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I ntelligent part-to-picker systems are spreading across a broad range of industries as preferred solutions for agile order
fulfillment, wherein mobile racks are carried by robots and moved to stations where human pickers can pick items

from them. Such systems raise the challenge of designing good work schedules for human pickers; they also give rise to a
new class of operational scheduling problems in human–robot coordinated order picking systems. This work studies the
problem of finding a suitable robot schedule that takes into account the schedule-induced fluctuation of the working states
of human pickers. A proposed model enables mobile racks with various workloads to be assigned to pickers, and sched-
ule the racks that are assigned to every picker to minimize the expected total picking time. The problem is formulated as
a stochastic dynamic program model. An approximate dynamic programming (ADP)-based branch-and-price solution
approach is used to solve this problem. The developed model is calibrated using data that were collected from a domi-
nant e-commerce company in China. Pickers’ working state transitions are modeled based on data obtained from this
warehouse. Counter-factual studies demonstrate that the proposed approach can solve a moderately sized problem with
50 racks in under 2 minutes. More importantly, the approach yields high-quality solutions with picking times that are
10% shorter than the solutions that did not consider schedule-induced fluctuations of pickers’ working states.

Key words: robot scheduling; order picking; human–machine coordination; circadian rhythm; approximate dynamic pro-
gramming
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1. Introduction

Order picking has long been identified as the most
time-consuming and labor-intensive set of activities
in warehousing. With the advent of Industry 4.0,
many new technologies, such as the robotics and
Internet of Things (IoT), have enabled a new wave of
warehouse automation (Olsen and Tomlin, 2020). A
novel part-to-picker system, involving a fleet of
robots, mobile racks, working stations, and sophisti-
cated control software, provides an innovative and
promising way to improve picking performance (Wei-
dinger et al., 2018). In a warehouse that uses such a
system, robots are scheduled to carry racks to

stations, where human operators pick items from the
racks and place them in bins. By leaving the tedious
carrying work to robots, the system is expected to
reduce greatly the walking distance of human opera-
tors and improve order picking productivity.
Various logistics service providers, including the

giants like Alibaba, JD Logistics, and Amazon, have
more than 100,000 robots in their fulfillment centers
(Demaitre, 2019). Figure 1 shows a Kiva system that is
implemented in an Amazon warehouse. ABI Research
has predicted that the number of commercial robots
will reach four million in 2025, 20 times more than the
number of robots that were deployed in 2018
(Demaitre, 2019). With fast expanding sales in the
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e-commerce sector, the global warehouse robotics
market is projected to reach $6 billion by 2025 (Wolff,
2019).
However, warehouse automation brings new

challenges to order picking operations. In the cases
that were studied here, the working states of
human pickers fluctuate substantially owing to nat-
ural circadian rhythms and work-induced fatigue.
To perform picking tasks, robots must collaborate
with human pickers in changing working states. If
robots merely loaded the human pickers with an
exhausting list of jobs, productivity would not be
much improved, despite the investment in automa-
tion. Managers who want to optimize order picking
performance should consider the working states of
pickers when setting the schedules of the mobile
racks; doing so requires taking a holistic view of
human energy regulation, and appreciating the fact
that a picker will be more effective with a suitably
coordinated schedule, rather than an overwhelming
and daunting one (Glock et al., 2019). Amazon
recently suffered a spate of very high turnover
(Lecher, 2019), which greatly reduced productivity
and detrimentally affected order fulfillment. Work-
ers complained that they were treated like robots.
Around 300 workers left the Baltimore fulfillment
center in a year. These events reveal that the devel-
opment of warehouse automation must not ignore
the needs of the human workers who are also an
integral part of the system.
Researchers have recently come to appreciate the

importance of considering human factors in order
picking, and noted the lack of studies on this issue
(Grosse et al., 2015). Shehhi et al. (2019) used Siemens
Jack software to simulate the effects of picking hun-
dreds of items an hour on order pickers and high-
lighted the potential for such a modern order picking
operation to cause repetitive motion injuries. Grosse
et al. (2015) emphasized human factors in classical
order picking systems.

This paper studies the following research questions
with reference to a representative case of a dominant
e-commerce company in China:

1. How does a human picker’s working state fluc-
tuate over time, and does this fluctuation sig-
nificantly influence the performance of a
picking system?

2. How should racks be assigned to multiple
pickers with different working state uncertain-
ties to improve their picking productivity?

3. How should all of the racks that are assigned
to pickers be scheduled to minimize the total
expected picking time?

The above questions are very challenging because
of uncertainties in the transitions among human
working states after the handling of various racks.
The assignment of racks to multiple pickers, each of
whom has an individual state transition uncertainty,
significantly affects their total expected picking time.
Consequently, the real-world robot scheduling prob-
lem with a large number of racks, robots, and human
pickers is difficult to solve in a limited period.
Our study of this robot scheduling problem makes

three important contributions. First, data from a dom-
inant e-commerce company in China are analyzed to
identify the working state fluctuations of pickers and
their impact on the performance of a human–robot
coordinated picking system. Thus, this work extends
the research on human–robot coordinated picking
systems by incorporating the working state fluctua-
tions of human pickers into robot scheduling to deter-
mine efficient human–robot coordinated schedules.
Second, the robot scheduling problem is formulated
as a stochastic dynamic program (SDP) for multiple
pickers, and a branch-and-price approach to its solu-
tion is developed by transforming the SDP into multi-
ple single-picker SDPs and using duality and
approximate dynamic programming (ADP) to solve
the nonlinear pricing sub-problem. Third, extensive
case studies with real-world data are performed and
incorporation of the state fluctuations of human pick-
ers into robot scheduling is shown to be critical to the
performance of the order picking system. Without
more training and/or monetary incentives for human
pickers, the presented solution captures the impact of
picker state variability on picking time and outper-
forms the actual schedule, which did not consider
pickers’ state fluctuations, by reducing picking time
by 10%. The approaches that are developed herein
can be applied to other warehouses to reveal fluctua-
tions of pickers’ working states, incorporate those
fluctuations into robot schedules, and increase the
productivity of a picking system.
Note that the findings in this paper are specific to

the mobile-rack warehouse from which the used

Figure 1 Order Picking in a Mobile-Rack Part-to-Picker System
(Designboom, 2014) [Color figure can be viewed at wileyon
linelibrary.com]
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order picking data were obtained. The reported sav-
ings of 10% may differ for different warehouses,
depending on the type of system used therein. In a
recent study, Ae Lee et al. (2020) reported that an AS/
RS system exposes workers to a lower risk of task-re-
lated postural stress than a system that uses moving
robots. This finding implies that changes in the states
of workers are less affected by the schedule in an AS/
RS system than in a system using moving robots (as is
considered in this paper).

