, we can re-formulate model (P) as the following
0-1 fractional programming problem:

(FB) min
∑
i∈B

d̂i

(
1

1+
∑

k∈S µi,kxk

)
s.t.

∑
k∈S

xk ≤C

xk ∈ {0,1}, ∀k ∈ S

It is straightforward to see that this fractional minimization problem is equivalent to the cardinality
constrained assortment problem with multiple customer segments problem, i.e., the classic mixed MNL
(MMNL) assortment problem:

(MMNL) max
x∈{0,1}|S|

{∑
i∈B

[
d̂i

( ∑
k∈S µi,kxk

1+
∑

k∈S µi,kxk

)]∣∣∣∣∣∑
k∈S

xk ≤C

}
.

Therefore, we can relate our locker network design problem to the inventory planning problem considered in
Goyal et al. (2016), and show that this class of locker network design problem is NP-hard. We use a reduction
from vertex cover problem to show the hardness of our problem.

Theorem 4. The locker network design problem (P) is NP-hard.

Furthermore, we note that the objective in model (FB) is non-linear in the decision variable x due to
the convex disutility function. A standard way to solve this convex programming problem is to linearize
the fractional objective so that it can be transformed to a mixed integer programming problem (MIP).
However, this reformulation technique does not scale well in our LA Network. In this paper, we develop an
exact second-order cone programming & mixed integer programming (SOCP-MIP) reformulation for this
problem and we show that this technique can reduce drastically the size of decision variables and constraints.
Furthermore, this SOCP-MIP reformulation allows us to use available solver to construct a locker network
solution in a reasonable computational time.
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A.1. MIP Formulation

We first consider a common MIP formulation to Model (FB). Zhang et al. (2012) introduced this linearization

technique to solve a healthcare facility network design problem by incorporating the client choice. Méndez-

Díaz et al. (2014) also did this MIP reformulation for the assortment problem. We briefly summarize the

technique as follows.

Introduce two sets of auxiliary decision variables

wi :=
1

1+
∑

k∈S µi,kxk
, and ti,k :=wixk,

then the fractional term can be replaced by

wi+
∑
k∈S

µi,kti,k = 1,

ti,k ≤ xk, ti,k ≤wi,

ti,k ≥ (xk− 1)+wi, ti,k ≥ 0.

Notice that wi ∈ [0,1]. Therefore, we can derive the following MIP reformulation:

(MIP) min
∑
i∈B

d̂iwi

s.t. wi+
∑
k∈S

µi,kti,k = 1, ∀ i∈B

ti,k ≤ xk, ∀ i∈B, k ∈ S

ti,k ≤wi, ∀ i∈B, k ∈ S

ti,k ≥ (xk− 1)+wi, ∀ i∈B, k ∈ S∑
k∈S

xk ≤C

ti,k ≥ 0, ∀ i∈B, k ∈ S

0≤wi ≤ 1, ∀ i∈B

xk ∈ {0,1}, ∀ k ∈ S

In this model, there are |S| binary decision variables xk, and |B|(1 + |S|) continuous variables, wi and ti,k.

The number of constraints is |B|+ 3|S||B|+ 1 in total. Nevertheless, if the scale of delivery location and

locker set are large, e.g., in thousands level, then the product term |B||S| would be incredibly gigantic. As

a result, this MIP approach does not scale well. We show next a SOCP-MIP reformulation for this problem

can reduce drastically the size of decision variables and constraints.

A.2. SOCP-MIP Formulation

Before we proceed to the SOCP-MIP reformation, we briefly describe the second-order cone programming

(SOCP) problem. For more details about this type of optimization model, we refer readers to Alizadeh and

Goldfarb (2003).
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Definition 1 (Alizadeh and Goldfarb 2003) The standard formulation of SOCP problem can be repre-
sented:

min cTx

s.t. Ax= b

x<Q 0

where c∈Rn, x∈Rn, b∈Rm, and A∈Rm×n. We let x= (x0, x̄)∈Rn, and the second-order cone is defined
as

Q := {x= (x0, x̄)∈Rn : x0 ≥ ||x̄||},

where || · || refers to the Euclidean norm. In addition, the inequality x<Q 0 represents the second-order cone
inequality. The SOCP problem can be solved efficiently. Next, we show that a second order cone and mixed
integer programming representable formulation can reduce drastically the size of the locker network design
problem. Similar SOCP reformulation techniques were also used to solve other applications (e.g., Alizadeh
and Goldfarb 2003, Şen et al. 2018). More concretely, we introduce two more auxiliary decision variables:

zi := 1+
∑
k∈S

µi,kxk, and wi :=
1

zi
.

We can re-formulate the model (FB) as

(SOCP-MIP) min
∑
i∈B

d̂iwi

s.t. 1+
∑
k∈S

µi,kxk ≥ zi, ∀ i∈B(
wi 1
1 zi

)
≽ 0, ∀ i∈B∑

k∈S

xk ≤C

zi ≥ 0, 0≤wi ≤ 1, ∀ i∈B

xk ∈ {0,1}, ∀ k ∈ S

where the second set of constraints, as expressed in rotated cone form, implies that wizi ≥ 1, ∀i∈B (Şen et
al. 2018). In this SOCP-MIP model, there are |S| binary decision variables xk, and 2|B| continuous variables,
zi and wi. The number of constraints is 2|B|+ 1. Compared with the MIP formulation, this SOCP-MIP
formulation involves much less decision variables and constraints!

We show the equivalence of model (FB) and (SOCP-MIP) in the following Proposition.

Proposition 3. The SOCP-MIP formulation is equivalent to the FB formulation.

Next, we compare the computational performances of the SOCP-MIP and the MIP reformulations. We
formulate the problems using Java language and Gurobi solver on a 2.70 GHz i7-6820HQ CPU Windows PC
with 16GB RAM. Recall that in the MIP formulation, there are (|B|+3|S||B|+1) constraints while there
are only (2|B|+1) constraints in the SOCP-MIP formulation. This comparison suggests that commercially
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available software (e.g., Gurobi, Cplex) can be applied to solve a relatively large size problem with the SOCP-
MIP formulation. In the LA Network case, we compare the computation time of two formulations on problem
(P0), with 3000 demand segments and 1980 potential locker locations. The budget C is varied from 400 to
1900 with step size 100, and we calculate the average computational time. For the SOCP-MIP formulation,
it takes around 2,543 seconds to solve for each budget case. However, for the MIP formulation, we cannot
solve the problem with such size using the same Windows PC. Therefore, we are limited to compare the
performances of two formulations for smaller size problems. We re-cluster the demand segments and potential
locker locations to generate the simulation environment. As shown in Table 3, we let the number of demand
segment |B|= {4,8,16,32,64,128,256}, and the number of potential candidates |S|= {2,4,8,16,32,64,128}.
The budget C is set to be |S|/2 for all cases. It turns out that the MIP approach is as efficient as the
SOCP-MIP approach when the number of demand segments is less than 100. For a larger size problem (e.g.,
|B|= 256), the SOCP-MIP approach outperforms the MIP approach significantly.

Table 3 Computation time comparison for problem (P0).

CPU Time (s)
Segments 4 8 16 32 64 128 256

SOCP-MIP 0.010 0.011 0.024 0.067 0.151 0 .348 7.274
MIP 0.007 0.012 0.033 0.200 2.470 3.828 66.882

We also consider a synthetic example of problem (P). More concretely, we let the number of home/office
locations |H|= |W|=N , where N = {4,8,16,32,64,128,256}. For each pair of demand segment (i, j), ∀i ∈
H, j ∈W, we uniformly generate the volume of Di,j between 0 and 1. In each case, there are N2 demand
segments. The number of potential candidates is set to be |S|= {2,4,8,16,32,64,128}, and the budget C is
|S|/2 in each case. As shown in Table 4, the traditional MIP approach requires much longer time to solve
the large-scale cases, while the SOCP-MIP approach scales well. In particular, the case of N = 256 cannot
be solved by the MIP approach due to the “out of memory” problem returned by the Gurobi solver.

Table 4 Computation time comparison for problem (P).

CPU Time (s)
Segments

42 82 162 322 642 1282 2562

SOCP-MIP 0.019 0.032 0.227 1.221 8.291 64.254 11563.637
MIP 0.026 0.031 0.319 3.202 221.908 8449.005 N.A.

B. Estimation of the Demand on Each Home-Office Pair

In this section, we formally address the estimation challenge of each home-office demand {Di,j} so that the
model (P) can be solved. To facilitate the estimation, we first describe a set of Singapore public transport
data, and then show that the public transit patterns are positively correlated to the parcel delivery volume.
This observation leads us to estimate the demand of Di,j between home location i ∈H and office location
j ∈W, using the public transit flow between location i and j.
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B.1. Singapore Public Transport System

Singapore has constructed cost-efficient and convenient public transport systems in the world.14 According
to Wikipedia,15 Singapore public transport systems include both bus rides and mass rapid transit (MRT)
system, and more than half of Singapore residents go to work by taking public transport. We were provided
with a set of public transport data provided by the Singapore Land Transport Authority (LTA). The dataset
contains one weekday’s worth of public transit information, with around 4 million (daily) transactional
records, and 4530 stations/stops over the island. In addition, the average traveling time for each trip is about
19.74 minutes. There are around 2 million unique passenger ID in the dataset, and 72.50% of them generated
at least 2 records per day. This implies that a large proportion of passengers took round trips by the public
transportation system. Note that it would be crowed to visualize the passenger transit patterns across 4530
stations, we provide the zonal transit patterns instead according to the Singapore postal district map.16 As
shown in Figure 10, we observe that many residents board from non-CBD regions before noon, and these
residents alight at CBD regions before noon.

Figure 10 Singapore public transit patterns.

(a) Boarding Records before 12:00 pm (b) Alighting Records before 12:00 pm
Note. (a) The height of bar represents the volume of passenger boarding records at a specific station/stop. (b) The height of

bar represents the volume of passenger alighting records at a specific station/stop.

We match the bus/MRT station (stop) to the nearest residential block i or commercial block j, and display
the volume of parcel delivery (i.e., DO

i and DO
j ) at each location. Next, we aggregate the transportation

records and delivery volume at the district level. Figure 11(a) compares the total transportation records
with the delivery volume in each district (28 districts in total). It is straightforward to observe that the

14 Singapore’s public transport system one of world’s most efficient; retrieved from http://www.straitstimes.com/
singapore/transport/study-singapores-public-transport-system-one-of-worlds-most-efficient
15 Transport in Singapore; retrieved from https://en.wikipedia.org/wiki/Transport_in_Singapore\#cite_
note-Facts-2
16 Singapore is divided into 28 typical zones (districts). The district information is retrieved from https://en.
wikipedia.org/wiki/Postal_codes_in_Singapore
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transportation records and parcel volume are highly correlated. Furthermore, as the target is to estimate
the transit flow for the population who lives in location i and work at location j, we pick up these transport
records boarding from district i and alighting at district j as the transit flow ti,j between these two districts.
Note that the majority of residents go to work in the morning and go back home in the afternoon, we select
the records before 12:00 p.m. to estimate the transit flow. Since we cannot observe the volume of demand
{Di,j} directly, we use the product term DO

i ×DO
j to indicate that this term is related to the parcel volumes

to both district i and j. Figure 11(b) visualizes the correlation between DO
i ×DO

j and ti,j , with a positive
coefficient 0.43. It also shows clearly that heavier transit flow is more likely to be accompanied with larger
parcel volume. Therefore, we can estimate the demand Di,j between home location i∈H and office location
j ∈W based on the volume of public transit flow between location i and j.

Figure 11 Correlation between public transit records and parcel deliveries.