2. Literature Review

Automation technology supports the integration of
robotics into the daily labor-intensive processes in
warehouses, but it brings with it the challenge of coor-
dinating human–robot interaction. The productivity
of warehouses with both humans and robots cannot
be maximized without optimal human–robot coordi-
nation. Related studies take human factors into
account in different ways.
First, the picking productivity of human workers is

commonly treated either as fixed (Lee and Murray,
2019) or random with a probability distribution. Rele-
vant studies have used a uniform distribution to
model the handling and walking rates of pickers
(Ruben and Jacobs, 1999), a normal distribution to
model the picking and sorting time of pickers (Chen
et al., 2010), an order-sequence-based picking time
measurement (Boysen et al., 2017), an exponential dis-
tribution to measure the time taken by pickers to com-
plete an order from a bin (Zou et al., 2018), and an
exponential service rate for each picker to determine
queue length probabilities in sequential zone picking
systems (Van der Gaast et al., 2020). To smoothen
human–robot coordination in a picking system, a
human’s actual picking behavior and the special
structure of the picking system must be well under-
stood. Bozer and White (1990) found that increasing
the number of picking positions could yield a notable
improvement in performance only if the mean human
picking time was close to the mean machine cycle
time, such that the picking system was “balanced.”
Khachatryan and McGinnis (2014) developed models
to estimate the expected value and variance of picker
travel time in a picking system with robotic and man-
ual pickers that was based on pick-to-buffer technol-
ogy. Lim (2011, 2017), Webster et al. (2012), and Lim
and Wu (2014) investigated the impact of the skill
levels of human pickers on the performance of special
picking systems.
Another stream of research concerns the impact of

human cognition, feeling, or health risk on order pick-
ing performance. Batt and Gallino (2019) used learn-
ing curves to support managerial decisions
concerning order picking. They conducted a detailed

econometric study of the impact of intra-bin searching
on picking times, and found that incorporating pick-
ers’ experience into pick assignments could substan-
tially improve productivity. Glock et al. (2019)
investigated the spinal load on order pickers and the
consequent risks of injury in order picking. In a differ-
ent vein, De Vries et al. (2016) studied the impact of
an exogenous incentive mechanism on human pick-
ing performance, and showed that combining a given
order picking method with either a cooperation-based
or a competition-based incentive system could
improve productivity.
Table 1 summarizes the relevant literature and the

focus of this paper. Despite the publication of many
relevant studies, gaps remain in our understanding of
intelligent human–robot coordinated picking systems
—especially in the context of Industry 4.0, in which
robots do much more than ever before (Azadeh et al.,
2019, Kumar, Mookerjee, and Shubham, 2018). As
observed in Table 1, this paper differs from previous
works in matching robot schedules with the working
states of human pickers. First, the working state of a
human picker is variable, and this variability has not
been addressed by the literature. The efficiency and
state of a human picker change with time and robot
schedules. Second, with the advent of Industry 4.0,
robots are performing more tasks and a wider range
of tasks. In the mobile-rack-based picking system that
is considered herein, robots must “perceive” how
“hungry” the pickers are, so that they can supply
them with the right rack at the right time. The robots
should therefore be more proactive in responding to,
or even managing, the uncertain human working
states.
Methodologically, this work contributes to the liter-

ature by integrating ADP into the branch-and-price
framework for a large stochastic dynamic program
(SDP). SDP is used to model sequential decision mak-
ing in environments in which outcomes are partly
random and partly under the control of a decision
maker. The huge number of system states in a typical
SDP makes the computation of the value function
impractical or impossible in terms of both memory
and time. To overcome this curse of dimensionality,
several approaches to approximating the SDP value
function have been proposed. Basis functions and
state aggregation are the two most common
approaches (Powell, 2010). Studies that are related to
our work in the domains of scheduling and resource
assignment have addressed the delivery vehicle dis-
patching problem (Minkoff, 1993), dynamic fleet man-
agement (Topaloglu and Powell, 2006), ambulance
redeployment decisions in an emergency medical ser-
vice system (Maxwell et al., 2010), patient scheduling
for multi-appointment health care programs (Dia-
mant et al., 2018), the last-mile ride-sharing problem
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(Agussurja et al., 2019), and the in-patient bed assign-
ment problem (Dai and Shi, 2019). Our robot schedul-
ing problem contains a team of agents (pickers), each
of whom is a source of uncertainty with independent
state transition probabilities. All agents in this paper
share the same set of resources (racks). The multi-
agent SDP suffers from exponential spaces of joint
actions and states and thus is intractable by existing
approaches. In this work, the multi-agent SDP is han-
dled by transforming it into multiple single-agent
SDPs and an ADP-based branch-and-price approach
is proposed to solve the problem.

3. Transition between Working States

Order picking data over 6 days in 2019 were obtained
from one of the dominant e-commerce companies in
China1. The data record the picking operations of nine
human pickers in a 2,500-square-meter mobile-rack
warehouse that stores small cosmetic items. The pick-
ers worked with about 40 robots to pick daily cus-
tomer orders. This warehouse is medium-sized; such
a size is common and other logistics companies have
built a number of mobile-rack warehouses of the same
type (Demaitre, 2019). The data include the times that
the racks arrived at and left the picking stations; the
items that were picked from each rack; and the layers
of the racks from which the items were picked.

3.1. Observation and Assumptions
The data interestingly revealed that a picker may take
significantly different amounts of time to pick the
same set of items from the same rack on two consecu-
tive days. The picking time in one instance may actu-
ally be more than double that in another. This was the
case for not just a single picker but most of them. To
determine the causes of changes in the states of the
pickers and their different picking times, the picking
operations were carefully studied, yielding the fol-
lowing important finding. The amounts of work
required to pick from different layers of the racks can
be vastly different: picking many items from high lay-
ers of a rack by climbing up and down a ladder can
be quite exhausting, whereas picking items that are
easily reached can be very relaxing. The sequences of
the racks that were handled by the pickers were then
retrieved, and picking times were longer than usual
mostly following the picking of items from one or
more of the “exhausting racks.” The different working
states of the pickers can thus be attributed to different
work intensities of picking from previous racks. This
finding was confirmed by the pickers.
Based on observations of operations, we make the

following assumptions. First, the time that a human
picker takes to pick from a rack depends on her work-
ing state. The “better” her state, the shorter her pick-
ing time. Second, the working state of a picker

Table 1 Literature Review

Refs. Problem Human factors Means of handling human factors

Ruben and Jacobs (1999) Order batch construction Handling and walking rates Uniform distribution
Chen et al. (2010) Flexible evaluative framework for order picking

systems
Picking and sorting time Normal distribution

Boysen et al. (2017) Sequencing orders in mobile rack warehouse Picking time Dependent on number of aisle
relocations

Zou et al. (2018) Evaluating storage policies of a picking system Time to complete an order
from a bin

Exponential distribution

Van der Gaast et al. (2020) Analysis of capacity of sequential zone picking
systems

Order picking time Exponential distribution

Bozer and White (1990) Performance modeling for end-of-aisle order
picking systems

Picking time Deterministic and exponentially
distributed

Khachatryan and McGinnis
(2014)

Picker travel time modeling for a picking
system with buffers

Travel time Estimated for a picking system with
buffers

Lim (2011) Designing bucket brigades and investigating
impacts of hand-off time

Work velocities Each worker has two work velocities

Webster et al. (2012) Analysis of impact of storage assignment on
order picking line

Walking and picking speed Speed function

Lim and Wu (2014) Coordinating workers in U-shaped assembly line Work rate Workers have station-dependent
rates

Batt and Gallino (2019) Analysis of the effect of searching and learning
on picking performance

Picker’s experience of picking Parametric survival model

Glock et al. (2019) Modeling ergonomic and economic performance
in order picking

Injury risk Formula for effect of peak load on
spine of a picker

De Vries et al. (2016) Aligning picking methods, incentive systems,
and regulatory focus to increase performance

Picking performance Alignment of picking methods,
incentive systems, and regulatory
focus

Our work Robot scheduling for mobile-rack warehouses Working state Picker’s working state changes with
schedule
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depends on the workload in her previous rack. The
greater workload for her previous rack, the higher the
probability that her state will deteriorate. Given a set
of racks for a picker, a different service sequence will
therefore result in different working state transitions
and different expected picking times. Third, the state
transitions of every picker are independent of those of
the others.
The workload of picking from every rack will next

be quantified (Section 3.2), and then approaches to
measuring picker state variability will be proposed
(Section 3.3), based on the data.