(a) Aggregated Volume at Each District (b) Aggregated Flow between Districts

B.2. Estimation of Parcel Volume

For ease of exposition, we apply K-Centroids approach to cluster 280 public residential blocks (centers)
and 280 private/commercial districts (centers). We match the station/stop to the nearest public/commercial
center so that we can estimate the public transit records between each pair of residential center and commer-
cial center. We acknowledge that it is challenging to estimate the delivery volume on each home-office pair
because the home-office pair information cannot be obtained accurately. To overcome this information gap,
we assume that the volume of demand Di,j is linearly correlated with the transit flow ti,j since the parcel
volume is positively correlated with the public transit volume (as stated in Figure 11). Let |D| denote the
total parcel volume and |P | denote the total population in Singapore. We let

Di,j =
|D|
|P |

ti,j + τi,j ,

where τi,j ’s represent the “noise” terms and need to be determined such that the demand Di,j ’s are feasible
to the delivery profile. In fact, according to the expression of D, the delivery volume Di,j ’s have to satisfy

Electronic copy available at: https://ssrn.com/abstract=3471166



39

some side constraints. For example, if DO
i = 0, then Di,j = 0 for ∀j. However, ti,j may not be 0. Therefore,

we introduce the auxiliary term τi,j to make the estimation of delivery profile D feasible. Note that we are
trying to provide a set of delivery flow that is close to the estimator |D|

|P | ti,j , and hence we formulate the
following model to determine {τi,j}:

min
τ

∑
i∈H, j∈W

(τi,j)
2

s.t. DO
i ≥

θH
θH + θW

∑
j∈W

{
|D|
|P |

ti,j + τi,j

}
, ∀i∈H

DO
j ≥

θW
θH + θW

∑
i∈H

{
|D|
|P |

ti,j + τi,j

}
, ∀j ∈W

The first and second set of constraints force the estimated delivery volume {Di,j} to satisfy the delivery
profile D. The result shows that the estimated volume of (

∑
i∈H,j∈W Di,j) accounts for 54.43% of the total

observed delivery volume (
∑

i∈HD
O
i +

∑
j∈W DO

j ) in the Singapore LA case. We remark that we find a feasible
lower bound for the ‘actual’ demand Di,j since we rule out the private transit records from our analysis. A
more accurate estimation may require a nationwide survey to elicit this information. Given the information
of {Di,j}, we can solve the model (P) based on the SOCP-MIP reformulation, as shown in Section A.2.

B.3. Numerical Comparison between Model (P0) and (P)

For ease of exposition, we consider a relatively small-scale network to numerically compare model (P0) and
(P) in the Singapore LA case. We cluster the delivery locations into 280 residential block centers and 280
commercial centers, i.e, |H|= |W|= 280. We choose a subset of potential locker locations with |S|= 409. This
subset includes the residential block centers and some 7-11 stores. We also allow all the customers to choose
any of the available lockers, i.e., we let the neighbor set Ni =Nj = S for each i∈H and j ∈W in the choice
model. Furthermore, the parameter Mi in the egalitarian constraint is revised to represent the collection of
locker stations within 1 kilometer to block i. In this case, there are (280+280+280× 280 = 78960) demand
segments, and (409) binary variables. The delivery profile D is estimated based on the transit data.

Table 5 Comparison between model (P0) and (P).

Budget Market Share RB Coverage CPU Time (s)
P0 P P0 P P0 P

50 410.79 410.79 280 280 2.20 1014.52
100 799.29 799.32 280 280 2.15 1292.06
150 1068.09 1068.09 280 280 1.63 1388.73
200 1293.74 1294.22 280 280 1.54 1167.88
250 1495.96 1496.08 280 280 1.62 845.60
300 1674.06 1674.54 280 280 1.72 898.15
350 1828.01 1828.73 280 280 1.98 668.76
400 1934.56 1934.56 280 280 2.39 638.68

Note. The Market Share captures the total volume of parcels delivered to the Lockers based on the actual demand profile D;
The RB Coverage counts the number of residential block (RB) centers that can be served by at least one locker within 1
kilometer; The CPU Time reports the computational time in second.

We vary the budget C from 50 to 400, and numerically compare the difference between model (P0) and (P).
As shown in Table 5, the difference in market share obtained from the two models appears to be negligible.
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This implies that planning based on the observed delivery profile by solving model (P0) can be used to
estimate the amount of demand lost to home and office deliveries under the unknown demand D in the
Singapore LA Network. In fact, this result holds in our case due to the small utility obtained from using
lockers. We remark that this numerical result does mean that the issues associated with unknown demand
are not important in the facility location problems. In the case with large utility towards lockers, the optimal
locker network solution would be affected significantly if we do not use the actual demand information for
planning (see Example 1 in Section 1 for illustration). In addition, since the feasible regions of model (P0)

and (P) are identical, all the residential block (RB) centers are covered by the locker networks (i.e., there
is at least one locker installed within 1 kilometer of each residential block) under both models. Notably,
compared with model (P), model (P0) reveals great computational advantages under different budgets in
this range.

C. Comparison of Different Locker Network Design Models
There are two foremost objectives – maximizing the market share covered by the locker network and max-
imizing the customer welfare obtained from using lockers – in the locker network design problem. In this
section, we numerically compare the performance of (1) market share maximization model (QMs), and (2)
customer welfare maximization model (QWel).

Under our MNL choice model, the probability that a consumer from demand segment i shifts to locker
network x for parcel delivery is given by

∑
k∈S θi,kxk

θi,0+
∑

k∈S θi,kxk
(Talluri and Van Ryzin 2004), where the utility of

outside option θi,0 = θH if i ∈ H and θi,0 = θW if i ∈W. Given the demand volume DO
i at segment i, the

market share obtained from demand segment i can be represented by DO
i

( ∑
k∈S θi,kxk

θi,0+
∑

k∈S θi,kxk

)
. In this way, the

market share maximization model (QMs) can be formulated as follows:

(QMs) max
x

∑
i∈H

DO
i

( ∑
k∈S θi,kxk

θH +
∑

k∈S θi,kxk

)
+
∑
i∈W

DO
i

( ∑
k∈S θi,kxk

θW +
∑

k∈S θi,kxk

)
s.t.

∑
k∈S

xk ≤C

xk ∈ {0,1}, ∀k ∈ S

where the first constraint limits the number of lockers installed to a budget C, and the second set of
constraints indicates the decision variable to be binary. For ease of exposition, here we remove the egalitarian
constraints. It is directly to implement the SOCP-MIP formulation introduced in Appendix A.2 to solve this
market share maximization problem.

In the customer welfare maximization problem, Train (2009) and Derakhshan et al. (2018) demonstrated
that the welfare obtained for a customer from demand segment i is given by log

(
θi,0 +

∑
k∈S θi,kxk

)
under

the locker network solution x, where the utility of outside option θi,0 = θH if i ∈H and θi,0 = θW if i ∈W.
Therefore, we can formulate the welfare maximization model as follows:

(QWel) max
x

∑
i∈H

DO
i log

(
θH +

∑
k∈S

θi,kxk

)
+
∑
i∈W

DO
i log

(
θW +

∑
k∈S

θi,kxk

)

s.t.
∑
k∈S

xk ≤C

xk ∈ {0,1}, ∀k ∈ S
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Note that the logarithm function log(·) is concave but non-linear. In the numerical experiments, we introduce
a sequence of piece-wise linear functions to approximate the objective function in model (QWel) so that we
can use standard optimization solvers (e.g., Gurobi, Cplex) to solve the optimization problem.

Notably, the aforementioned locker network design models assume that the demand is not fully covered
even if there is one locker installed within certain distance from the demand segment. Instead, the demand
can only be partially covered based on the utility functions. In this regard, our problem is also related to
the class of partial/gradual covering models in the facility location literature. We refer interested readers to
the partial covering model (e.g., Berman and Krass 2002) and gradual covering model (e.g., Berman et al.
2003) for more modeling choices in the locker network design problem.

Next, we consider the similar numerical setting as Appendix B.3, except that all the calculations below are
based on the observed delivery profile EO. Table 6 shows that the numerical performances of model (QMs)

and (QWel) appear to be similar in the Singapore LA Network case, even though they are clearly different in
terms of the objective functions. This observation holds in our case due to the small utility obtained from
using lockers. Notably, the number of residential blocks covered by model (QMs) is slightly larger than that
by model (QWel), but the performance gap shrinks quickly with the increase of budget. We also observe that
model (QMs) is more computationally efficient than model (QWel). This motivates us to focus on the market
share maximization objective for large-scale network design.

Table 6 Comparison of different locker network design models.

Budget Market Share (%) Customer Welfare (%) RB Coverage CPU Time (s)

QMs QWel QMs QWel QMs QWel QMs QWel

50 1.28 1.28 0.53 0.53 140 140 1.49 43.73
100 1.97 1.97 0.82 0.82 186 181 0.86 43.19
150 2.54 2.54 1.06 1.06 232 229 0.93 37.80
200 3.05 3.05 1.27 1.27 245 244 0.86 50.16
250 3.51 3.51 1.46 1.46 256 256 0.99 42.75
300 3.92 3.92 1.64 1.64 271 271 0.91 36.13
350 4.27 4.27 1.78 1.79 278 277 0.88 32.48
400 4.52 4.52 1.89 1.89 280 280 1.15 22.09

Note. The Market Share is calculated by (Volume of Parcels Delivered to the Lockers)/(Total Parcel Volume) ×100% based on
the observed demand profile EO; The Customer Welfare is obtained by (Total Welfare − Welfare from Outside
Option)/(Welfare from Outside Option) ×100%; The RB Coverage counts the number of residential block (RB) centers
that can be served by at least one locker within 1 kilometer; The CPU Time reports the computational time in second.

To make the discussion clearer, we also consider the case with larger utility of using lockers. For ease of
exposition, we manually increase the utility of using lockers by 10 times (i.e., θi,k← θi,k×10, ∀i∈H∪W, k ∈

S), and re-examine the differences between the three models. Table 7 shows that the performance gaps
between model (QMs) and (QWel) become more apparent. It is straightforward to see that model (QMs)

attains higher market share while model (QWel) achieves higher customer welfare. Furthermore, the number
of residential blocks covered by model (QMs) is also larger than that by model (QWel), which implies that the
lockers installed under model (QMs) are more “evenly” distributed at the public residential areas so that there
is at least one locker station within the vicinity of every public residential block. Therefore, model (QMs)

implicitly favors the egalitarian concern. In addition, model (QMs) becomes much more computationally
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efficient than model (QWel), and hence the market share maximization objective is still the recommended
option for large-scale network design in this case.

Table 7 Comparison of different locker network design models with synthetic data.

Budget Market Share (%) Customer Welfare (%) RB Coverage CPU Time (s)

QMs QWel QMs QWel QMs QWel QMs QWel

50 10.14 10.09 4.59 4.62 166 157 3.83 178.12
100 14.70 14.57 6.86 6.90 240 212 2.10 160.08
150 18.27 18.14 8.69 8.76 259 247 13.50 145.56
200 21.31 21.20 10.34 10.40 269 256 2.72 106.42
250 23.95 23.85 11.79 11.85 271 270 8.76 55.12
300 26.25 26.16 13.09 13.13 277 271 4.67 52.46
350 28.22 28.19 14.23 14.25 278 278 2.29 41.17
400 29.60 29.60 15.02 15.02 280 280 1.52 28.77

D. Elaborations on Singapore LA Network

D.1. Visualization of Locker Network Solutions

In the Singapore LA Network case, we consider 3000 delivery points, including 1000 residential blocks and
2000 commercial buildings. We proceed next to describe the potential locker set S in the LA Network.

Figure 12 Potential locker locations.