3.2. Picking Workload
Some relevant studies have evaluated the time associ-
ated with picking activities in traditional picker-to-
part warehouses (Glock et al., 2019). However, unlike
traditional warehouses, a mobile-rack warehouse is
equipped with only light items; pickers in such a
warehouse do not need to walk to find items; racks
can be moved to pickers by robots; a system tells pick-
ers from which layers items are to be picked; and
most of the time taken by pickers is spent moving to
the right layer, retrieving items, and putting them into
a bin to meet the corresponding order.
A rack in the warehouse has five layers and the

height of each layer is about 0.4 m. Picking from the
lowest layer requires a picker to squat and stoop,
while picking from the top two layers requires a
picker to step on a ladder. Therefore, the time to pick
an item depends mainly on the layer of the item in the
rack.
Squatting down (SD), standing up (SU), stretching

an arm (SA), picking an item (PI), putting an item into
a bin (PB), climbing up a ladder (CU), and climbing
down a ladder (CD) were timed for multiple pickers.
These times were averaged over the pickers as SD,
SU, SA, PI, PB, CU, and CD, respectively, yielding
the times for an average picker. The time required to
pick an item from the lowest layer is 1 ¼ SDþ2SAþ
PIþSUþPB, the time required to pick an item from
the top two layers is 45 ¼ CUþ2SAþPIþCDþPB,
and the time required to pick an item from the middle
two layers is 23 ¼ 2SAþPIþPB.
Let r be the expected time for which an average

picker handles rack r, and 1, 23, 45 be the average
times required to pick an item from layers 1, 2 and 3,
and 4 and 5, respectively. Given a rack from which 1

items in the lowest layer, 45 items in the top two lay-
ers, and 23 items in the middle two layers must be
picked, r may be less than 11þ2323þ4545
because a complete picking action can obtain multiple
items from a single layer. The maximum number of
the items that an average skilled picker can obtain
from a layer is defined as . Then, we set
r ¼d1 = e1þd23 = e23þd45 = e45, where nd e is

the minimum integer that is not less than a positive
real n.
A unit of picking workload is defined as the picking

work that an average skilled picker can complete in a
minute. The picking workload for any rack r, denoted
as r, can be measured in these units, yielding
r ¼ r if r is given in minutes. Based on the data, for
every rack r, the picking time r of an average skilled
picker as well as the picking workload r are esti-
mated using the parameters that are provided in
Appendix S1.
Racks are now grouped by their workloads to

investigate the effects of the racks with different
workloads on the probabilities of state transitions of
pickers. Let 0 be the average workload of all racks,
yielding a ratio r=0 for every rack r. The ratios of
all the racks fall in the range (0.25, 1.85). Without loss
of generality, this range is divided into five equal
parts with an interval of 0.32, and each part is associ-
ated with a workload level. These levels are named
least, less, medium, more, and most levels, respectively.
For example, a r=0 ratio of 0.7 falls into the second
range (0.57, 0.89], so rack r would be at the less work-
load level. The lower the workload level of a rack, the
less the time a picker takes to handle it in any given
state.

3.3. Data-driven Approach to Measuring Picker
State Variability
Identifying the working state of a picker when she is
picking from a rack and measuring the time a picker
takes in a particular state to handle a rack with a par-
ticular workload level are both difficult. To formalize
the measurement, a set of data-driven approaches to
identifying the working states of pickers (Sec-
tion 3.3.1), grouping pickers by their state variability
(Section 3.3.2), and measuring the probabilities of
state transitions of pickers (Section 3.3.3), is devel-
oped.

3.3.1. Identifying Working States of Pickers. The
obtained data record the racks that every picker han-
dled in six days. To identify a picker’s working state
when she was handling a rack, the following produc-
tivity-related notation is defined. Let  and  be the
total workload and working time, respectively, of all
the pickers in the six days, and ¼ = be the average
productivity of the pickers. Let i and i be the total
workload and working time, respectively, of picker i
in the six days. Let i ¼ i= ið Þ be the productivity
coefficient of picker i, indicating how proficient she is
in handling racks relative to the average picker. If
i>1, then picker i is more proficient than the aver-
age. Let i,r and 0i,r be the time picker i should have
spent and actually spent, respectively, handling rack
r. We set i,r ¼ r=i because r is the picking time of
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an average skilled picker and i is the productivity
coefficient of picker i relative to the average. Then, the
picking time ratio 0i,r=i,r can be obtained for picker i
and rack r. Given a fixed i,r, the ratio reflects the
working state of the picker when she was handling
the rack. The smaller the ratio, the shorter her actual
picking time and the better her state. The ratio is com-
puted for every rack, the number of times that the
ratios fall in different ranges is determined, and the
histogram in Figure 2 is thus obtained.
The histogram in Figure 2 suggests a good fit to the

normal distribution with mean μ¼ 1:0 and standard
deviation σ¼ 0:138. (See Appendix S2 for the proof of
the normal distribution hypothesis in Figure 2.) With-
out loss of generality, the range ðμ�3σ, μþ3σÞ is
divided into five equal parts. From left to right, these
parts are associated with five working states named
best, better, normal, worse, and worst states, respec-
tively. For example, a 0i,r=i,r ratio of 0.85 falls in the
range ðμ�1:8σ, μ�0:6σ�, so picker i was in the better
state when she was handling rack r.

3.3.2. Distinguishing Pickers by State Varia-
bility. Figure 2 displays the distribution of the pick-
ing time ratios of all nine pickers. Each picker is asso-
ciated with a distribution with particular mean and
variance values. In this section, their individual distri-
butions are used to examine the differences in their
working state variability, based on which their pick-
ing performances will be compared in Section 7.3.
A normality test is performed on the distribution of

the picking time ratios of every picker. The values of
skewness and kurtosis for the pickers are from −1.671
to 1.529; their absolute values are smaller than
z0:025 ¼ 1:96. This test provides no reason to reject the
normality hypothesis. The means and variances of the
distributions are then estimated, and the gap between
the mean ratio of any picker and the threshold 1.0 is
within 0.0036. Similarly, the average picking produc-
tivity i of every picker is close to 1.0. These results

reveal that all pickers perform similar amounts of
work per unit time on average and their working effi-
ciencies are comparable. A two-sided chi-square test
is performed to determine whether a significant dif-
ference exists between the variance of a single picker
and that of all pickers. (See Appendix S3 for the test
statistics.) Based on the comparisons of variance and
kurtosis, the pickers are divided into three groups:
the first two, the median four, and the last three pick-
ers are in groups 1–3, respectively. Figure 3 plots the
normal distribution that fits the picking time ratios of
each group. The figure demonstrates that the first-
group pickers have the steadiest state variability since
they are often in the normal state, while the third
group of pickers exhibits the most drastic state vari-
ability because they are more prone to being in the
non-normal states than are the pickers in the other two
groups.