(a) Locker Locations at Residential Blocks (b) Locker Locations at Commercial Buildings
Note. (a) The dot represents the potential locker location at residential blocks. (b) The dot represents the potential locker

location at commercial buildings.

Since the access to public residential blocks can be granted by the Authority, the 1000 public residential
centers can be used as locker locations. We plot these centers in Figure 12(a). In addition, as suggested by
the senior manager of the delivery company, convenience stores such as 7-11 outlets and DBS ATM locations
are also feasible locations to install the lockers. We manually collected 980 such locations and plot them in
Figure 12(b). Some of these are located in busy shopping malls, or near train stations.
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Next, we examine the impact of egalitarian constraints on the design of locker networks. To see this,
we consider two types of models: (1) model (P0) with egalitarian constraints, which is considered by the
Singapore government; and (2) model (P0) without egalitarian constraints, which is commonly considered
by the commercial operators to maximize the locker usage. For ease of illustration, we solve the two models
with budget C = {400,1000}, respectively. We apply the R Package “leaflet” to plot the locker networks.17

Figure 13 LA Network under different considerations.

(a) Model with Egalitarian Constraints, C = 400 (b) Model without Egalitarian Constraints, C = 400

(c) Model with Egalitarian Constraints, C = 1000 (d) Model without Egalitarian Constraints, C = 1000

Figure 13(a) and (b) compare the networks obtained with and without the egalitarian constraints when
budget C = 400. To satisfy the egalitarian constraints in model (P0), the lockers are “evenly” distributed
at the public residential areas so that there is at least one locker station within 250 meters of all public
residential blocks. It turns out that only 10 commercial lockers are selected in 13(a) in this case. Figure
13(b) ignores the egalitarian constraints so that the network is designed to maximize the total utilization.
In this case, more lockers are installed at the commercial areas where more parcel deliveries are gathered,
and 30 private/commercial locations are selected. The egalitarian constraint reveals significant impact on
the locker network design under this small budget case. Nevertheless, when the budget increases to 1000,
there is essentially no difference between two networks (cf. Figure 13(c) and (d)). 139 commercial locations
are selected in 13(c), and 144 such locations are selected in 13(d). Therefore, we would expect that an

17 Please see https://CRAN.R-project.org/package=leaflet
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appropriately scaled network, with the right notion of egalitarian consideration, can mitigate the gaps in the
performance targets between the government and commercial operators.

We acknowledge that some lockers suffer from the problem of low utilization (e.g., the daily parcel volume
is below 10) if we only have factored in the first-attempt delivery. To boost the utilization of LA Network,
commercial operators can use the LA Network as a storage option to avoid another visit, to serve customers
whose parcels were not delivered due to various reasons, for example, those estates that are far away from
the distribution hub are known to have higher incidences of failed deliveries. This is a particularly appealing
option for the LA Network, since there is already a station within the vicinity of every public residential
blocks. The utilization of lockers will be boosted if failed deliveries to these blocks can be channeled to the
lockers. Alternatively, since the locker is composed of different compartments and the size of each locker
could be very flexible, right-sizing the LA Network appears to be vital for this new concept in the last mile
delivery domain.

D.2. Impact of LA Network on the Parcel Delivery to CBD

In Section 6, recall that the locker network problem is solved by model (P0), and the Delivery Change is
calculated based on the observed parcel volume to CBD (i.e., DO

j for j ∈ WCBD, where WCBD represents
the set of office buildings located at CBD). Given the locker network solution x, we estimate the parcel
volume delivered to CBD as V 0

CBD(x) =
∑

j∈WCBD
DO
j gj,j(x). With a slight abuse of notation, we also let

δiH(x) =
∑

k∈Ni
θi,kxk denote the utility of using lockers under the solution x for customers living at public

residential block i∈H, and δjW(x) =
∑

k∈Nj
θj,kxk the utility for customers working at CBD block j ∈WCBD.

According to Equation (3) and the definition of gj,j(x), we have

V 0
CBD(x) =

∑
j∈WCBD

{
Dj,j

(
θW

θW + δjW(x)

)
+
∑
i∈H

(
θW

θH + θW

)(
θW

θW + δjW(x)

)
Di,j

}
, (7)

where {Dj,j ,Di,j} represent respectively the actual demands from Class-II and Class-III customers (as defined
in Section 5) who are working at CBD.

In fact, if the demand {Dj,j ,Di,j} can be exactly obtained, the “actual” parcel volume delivered to CBD
should be calculated by

VCBD(x) =
∑

j∈WCBD

{
Dj,j

(
θW

θW + δjW(x)

)
+
∑
i∈H

(
θW

θH + θW + δiH(x)+ δjW(x)

)
Di,j

}
. (8)

Notably, if V 0
CBD(x)− VCBD(x) ≥ 0 holds for any given x, the parcel volume V 0

CBD(x) serves as an upper
bound on the actual parcel volume VCBD(x). In other words, the delivery reduction plotted in Figure 8 would
be a lower bound to the actual case when we know the actual demand profile. For example, the actual parcel
volume to CBD could be more than 7.5% given a well-chosen LA Network with budget 1500.

Given the locker network x, the gap between the estimated parcel volume and actual parcel volume to
CBD can be expressed as

V 0
CBD(x)−VCBD(x) =

∑
j∈WCBD

∑
i∈H

{
θW
(
θWδ

i
H(x)− θHδ

j
W(x)

)(
θH + θW + δiH(x)+ δjW(x)

)
(θH + θW)

(
θW + δjW(x)

)Di,j

}
.

It is straightforward to see that V 0
CBD(x)− VCBD(x)≥ 0 holds under some mild conditions, as stated in the

following Proposition 4.
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Proposition 4. Given any home-office pair (i, j) for i ∈H, j ∈WCBD, if δjW(x)≤ θW
θH
δiH(x) holds for a

feasible locker network solution x, then V 0
CBD(x), the estimated parcel volume to CBD under the observed

demand profile EO, is an upper bound on the actual volume VCBD(x) when we know the actual demand D.

Next, we numerically show that the condition δjW(x)≤ θW
θH
δiH(x) is satisfied for almost all the home-office

pairs in our LA Network case when lockers are not allowed to be installed at CBD. Note that the attraction

of locker k to customers in block j decreases with the distance between location k and j. Whenever there

is no lockers installed nearby CBD blocks, the utility term δjW(x) =
∑

k∈Nj
θj,kxk for j ∈WCBD would be

a small positive number. As shown in Figure 14, we vary the budget from 400 to 1900, and obtain the

optimal locker network solutions by solving model (P0). With the increase of locker budget, more lockers are

installed around public residential blocks. As a result, the utility term δiH(x) significantly increases, whereas

the term δjW(x) slightly increases a little bit. In addition, recall that we have θW > θH in the LA Network

case. Therefore, we would expect V 0
CBD(x)−VCBD(x)> 0, and the estimated parcel volume reduction in CBD

based on Equation (7) is a lower bound on the actual volume reduction.

Figure 14 Comparison between the utilities δiH(x) and δjW(x) for i∈H, j ∈WCBD.

(a) Residential Blocks (b) CBD Blocks

E. Proof of Main Results

E.1. Proof of Proposition 1

Proposition 1. In the worst case solution to model (P), assuming D ̸= ∅, we have closed-form demand

profile: 
E ∈R|H|+|W|+|H|×|W|

+ :

Ei,i =DO
i −

∑
j∈W

θH
θH + θW

DO
i,j , ∀ i∈H,

Ej,j =DO
j −

∑
i∈H

θW
θH + θW

DO
i,j , ∀j ∈W,

Ei,j =DO
i,j , ∀i∈H, j ∈W.


(4)
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Proof: Given any feasible solution x to problem (P), we denote the objective of the inner maximization
problem as:

max
E

{∑
i∈H

gi,i(x)Ei,i+
∑
i∈W

gj,j(x)Ej,j +
∑

i∈H, j∈W

gi,j(x)Ei,j

}

s.t. Ei,i+
∑
j∈W

θH
θH + θW

Ei,j =DO
i , ∀i∈H,

Ej,j +
∑
i∈H

θW
θH + θW

Ei,j =DO
j , ∀j ∈W,

Ei,i ≥ 0, Ej,j ≥ 0, Ei,j ≥DO
i,j , ∀i∈H, j ∈W.

Suppose the solution Ẽ is the optimal solution to the problem above. If Ẽi,j =DO
i,j for ∀i ∈ H, j ∈W,

then we are done. Therefore, without loss of generality, we assume that there exists at least one component
Ẽi0,j0 =DO

i0,j0
+ ϵ (ϵ > 0), for a home-office pair (i0, j0). Then we construct another feasible solution Ê ̸= Ẽ

but Êi0,j0 =DO
i0,j0

and Êi,j = Ẽi,j for other (i, j)’s. Êi0,i0 = Ẽi0,i0 +
θH

θH+θW
ϵ, Êj0,j0 = Ẽj0,j0 +

θW
θH+θW

ϵ, and
Êi,i = Ẽi,i, Êj,j = Ẽj,j for all other i and j. It is straightforward to check the feasibility of solution Ê. Denote
the objective value corresponding to solution Ê and Ẽ as Z(Ê) and Z(Ẽ), respectively. Next, we show that
Z(Ê)≥Z(Ẽ).

Given the solution x, for ease of expression, let µH =
∑

k∈Ni
θi,kxk and µW =

∑
k∈Nj

θj,kxk. Then we can
re-express

gi,i(x) =
θH

θH +µH
, gj,j(x) =

θW
θW +µW

, and gi,j(x) =
θW + θH

θW + θH +µW +µH
.

With some algebra, we have

Z(Ê)−Z(Ẽ)

=

{
θH

θH +µH

}{
θH

θH + θW

}
ϵ+

{
θW

θW +µW

}{
θW

θH + θW

}
ϵ−
{

θW + θH
θW + θH +µW +µH

}
ϵ

=

{
(θHµW − θWµH)

2

(θH +µH)(θW +µW)(θH + θW)(θH + θW +µH +µW)

}
ϵ

≥ 0.

Therefore, we get the contradiction Z(Ê)≥Z(Ẽ), which implies that Ẽ is not optimal.
Repeating the procedure, we can conclude that for the optimal solution E, we have Ei,j = DO

i,j ,Ei,i =

DO
i −

∑
j∈W

θH
θH + θW

DO
i,j , and Ej,j =DO

j −
∑
i∈H

θW
θH + θW

DO
i,j , ∀ i∈H, j ∈W.

E.2. Proof of Theorem 2

Theorem 2. Gap(x) ≤ max
i∈H,j∈W

{ [
ρ
j
W(x)−ρiH(x)

]2[
1+ρiH(x)

][
1+ρjW(x)

]}{ θHθW
(θH+θW)2

}
holds for any feasible locker network

solution x.

Proof: Based on the definition of χi,j(x), we can re-write

χi,j(x)Di,j :=

[
ρjW(x)− ρiH(x)

]2
Di,jθHθW[

1+ ρiH(x)
][
1+ ρjW(x)

][
θH + θW

][
θH(1+ ρiH(x))+ θW(1+ ρjW(x))

] .
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Note that ∑
j∈W

Di,j ≤
θH + θW
θH

DO
i and

∑
i∈H

Di,j ≤
θH + θW
θW

DO
j .

Hence, we have∑
j∈W

χi,j(x)Di,j ≤ max
j∈W

{ [
ρjW(x)− ρiH(x)

]2[
1+ ρiH(x)

][
1+ ρjW(x)

]}∑
j∈W

{
Di,jθHθW[

θH + θW
][
θH(1+ ρiH(x))+ θW(1+ ρjW(x))

]}

≤ max
j∈W

{ [
ρjW(x)− ρiH(x)

]2[
1+ ρiH(x)

][
1+ ρjW(x)

]}{ θW
θH + θW

}
DO
i .