3.3.3. Measuring Probabilities of State Transitions
of Pickers. Let i,r,j be a binary indicator that equals
1 if picker i spent time 0i,r handling rack r and the
ratio 0i,r=i,r falls in the range of working state j, and
equals 0 otherwise. Let r,r0 be a binary indicator that
equals 1 if a picker handled rack r0 just after handling
rack r, and equals 0 otherwise. From the data are
obtainedi,r,j and r,r0 for any picker, rack, and work-
ing state. Let i,l,j,k be the probability that the working
state of picker i transitions from j to k after she picks a
rack with workload level l. Then,

i,l,j,k ¼ ∑r∈Rl,r0∈Ri,r,ji,r0 ,kr,r0
� �

= ∑r∈Rl
i,r,j

� �
,

where R is the set of all racks and Rl is the set of
racks with workload level l. Let ti,j,r be the time
spent by picker i handling rack r when she is in

Figure 2 Histogram of Picking Time Ratios of All Pickers [Color figure
can be viewed at wileyonlinelibrary.com]

Figure 3 Normal Distribution that Fits the Ratios of Each Picker Group
[Color figure can be viewed at wileyonlinelibrary.com]
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state j. We set ti,j,r ¼ 0:5  j,0þ j,1

� �
i,r, where

ð j,0, j,1� is the ratio range that is associated with
working state j. Appendix S4 provides an explana-
tory example of this approach to measuring i,‘,j,k.
Based on the above data-driven approach to mea-

suring picker state variability, Appendix S5 provides
statistical evidence for the assumptions that (1) a
picker who handles a rack with a higher workload
has a higher probability to deteriorate to an inferior
state; and (2) the sequence of racks that are assigned
to a picker significantly affects her picking time for
these racks.

4. Robot Scheduling Model with
Varying Picker State

This section formulates the robot scheduling problem
as a stochastic dynamic program (SDP), based on the
variability of picker states.
Multiple picking stations, each associated with a

human picker, are considered. A set of known cus-
tomer orders awaits the pickup service that is pro-
vided by the pickers. The racks from which the items
of an order are picked have been determined. Enough
robots are assumed to be available to carry the racks,
as was the case in the real-world warehouse. These
robots carry a rack to a picker whenever the picker
has finished picking from a previous rack. Since the
queue of racks at a station may increase pressure on
the picker, the next rack will be sent to the station by a
robot no earlier than the completion of picking from
the previous rack. Hence, the queue of racks at any
station is empty.
Owing to the uncertainty of state transitions, a

picker may be in one of different states, each associ-
ated with a probability, after she has picked from a
rack. The state probability depends on the workload
of the rack from which she has just picked as well as
her state before she begins picking from it. This prob-
ability also determines the expected time of picking
the subsequent rack to be assigned to her. Therefore,
the carrying of racks in different sequences by robots
may result in different state transitions and different
expected picking times for a picker.
The robot scheduling problem is considered here

from a static perspective. The working state of every
picker is not determined in real time whenever she
picks from a rack; rather, a robot schedule that mini-
mizes the total expected time taken by pickers to han-
dle all of the racks is generated. A robot schedule
consists of assigning racks to, and sequencing
assigned racks for, multiple pickers.
Additionally, no breaks are incorporated into the

service sequences of pickers. Instead, the focus is on
robot scheduling during the working time of pickers,

because when and if a picker requires a break, and
how long a break should last, are not determined by
the order picking system but are pre-determined by
the worker duty schedule, according to the policy of
the company.

4.1. System State
We define s¼ðw!, u,m!, iÞas the system state in a stage,
where the arrow !denotes a list and the stage is
defined in Section 4.2. A system state contains (i) the
working states m

~
of multiple pickers, whose transi-

tions are independent of each other; (ii) the list of rack
sequences w

~
assigned to pickers; (iii) the remaining set

of racks uyet to be assigned; and (iv) the picker ito
whom a rack has just been assigned. Table 2 provides
the most important notation; additional notation will
be provided as required.

4.2. Stage and Action
The robot scheduling problem with R racks can be
divided into R stages. In each stage, a rack is
appended to the end of the service sequence of a
picker. Since the racks that have not yet been assigned
are in set u, a feasible action is to assign one of these
racks to a picker under the following two constraints.
First, if rack r has been assigned to picker i, then rack
r0 that is associated with the same order as r (meaning
that items in the same order are found in both racks)
cannot be assigned to a picker other than i. This con-
straint follows from the fact that all items in an order
must be put into a single bin that is located at a single

Table 2 Notation Used to Define SDP

Notation Explanation

P Set of P pickers f1,2,⋯,Pg.
M Set of M working states f1,2,⋯,Mg.
R Set of R racks to be handled f1,2,⋯,Rg.
L Set of L rack workload levels f1,2,⋯,Lg, each of which is

associated with a picking workload range.
Rl Set of the racks with workload level l ð∈LÞ.
l r Workload level of rack r ð∈RÞ.
mi Working state of picker i ð∈PÞ.
wi Sequence of racks handled by picker i ð∈PÞ.
w
~

List of P rack sequences w1,w2,⋯,wPf g, each of which
corresponds to a picker.

u Set of all racks that are to be assigned to pickers. It contains
all such racks initially, and no racks at the last stage.

m
~

List of P working states m1,m2,⋯,mPf g, each of which
corresponds to a picker.

αi ,m Probability that picker i ð∈PÞ has the initial state m ð∈MÞ.
i ,l ,j ,k Probability that the working state of picker i transitions from j

to k after she picks a rack with workload level
lði∈P,l∈L, j ,k ∈MÞ. Different pickers may have different
probabilities i ,l ,j ,k even for the same j , k , and l.

t i ,j ,r Time spent by picker i handling rack r when she is in working
state j .
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station. Second, to balance the workloads of the pick-
ers, every picker may be given a minimum workload
and a maximum workload. Then, the lower bound b
and the upper bound �b are defined and set on the total
workload associated with the racks to be handled by
a picker.
Let O be the set of O orders each of which is associ-

ated with more than one rack. Let Ro be the set of
racks that each need to be handled to fill order
oð∈OÞ. Let xi,r be a binary variable that is 1 if rack r is
handled by picker i and 0 otherwise. An action is fea-
sible if it satisfies the following constraints. Constraint
(1) ensures that two racks associated with an order
must be handled by the same picker. Constraint (2)
sets bounds on the workload of each picker.

xi,r ¼ xi,r0 8i∈P,o∈O,r,r0∈Ro,r≠r0 (1)

b≤ ∑
r∈R

rxi,r ≤ �b 8i∈P (2)

Constraint (1) is also applicable to a case in which a
rack is associated with multiple orders. In practice,
such a multi-order rack is generally carried to a pick-
ing station only once so that all of the items on the
rack that is associated with those orders can be picked
at the same time, reducing the number of trips that
must be made by the robots. Therefore, if a rack con-
tains items in multiple orders, all of the racks for all of
those orders should be assigned to a single picker.
Given an example in which orders o1 and o2 are asso-
ciated with the racks in r1,r2f g and r2,r3f g, respec-
tively, and rack r2 contains items in both orders,
constraint (1) requires xi,r1 ¼ xi,r2 ¼ xi,r3 . However, the
obtained data demonstrate that over 63% of orders
are single-rack orders. The chance that two orders
contain items on the same rack and are picked in the
same batch is minuscule. Therefore, such racks and
orders are excluded from the cases that are consid-
ered in Section 7.
Let Ak be the set of all feasible actions in stage

kð0≤ k<RÞ and Akðr, iÞ be a feasible action in Ak that
assigns rack r to picker i. Since state transitions of
pickers are independent of each other, Akðr, iÞ cannot
cause a state transition of a picker other than i.