It is straightforward to derive the following upper bound∑
i∈H,j∈W

χi,j(x)Di,j ≤ max
i∈H,j∈W

{ [
ρjW(x)− ρiH(x)

]2[
1+ ρiH(x)

][
1+ ρjW(x)

]}{ θW
θH + θW

}∑
i∈H

DO
i .

Similarly, we have∑
i∈H,j∈W

χi,j(x)Di,j ≤ max
i∈H,j∈W

{ [
ρjW(x)− ρiH(x)

]2[
1+ ρiH(x)

][
1+ ρjW(x)

]}{ θH
θH + θW

}∑
j∈W

DO
j .

Taking a convex combination of the above, we can derive∑
i∈H,j∈W

χi,j(x)Di,j ≤ max
i∈H,j∈W

{ [
ρjW(x)− ρiH(x)

]2[
1+ ρiH(x)

][
1+ ρjW(x)

]}{ θHθW
(θH + θW)2

}(∑
i∈H

DO
i +

∑
j∈W

DO
j

)
.

Recall that
Gap(x) = V 0(x)−V (x)∑

i∈HD
O
i +

∑
j∈W DO

j

, and V 0(x)−V (x) =
∑

i∈H,j∈W

χi,j(x)Di,j .

It is straightforward to upper bound the Gap(x) as follows:

Gap(x) ≤ max
i∈H,j∈W

{ [
ρjW(x)− ρiH(x)

]2[
1+ ρiH(x)

][
1+ ρjW(x)

]}{ θHθW
(θH + θW)2

}
.

E.3. Proof of Theorem 3

Following the proof of Theorem 1, we also develop a robust model to address this generic locker network
design problem. In this setting, we represent the uncertainty set (assume D ̸= ∅) as:

D :=


E ∈R|Φ| :

Eγ,γ +
∑

(γ,ψ)∈Φ(γ)

θγ
θγ +

∑
j∈ψ θj

Eγ,ψ =DO
γ , ∀γ = 1,2, . . . ,Γ,

Eγ,γ ≥ 0, ∀γ = 1,2, . . . ,Γ,

Eγ,ψ ≥Dγ,ψ, ∀(γ,ψ)∈Φ(γ), γ = 1,2, . . . ,Γ.


The generic robust location framework can be formulated as:

(G) min
x

max
E∈D


Γ∑
γ=1

gγ,γ(x)Eγ,γ + ∑
(γ,ψ)∈Φ(γ)

1

|{γ,ψ}|
gγ,ψ(x)Eγ,ψ


s.t.

∑
k∈S

xk ≤C

xk ∈ {0,1}, ∀k ∈ S
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where |{γ,ψ}| denotes the number of elements in set {γ,ψ}. In the objective function, we divide the second
term by |{γ,ψ}| to avoid “double-counting”.

Next, we demonstrate that the demand profile specified by Equation (6) is optimal to problem G in the
worst case scenario, as stated in Proposition 5.

Proposition 5. In the worst case solution to model (G), we have closed-form demand profile:E ∈R|Φ|
+ :

Eγ,γ +
∑

(γ,ψ)∈Φ(γ)

θγ
θγ +

∑
j∈ψ θj

Dγ,ψ =DO
γ , ∀γ = 1,2, . . . ,Γ,

Eγ,ψ =Dγ,ψ, ∀(γ,ψ)∈Φ(γ), γ = 1,2, . . . ,Γ.


Proof: Given any feasible solution x to problem (G), we denote the objective of the inner maximization
problem as:

max
E


Γ∑
γ=1

gγ,γ(x)Eγ,γ + ∑
(γ,ψ)∈Φ(γ)

1

|{γ,ψ}|
gγ,ψ(x)Eγ,ψ


s.t. Eγ,γ +

∑
(γ,ψ)∈Φ(γ)

θγ
θγ +

∑
j∈ψ θj

Eγ,ψ =DO
γ , ∀γ = 1,2, . . . ,Γ,

Eγ,γ ≥ 0, ∀γ = 1,2, . . . ,Γ,

Eγ,ψ ≥Dγ,ψ, ∀(γ,ψ)∈Φ(γ), γ = 1,2, . . . ,Γ.

Suppose the solution Ẽ is the optimal solution to the problem above. If Ẽγ,ψ =Dγ,ψ for ∀(γ,ψ) ∈ Φ(γ),
then we are done. Therefore, without loss of generality, we assume that there exists at least one component
Ẽγ1,γ2,...,γn = Dγ1,γ2,...,γn + ϵ (ϵ > 0), for a specific pair (γ1, γ2, . . . , γn). Then we construct another feasible
solution Ê ̸= Ẽ with Êγ1,γ2,...,γn =Dγ1,γ2,...,γn , Êγi,γi = Ẽγi,γi +

θγi∑n
i=1 θγi

ϵ for i= 1,2, . . . , n, and Êγ,ψ = Ẽγ,ψ

for other (γ,ψ)’s. It is straightforward to check the feasibility of solution Ê. Denote the objective value
corresponding to solution Ê and Ẽ as Z(Ê) and Z(Ẽ), respectively. Next, we show that Z(Ê)≥Z(Ẽ).

Given the solution x, for ease of expression, let µγi =
∑

k∈Nγi
θγi,kxk for i = 1,2, . . . , n. Then we can

re-express the choice model as:

gγi,γi(x) =
θγi

θγi +µγi
, ∀i= 1,2, . . . , n, and gγ1,γ2,...,γn(x) =

∑n

i=1 θγi∑n

i=1 θγi +
∑n

i=1 µγi
.

With some algebra, we have

Z(Ê)−Z(Ẽ) =

n∑
i=1

{
θγi

θγi +µγi

}{
θγi∑n

j=1 θγj

}
ϵ−
{ ∑n

i=1 θγi∑n

i=1 θγi +
∑n

i=1 µγi

}
ϵ

=


n∑
i=1

[
θ2γi

(
∑n

j=1 θγj )(θγi +µγi)

]
−

[
∑n

i=1 θγi ]
2∑n

i=1

[
(
∑n

j=1 θγj )(θγi +µγi)
]
 ϵ.