4.3. Transition Equation for System State and
Picker State
The transition equation for a system state from sk to

skþ1 ð0≤ k<RÞ is formulated as Equation (3), where

mkþ1
i0 ∼ mkþ1

i0 jlr0 ,mk
i0

� �
¼i0 ,lr0 ,mk

i0 ,m
kþ1

i0
.

s0 ¼ w
!0

,R,m
!0

,0
� �

(4)

sR ¼ w
!R

,;,m!R
, i

� �
(5)

Comparing sk and skþ1 reveals that after an action

Akþ1 r0, i0ð Þ, rack r0 is removed from ukþ1 and appended

to the i0-th sequence of w
!kþ1

, and the i0-th element of

m
!kþ1

is mkþ1
i0 , which may be the same as or different

from mk
i0 .

Equation (3) specifies the state dynamics of the sys-
tem, which starts from an initial state s0, given by
Equation (4), and ends at a final state sR, given by
Equation (5). In Equation (4), w

!0
contains P empty

rack sequences; m
!0

is a list of pickers’ initial states,
and i¼ 0, indicating that i does not point at any
picker. Since the initial state of a picker may be uncer-
tain, the system may have multiple initial states, each
of which is associated with a different combination of
pickers’ initial states and a probability. In Equation
(5), w

!R
contains all racks in R; m

!R
is the set of the final

states of pickers, and i is the picker who is associated
with the final action. Each element wR

i in w
!R

records a
sequence of actions on picker i. After these actions,
she may be in one of the multiple working states in
M, each of which is associated with a probability.
Let i,l ¼ i,l,j, j0

n o
j, j0∈M

be the probability matrix of

working state transitions of picker i after she has
picked from a rack with workload level l. Let

Pi wk
i

� �¼ pi,j,k

n o
j∈M

be the probabilities of the final

states of picker i after the actions in wk
i . Pi w

k
i

� �
can be

obtained from the state transition equation of picker
states, formulated as Equation (6), where

α
!
i ¼ αi,mf gm¼1,2,::M and wk

i ðnÞ is the n-th rack of wk
i .

Pi wk
i

� �
is a list of M elements, each of which is the

probability pi,j,k that picker i is in state j at stage k.

Pi w
k
i

� �¼ α
!

i

Yk
n¼1

i,‘
wk
i
nð Þ

8i∈P,0<k≤ R (6)

4.4. Picking Time
The expected time to pick from all of the racks must
be minimized. The penalty function, R sk,Ak r, ið Þ� �

,
given by Equation (7), equals the time that picker i
spends handling rack r in system state sk.

R sk,Ak r, ið Þ� �¼ ti,mk
i
,r (7)

Let v sk
� �¼ vðw!k

, uk,m
!k

, ikÞ be the penalty function,
which is the negative value function of the SDP in

sk ¼ wk
1,w

k
2, . . .,w

k
i0. . .,w

k
P

� �
,uk, mk

1,m
k
2, . . .,m

k
i0, . . .,m

k
P

� �
, i

� � !Akþ1 r0, i0ð Þ

skþ1 ¼ wk
1,w

k
2, . . .,w

k
i0∪ r0f g. . .,wk

P

� �
,uk∖r0, mk

1,m
k
2, . . .,m

kþ1
i0 , . . .,mk

P

� �
, i0� � (3)
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system state sk. The penalty function, v sk
� �

, is given
by the Bellman equation in Equation (8).

v sk
� �¼ min

v skþ1ð Þ∈S
R sk,Ak r, ið Þ� �þ v skþ1

� �� 	� �
(8)

Given a system state sk and an action on picker i,
the picker may transition to any state in M so skþ1 can
be one of multiple possible system states. The expec-
tation  v skþ1

� �� 	
over all possible system states is for-

mulated as Equation (9).

 v skþ1
� �� 	¼ ∑

m∈M

i,lr,mk
i
,m �v skþ1jmkþ1

i ¼m
� �

(9)

From the SDP that was formulated in Section 4, the
robot scheduling problem can be regarded as a novel
parallel machine scheduling problem, in which every
machine (picker) has respective state transition proba-
bilities and the job assignment and sequence affect
the processing time by changing the machine states,
based on those probabilities. The problem is clearly
NP-hard because it can be reduced to the single
machine scheduling problem with sequence-depen-
dent setup times, which has been proved to be NP-
hard (Ertem et al., 2019). For a real-world case with
dozens of racks and a number of pickers that have
mutually independent state transitions, a huge state
space must be explored to find the solution with the
minimal expected time to pick from all racks.
Appendix S6 provides an explanatory example of the
difficulty of finding a good robot scheduling solution.
Appendix S7 analyzes how the picking times associ-
ated with different rack assignment and sequencing
solutions change with pickers’ state variability. Sec-
tion 5 provides a linear programming formulation,
based on which Section 6 proposes an ADP-based
branch-and-price approach to handling this challeng-
ing robot scheduling problem.

5. Linear Programming Formulation

The SDP, summarized in Equation (8), is transformed
into its equivalent linear program (LP) using a funda-
mental result in SDP theory (Puterman, 2014). A vari-
able vðskÞ is created for each system state
sk ¼ðw!k

, uk,m
!k

, ikÞ. By specifying a constraint for each
pair of sk and feasible action Ak r, ið Þ, minimizing the
total picking time in (8) is made equivalent to solving
the following LP.

max
v

∑
m
!

0∈MP

α m
!

0

� �
v w

!0
,R,m

!0
,0

� �( )
LPð Þ

s:t: ∑
m
!

0∈MP

α m
!

0

� �
¼ 1

v sk
� �

≤R sk,Ak r, ik
� �� �

þ ∑
m∈M

ik,lr,mk

ik
,m∙v skþ1jmkþ1

ik
¼m

� �

8sk∈S,Ak r, ik
� �

∈Ak, 0≤ k<R

v sk
� �

≤R sk,Ak r, ik
� �� �

8Ak r, ik
� �

∈Ak,k¼R

In the LP, α m
!

0

� �
¼Qi∈P,mi∈Mαi,mi

is the probability
that is associated with a combination of possible ini-
tial states of all pickers. The last two constraints are
related to the intermediate stages and the final stage,
respectively. The LP includes a variable for each sys-
tem state and a constraint for each state-action pair.
Proposition 1 explains the number of system states in
the LP.

PROPOSITION 1. A problem with R racks and PðP≤ RÞ
pickers, each of whom has M possible states and handles at
least one rack, involves more than ∑R�P

r¼0 Cr
R∙ R� rð Þ!∙�

CP�1
R�r�1∙M

P∙PÞ system states. (See Appendix S11 for proof.)

As stated in Proposition 1, a real-world case with
dozens of racks and a number of pickers would
involve a huge number of system states. Solving or
even constructing an LP for real-world cases, is thus
impractical.

6. ADP-based Branch-and-Price
Approach

The curse of dimensionality in the LP calls for a more
efficient and tractable solution approach. As
explained in Section 4, the problem can be solved in
two stages, which are assigning racks to multiple
pickers and sequencing the racks that have been
assigned to every picker. Among solution
approaches, the column generation approach fits the
problem well because its master and sub problems
nicely correspond to the two solution stages and can
be used to assign columns (rack sequences) to pickers
and generate good columns (rack sequences) with
negative reduced costs, respectively. A column gener-
ation procedure that is embedded into a branch-and-
bound framework will be developed below to solve
the problem.

6.1. A Branch-and-Price Framework
Let Qi be the set of all feasible rack sequences that will
be handled by single picker i, and Vi,q ði∈P,q∈QiÞ be
the expected time spent by picker i handling the rack
sequence q. Let yi,q be a binary variable that equals 1 if
the sequence q of picker i is selected in the final solu-
tion and equals 0 otherwise. Let ai,q,r be a binary value
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that equals 1 if the sequence q of picker i contains rack
r and equals 0 otherwise. The master problem of robot
scheduling can now be formulated as a sequence-
based model (SBM).

min ∑
i∈P

∑
q∈Qi

Vi,qyi,q SBMð Þ

s:t: ∑
i∈P

∑
q∈Qi

ai,q,ryi,q ≥ 1 8r∈R

∑
q∈Qi

yi,q ¼ 1 8i∈P

yiq∈ 0,1f g 8i∈P,q∈Qi

The SBMminimizes the expected picking time asso-
ciated with selected sequences by ensuring that each
rack must be handled at least once and each picker
must be assigned exactly one sequence. The two diffi-
culties in solving the SBM are an exponential number
of columns in the SBM and the extremely time-con-
suming task of obtaining Vi,q for each column. To han-
dle the first difficulty, a column generation procedure
is proposed. The linear relaxation of the SBM is solved
through column generation by repeatedly solving (1)
a restricted master problem that is formulated as an
SBM with a subset of columns Qi⊂Qi for any picker
ið∈PÞ, and (2) a pricing sub-problem to generate a
column with negative reduced cost. To handle the
second difficulty, an ADP is introduced to price col-
umns.
The SBM is an integer programming model. Even if

its linear relaxation is solved to optimality by column
generation, the resulting optimal solution may not
necessarily be integral. Therefore, column generation
is generally embedded into a branch-and-bound
search framework (Gu et al., 2010, King et al., 1993)
and is executed at every node of the search tree, yield-
ing a branch-and-price algorithm (Barnhart et al.,
1998, Guedes and Borenstein, 2018, Lübbecke and
Desrosiers, 2005).

6.2. Pricing
Let dual variables πr ðr∈RÞ and σi ði∈PÞ correspond
to the two types of constraint in SBM, respectively.
The reduced cost Cδði,qÞ of a column δði,qÞ associated
with picker i and rack sequence q can be formulated
as Equation (10).

Cδ i,qð Þ ¼Vi,q� ∑
r∈R

πrai,q,r�σi (10)

Given a column with a subset of the racks that are
assigned to picker i, the LP in Section 5 can be solved
by restricting S and Ak to the sets feasible for picker i
andR to the set of assigned racks. Then, Vi,q and q can
be obtained from the solution to the restricted LP.

However, the curse of dimensionality of the LP
remains even for a single picker: solving the restricted
LP for a column with only ten racks, five workload
levels, and five possible picker states, still takes over
an hour. To handle this problem, Section 6.2.1 intro-
duces ADP to construct an approximate LP (ALP),
and Section 6.2.2 develops an ALP-based pricing
approach.

6.2.1 Approximate Dynamic Programming. To
solve the restricted LP, ADP is introduced to approxi-
mate the values of the variables. In the restricted LP,
variable v wi, u,mi, ið Þ is used to indicate the expected
picking time for which picker i with an initial state mi

handles the racks in u and the last assigned rack in wi,
denoted as wi Eð Þ. The approximation of the variable,
denoted as vALP�i wi, u,mið Þ, is formulated as Equation
(11) by assuming a linear form. In Equation (11), con-
stant θi is an adjustment term for picker i, and terms
βi,l and γi,mi

are the marginal values for a rack with
workload level l to be handled by picker i, and state
mi of picker i, respectively.

vALP�i wi,u,mið Þ ≈ θiþ ∑
j∈u∪ wi Eð Þf g

βi,‘ j þ γi,mi
8i∈P (11)

Based on Equation (11), the restricted LP is refor-
mulated as an approximate LP, denoted as ALP ðiÞ,
for picker i, handling the racks in sequence q.

Vi,q ¼ max
θi, β

!
i , γ
!

i

θiþ ∑
r∈q

βi,lr þ ∑
m∈M

αi,mγi,m

( )
ALP ið Þ

s:t: βi,lþ γi,m� ∑
m0∈M

pi,l,m,m0γi,m0 ≤  ti,m,l½ �r∈Rl
8l∈L,m∈M

(12)

θiþβi,lþ γi,m ≤  ti,m,l½ �r∈Rl
8l∈L,m∈M (13)

θi, β
!
i, γ
!

i

� �
∈ (14)

In ALP ðiÞ, constraints (12) and (13) transform,
respectively, the last two constraints of the LP in Sec-
tion 5 by replacing the variable v(�) with the approxi-
mation vALP−i(�) in Equation (11) and the picking time
R(�) spent by picker i handling rack r in state m with

 ti,m,l½ �r∈Rl
.  ti,m,l½ �r∈Rl

¼ 1
Rlj j∑r∈Rl

ti,m,r is the average

time spent by picker i handling a rack with workload
level l in working state m. Rl is the set of racks with

workload level l. For simplicity, β
!
i ¼fβi,lgl∈L

and

γ
!
i ¼fγi,mgm∈M

are defined for picker i. Recall that αi,m
denotes the probability that picker i has initial state m.
In the LP of Section 5, each pair of system state and

action is associated with a constraint, while in ALP(i),
each pair of picker state and rack level is associated
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with a constraint, for the following reasons. (1) ALP(i)
is based on the restricted LP for picker i, so (2) the sys-
tem state is reduced to the working state of picker i;
and (3) a feasible action is the assignment to picker i
of one of the racks that have been aggregated by their
workload levels.
ALP(i) is a column-dependent formulation, as dif-

ferent columns may have different racks in q and

therefore different ALP(i) s and solutions θi, β
!

i, γ
!
i

n o
.

Let xi,r be a binary parameter that specifies whether
rack r is in the sequence q that is assigned to picker i.

ALP(i) can be reformulated as ALP ði, x!iÞ, where

x
!
i ¼ xi,rf gr∈R determines the subset of racks that is

assigned to picker i.

Vi,q ¼ max
θi , β

!
i, γ
!

i

θiþ ∑
r∈R

xi,rβi,lr þ ∑
m∈M

αi,mγi,m

( )
ALP i, x

!
i

� �

s:t:Constraints 12ð Þ� 14ð Þ
ALP ði, x!iÞ is of a much smaller scale than the

restricted LP because ALP ði, x!iÞ aggregates racks by
their workload levels; a rack sequence is changed to a
workload level sequence; and different state-action
pairs in the LP of Section 5 may be associated with
the same constraint. ALP ði, x!iÞ has only (L + M + 1)
variables and 2LM constraints. This formulation is
tractable, and the pricing subroutine that is based on
it can be executed effectively.

6.2.2 Pricing based on Approximate LP. The
pricing sub-problem (PSP) comprises finding a col-
umn with the minimum negative reduced cost among
all pickers. The PSP is modeled below based on the
reduced cost of a column, formulated in Equation
(10). In the PSP, zi is a binary variable that specifies
whether a column of picker i has the minimum
reduced cost, and xi,r is another binary variable that
indicates whether rack r is assigned to picker i. We
define x

!¼ xi,rf gi∈P,r∈R and z
!¼ zif gi∈P . In the PSP,

Equation (15) ensures that only one picker’s column is
selected and Eqs. (16) and (17) ensure the feasibility of
a selected column, as discussed in Section 4.2.

min
x
!
, z
!