Let αi =
θγi√

(
∑n

j=1 θγj )(θγi+µγi
)
, βi =

√
(
∑n

j=1 θγj )(θγi +µγi), we have

Z(Ê)−Z(Ẽ) =

{
n∑
i=1

α2
i −

(
∑n

i=1αiβi)
2∑n

i=1 β
2
i

}
ϵ≥ 0 (by Cauchy–Schwarz inequality).
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Therefore, we get the contradiction Z(Ê) ≥ Z(Ẽ), which implies that Ẽ is not optimal. Repeating
the procedure, we can conclude that for the optimal solution E, we have Eγ,ψ = Dγ,ψ, Eγ,γ = DO

γ −∑
(γ,ψ)∈Φ(γ)

1

|{γ,ψ}|
gγ,ψ(x)Dγ,ψ, ∀(γ,ψ)∈Φ(γ), γ = 1,2, . . . ,Γ.

Next, we are ready to prove Theorem 3.

Theorem 3. U0(x)−U(x)≥ 0 holds for any feasible locker network solution x.

Proof: Proposition 5 implies that model (G) is equivalent to the robust model (G). In the case of Dγ,ψ = 0

for ∀(γ,ψ) ∈ Φ(γ), γ = 1,2, . . . ,Γ, we represent D as D0, and model (G) as (G0) to avoid confusion. It is
straightforward to show that model (G0) is equivalent to the robust model (G0). Clearly, we also have D⊆D0

in this generic setting. We denote respectively the objective values for problem (G) and (G0) as U(x) and
U0(x), given a feasible solution x. Note that U(x) and U0(x) also represent the objective values for problem
(G) and (G0), respectively. Since the inner optimization problem in (G) is a maximization problem over the
uncertainty demand set D, we prove that U0(x)−U(x)≥ 0.

E.4. Proof of Theorem 4

Theorem 4. The locker network design problem (P) is NP-hard.

Proof: To show the NP-hardness of the locker network design problem (P), we show the (MMNL) assortment
problem is NP-hard even when every segment has unit demand and there are only two locker preference
types.

Let the demand in each segment be 1 and total budget on locker network is C. We consider a simplified
setting in which every segment has exactly two preferences towards different lockers with each utility being
a sufficiently large number M , i.e., the unit demand will be satisfied immediately once at least one locker in
its preference list has been installed to serve the segment.

Next, we use a reduction from the vertex cover problem to prove the hardness of our problem. Consider
an undirected graph G = (V,E), vertex cover is to check whether there exists a subset of vertices V ′ ⊂ V

of cardinality at most C, such that every edge e ∈ E is incident to at least one vertex in V ′. Let I be an
instance of vertex cover. We will construct an instance I ′ of assortment problem corresponding to I. Let the
number of locker locations be N = |V |, each of them corresponding to each vertex in graph G, and let the
set of locker preference list be {(i, j) : (vi, vj) ∈ E}, each of them corresponding to each customer’s choice.
We show that the maximal coverage of I ′ is |E| if and only if there is a vertex cover of size at most k in
instance I.

Suppose there exists a vertex cover V ′ ⊂ V such that |V ′| ≤ C. In the locker setup solution x =

(x1, x2, . . . , xN), where xi = 1 if vi ∈ V ′ and xi = 0 otherwise. Therefore, the total demands covered by the
locker can be expressed as

R(x) =

 ∑
(vi,vj)∈E

max{xi, xj}

 .
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Since V ′ is a vertex cover, at least one of {vi, vj} is in V ′. Therefore, max{xi, xj}= 1 for ∀ (vi, vj)∈E, and
the total coverage is |E|.

Conversely, consider the locker solution x = (x1, x2, . . . , xN) containing at most C non-zero components
and providing total coverage |E|, we argue that V ′ = {vi : xi = 1} is a vertex cover. Notice that the total
coverage can be rewritten as

R(x) =

 ∑
(vi,vj)∈E

min(max{xi, xj},1)

 ,

and thus max{xi, xj} ≥ 1 for ∀ (vi, vj) ∈E, implying that at least one of {vi, vj} is in set V ′, Therefore, set
V ′ is a vertex cover.

E.5. Proof of Proposition 3

Proposition 3. The SOCP-MIP formulation is equivalent to the FB formulation.

Proof: Denote the optimal solution to Model (FB) as x1 and the optimal solution to Model (SOCP-MIP)
as (x2,z∗,w∗). Denote the objective of Model (FB) and (SOCP-MIP) as f1(·) and f2(·), respectively. We
show that f1(x1) = f2(x

2,z∗,w∗).

(1) Given the optimal solution x1 to Model (FB), we construct a feasible solution (x1,z,w) to Model
(SOCP-MIP) where wi = 1/zi = 1/(

∑
k∈S µi,kx

1
i ), ∀i ∈ B. The feasibility of solution (x1,z,w) can be easily

checked. Therefore, we have
f1(x

1) = f2(x
1,z,w)≥ f2(x2,z∗,w∗).

The first inequality comes from the construction of solution (x1,z,w) and the second inequality is due to
the optimality of the solution (x2,z∗,w∗).

(2) Given the optimal solution (x2,z∗,w∗) to Model (SOCP-MIP). The feasibility of this solution demon-
strates that w∗

i ≥ 1/(
∑

k∈S µi,kx
2
i ), ∀i∈B and thus f2(x2,z∗,w∗)≥ f1(x2). Therefore, we have

f2(x
2,z∗,w∗)≥ f1(x2)≥ f1(x1).

The first inequality comes from the feasibility of solution (x2,z∗,w∗) and the second inequality is due to the
optimality of solution x1.

Hence, f1(x1) = f2(x
2,z∗,w∗) demonstrates the equivalence of (SOCP-MIP) formulation to the (FB)

formulation.
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