∑
i∈P

Vi,q� ∑
r∈R

πrai,q,r�σi

 !
zi PSPð Þ

s:t: ∑
i∈P

zi ¼ 1 (15)

xi,r ¼ xi,r0 8i∈P,o∈O,r,r0∈Ro,r≠r0 (16)

b �zi ≤ ∑
r∈R

rxi,r ≤ �b �zi 8i∈P (17)

xi,r, zi∈ 0,1f g 8i∈P,r∈R

Importantly, the objective function of the PSP is

nonlinear. As formulated in ALP ði, x!iÞ, Vi,q is not

fixed but depends on x
!
i, which is a variable set in the

PSP. Then, the variables θi, β
!

i, and γ
!
i in Vi,q must be

solved simultaneously with x
!
and z

!
in the PSP.

To make the PSP tractable, the dual of ALP ði, x!iÞ is
formulated as DALP ði, x!iÞ, where h

!
i ¼ hi,l,mf gl∈L,m∈M

and g
!
i ¼ gi,l,m

n o
l∈L,m∈M

are the dual variables of con-

straints (12) and (13), respectively.

min
h
!

i, g
!

i

∑
l∈L

∑
m∈M

 ti,m,l½ �r∈Rl
hi,l,mþgi,l,m

� �
DALP i, x

!
i

� �

s:t: ∑
m∈M

hi,l,mþ ∑
m∈M

gi,l,m ¼ ∑
r∈Rl

xi,r 8l∈L

∑
l∈L

1�pi,l,m,m

� �
hi,l,m� ∑

l∈L

∑
m0∈M∖m

pi,l,m0 ,mhi,l,m0

þ∑
l∈L

gi,l,m ¼ αi,m 8m∈M

∑
l∈L

∑
m∈M

gi,l,m ¼ 1

h
!

i ≥ 0, g
!

i ≥ 0

The PSP is then transformed into the DPSP based on
DALP ði, x!iÞ. In the DPSP, the objective function inte-
grates the objectives of the PSP and DALP ði, x!iÞ. Con-
straints (18)–(20) are based on DALP ði, x!iÞ. Constraints
(21) and (22) define the relationships between x

!
and z

!
.

Constraints (15)–(17) are derived from the PSP.

min
x
!
, z
!

h
!
, g
!

∑
i∈P

∑
l∈L

∑
m∈M

 ti,m,l½ �r∈Rl
hi,l,mþgi,l,m

� �

�∑
i∈P

σizi� ∑
i∈P

∑
r∈R

πrxi,r DPSPð Þ

s:t: ∑
m∈M

hi,l,mþ ∑
m∈M

gi,l,m ¼ ∑
r∈Rl

xi,r 8i∈P, l∈L (18)

∑
l∈L

1�pi,l,m,m

� �
hi,l,m� ∑

l∈L

∑
m0∈M∖m

pi,l,m0,mhi,l,m0

þ∑
l∈L

gi,l,m ¼ αi,mzi 8i∈P,m∈M (19)

∑
l∈L

∑
m∈M

gi,l,m ¼ zi 8i∈P (20)

xi,r ≤ zi 8i∈P,r∈R (21)

zi ≤ ∑
r∈R

xi,r 8i∈P (22)

Constraints 15ð Þ� 17ð Þ

Wang, Sheu, Teo, and Xue: Human-Robot Coordination
Production and Operations Management 0(0), pp. 1–20, © 2021 Production and Operations Management Society 11

Please Cite this article in press as: Wang, Z., et al. Robot Scheduling for Mobile-Rack Warehouses: Human–Robot Coordinated Order
Picking Systems. Production and Operations Management (2021), https://doi.org/10.1111/poms.13406

https://doi.org/10.1111/poms.13406


xi,r, zi∈ 0,1f g8i∈P,r∈R; h
!
≥ 0, g

!≥ 0

PROPOSITION 2. The DPSP formulation has the same
optimal objective value as the PSP formulation. (See
Appendix S12 for proof.)

The DPSP is formulated as a mixed 0-1 linear model
with PðRþ1Þ binary variables, 2P�L�M linear vari-
ables, and P(L + M + R + O + 4) + 1 constraints if
each order in O is associated with two racks. DPSP is
a tractable formulation for real-world cases with a
number of racks and pickers. It is solved to optimality
using a MIP solver, returning a column with a nega-
tive reduced cost.

6.3. Branching
To handle the non-integral solution to the restricted
master problem, a branching strategy that was pro-
posed by Savelsbergh (1997), based on fixing a single
variable, is used. The strategy firstly extracts the rela-
tionship xi,r for any picker-rack pair (i,r) from the
SBM solution by setting xi,r ¼∑q∈Qi

ai,q,ryi,q. It then
branches on a fractional variable xi,r with the frac-
tional part closest to 0.5. Since the DPSP contains vari-
able xi,r, the constraint xi,r = 1 is added to one branch
and xi,r = 0 is added to the other. In the case of a tie,
the variable that is associated with the largest picking
time Vi,q is selected. Using such a branching scheme,
the pricing sub-problem structure is preserved. To
obtain a feasible solution rapidly, the depth-first node
selection strategy is applied.

6.4. Sequencing
The robot scheduling problem comprises assigning
racks to pickers and sequencing the racks assigned to
every picker. Using the ADP-based branch-and-price
approach, a solution to the rack assignment sub-prob-
lem can be obtained. Then, the racks that are assigned
to every picker can be sequenced based on the LP in
Section 5. However, owing to the curse of dimension-
ality, the LP can only be solved for very small cases.
To handle the sequencing sub-problem for large real-
world cases, the policies that are implied by the dual
variables of h

~
and g

~
in Section 6.2.2 are applied.

Given a rack assignment solution x
!¼ xi,rf gi∈P,r∈R,

the racks that are assigned to every picker are
sequenced using the following procedure. Recall that
xi,r specifies whether rack r has been assigned to
picker i. First, the dual variables of

h
!
i ¼ hi,l,mf gl∈L,m∈M

� �
and g

!
i ¼ gi,l,m

n o
l∈L,m∈M


 �
are

calculated using DALP ði, x!iÞ. These variables provide
the distribution over the pairs of picker state and rack

level. i,l,m ¼ hi,l,mþgi,l,m

� �
= ∑l∈Lhi,l,mþ∑l∈Lgi,l,m

� �
is

taken as the probability of selecting a rack with work-
load level l when picker i is in state m. Then, the roul-
ette wheel strategy is applied to simulate an initial
state m0 of picker i, based on αi,mf gm∈M, and to select

a rack level, based on i,l,m0

� �
l∈L

. One of the racks

with the selected level is appended to the sequence of
picker i, and the steps of simulating the picker state
and selecting a rack are repeated until all assigned
racks have been appended. If the selected level has no
racks, then one of the un-appended racks is selected
at random. Finally, a rack sequence would be
obtained. The above procedure is repeated to find
multiple (such as ten) rack sequences for each picker
and to return the one with the shortest expected pick-
ing time.

7. Case Studies

This section presents a numerical study of the pro-
posed ADP-based branch-and-price approach on the
robot scheduling problem using the data of the target
company. The obtained data are important in the
investigation of the variability of picker states, pro-
viding reasonable estimates of the parameters of the
problem, such as the transition probabilities of picker
states and the time for which a rack is handled by a
picker in a particular working state, and evaluating
the feasibility and effectiveness of the approach in
real-world cases.
First, in Section 7.1, the performance of the pro-

posed approach is tested by using various cases and
comparing our solutions to the actual operations of
the company. Section 7.2 will then investigate some
common rack assignment and sequencing policies
and compare our solutions to those generated by
these policies. Section 7.3 will compare the perfor-
mances of pickers with different variability of work-
ing states.
Gurobi 9.0 is used as the MIP solver. The ADP-

based branch-and-price approach is coded using the
C#/Gurobi API. The data are processed using MS
SQL Server. All computations are conducted on a
computer with an Intel I7 2.69 GHz processor and
16GB RAM.
In practice, customer orders are input into the pick-

ing system on a rolling basis. The robot scheduling
problem is concerned with handling the orders in a
batch, which may contain dozens of orders. When the
system receives orders, it identifies the racks that will
satisfy those orders. Based on the orders and racks,
robots are scheduled. The orders are grouped herein
by their ordering times to simulate the rolling manner
in which the picking system operates and cases with
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10–95 orders are generated. The rack(s) associated
with each order are obtained from the data. Each
picker is assumed to begin in the normal state. The
lower and upper bounds on picker workload, b and �b,
are set to 0:7∑r∈Rr=P and 1:4∑r∈Rr=P, respec-
tively.

7.1. Performance of Proposed Approach
First, the performance of the proposed branch-and-
price approach in cases with 10 to 95 orders is tested.
Table 3 presents our solutions and the corresponding
operations that were actually performed according to
the data; the columns R,O, P,M, and L show the num-
bers of racks, orders, pickers, picker states, and work-
load levels of racks, respectively. The total picking
time, average picker state, CPU time, and the picking
time gap are shown in the table. The average picker
state τ is given by Equation (23), where pi,j,k is the
probability that picker i is in state j at stage k and is
determined by a given solution. Most cases in the
table involve five working states of pickers and five
workload levels of racks, as presented in Section 3. A
few cases involve three states and three levels that can
be identified from the parameters in Appendix S13.
Some of the pickers in the data are selected for these
cases. In each case, the numbers of pickers in the three
groups presented in Section 3.3.2 are equal.

τ¼
∑
i∈P

∑
j∈ 1,2...,Mf g

∑
k∈ 0,1,2...,R�1f g

j �pi,j,k
 !

P �Rð Þ (23)

Table 3 shows that the proposed branch-and-price
approach performs well in a number of cases. It takes
less than half a minute to generate a solution for the
cases with 20 racks, whereas the LP model in Sec-
tion 5 cannot even be built in an hour for the case
with only ten racks. Constructing the ALP(i) model in
Section 6.2.1 is also quite time-consuming because it
enumerates all possible assignments of racks to

pickers. The approach proposed herein can solve the
cases with 120 racks in less than 20 minutes.
Table 3 also reveals that our solution from the pro-

posed approach takes less time than the actual solu-
tion that did not consider schedule-induced
fluctuations of pickers’ working states, to handle the
same set of racks. The average improvement of our
solution in total picking times is approximately 10%.
The improvement results only from the adjustments
of the rack assignment and sequence for pickers. The
average state of a picker in our solution is smaller,
indicating that she spends more time in a better state.
Since the average picker state is obtained by weighing
the best, better, normal, worse, and worst states using
integers from 1 to 5, respectively, a smaller average
corresponds to a better overall state. This result
demonstrates that our solution is able to detect the
change in picker states and promote the state transi-
tion of pickers in a favorable direction.

7.2. Comparison of Proposed Approach and
Common Policies
This section compares the proposed branch-and-price
approach to some common policies that can be easily
implemented in practice. Since the scheduling prob-
lem comprises assigning racks to pickers and
sequencing the racks that are assigned to each picker,
Section 7.2.1 first investigates common policies that
are applicable to the two sub-problems, and then Sec-
tion 7.2.2 compares the results obtained using the
proposed approach to those obtained by combining
these policies.

7.2.1 Rack Assignment and Sequencing
Policies. Racks are commonly assigned to pickers in
a manner that makes the workload of all pickers as
equal as possible. This equal assignment policy is for-
mulated in Appendix S14.
Given the assignment of a set of racks to a picker,

two straightforward policies can be applied to

Table 3 Performance of Proposed Branch-and-Price Approach

No. R O P M L

Our solution Actual solution

Picking time
gap

Picking time
(in seconds)

Average
Picker State

CPU time
(in seconds)

Picking time
(in seconds)

Average
picker state

1 10 9 3 3 3 135.76 3.08 2.38 148.61 3.27 9.47%
2 20 18 3 3 3 277.83 3.14 9.28 310.14 3.35 11.63%
3 20 18 6 3 3 277.65 3.15 15.03 306.72 3.29 10.47%
4 20 18 6 5 5 277.18 3.28 20.82 311.15 3.87 12.26%
5 50 42 6 5 5 697.90 3.19 108.23 759.23 3.93 8.79%
6 50 42 9 5 5 693.70 3.23 143.84 763.68 3.90 10.09%
7 90 74 6 5 5 1259.86 3.17 487.62 1367.17 3.71 8.52%
8 90 74 9 5 5 1255.70 3.21 593.90 1374.20 3.88 9.44%
9 120 95 6 5 5 1680.40 3.17 1067.42 1854.67 3.82 10.37%
10 120 95 9 5 5 1674.33 3.20 1158.91 1827.53 3.94 9.15%
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sequence these racks - random sequencing and rota-
tion. Under the random sequencing policy, racks are
sequenced randomly. Under the rotation policy, a
rack with workload level l0 is appended to the
sequence if the last rack in the sequence has workload
level l and l0 is one level less than l or the most level if l
is the least. If no rack has a workload level l0, then a
rack with one level less than l0 is appended until all
racks have been appended. This policy alternates the
workload levels of racks so that racks of various
workloads are distributed evenly.

7.2.2 Comparison of Policies. Two rack assign-
ment policies and three rack sequencing policies have
now been specified, and they are shown in Table 4. A
problem solution can be obtained by combining an
assignment policy with a sequencing policy. The six
combinations of policies are Our-A/Our-S, Our-A/
Random-S, Our-A/Rotation-S, Equal-A/Our-S,
Equal-A/Random-S, and Equal-A/Rotation-S, respec-
tively.
To test the performances of the policy combina-

tions, seven picking tasks are constructed, based on
the obtained data, and shown in Table 5. They have
the same total picking workload but different average
workload levels of racks and different numbers of
racks. Due to the same total picking workload, the lar-
ger the number of racks, the lower the average rack
level. In a simulation, six pickers are selected to per-
form the seven tasks under each policy combination.
Among the six pickers, two from the first group, two
from the second, and two from the third are selected.
Forty-two solutions for the seven tasks under the six
combinations of policies are thus obtained.
Figure 4 displays the picking time gaps between

Our-A/Our-S and the other combined policies. The
horizontal axis of the figure shows the average rack
level. Generally, a larger average rack level corre-
sponds to more racks with a large level. However, a
rack with a large level must be scheduled with care: if
such a rack is assigned to a picker in a bad state, the
picking time may be long, and the picker will proba-
bly transition to a worse state, affecting her subse-
quent performance; if such a rack is sent to a picker in
a good state, the picking time will probably be greatly
reduced. Therefore, the transitions of picker states
must be understood and then used to ensure that the

scheduling of racks keeps up with the fluctuation of
picker states. The numerical results show that the pro-
posed approach outperforms the other policy combi-
nations in reducing the impact of the variability of
picker states on picking time.
Figure 4 demonstrates that the two combinations

Our-A/Random-S and Our-A/Rotation-S outperform
the other three, which include the Equal-A policy.
This result is not surprising because the Equal-A pol-
icy assigns racks by considering only the workloads
of the racks but not the pickers’ varying states. How-
ever, the states of pickers after picking from racks
with different workloads may be differently dis-
tributed. The approach proposed herein captures the
varying states of pickers and assigns racks to efficient
pickers in a manner that reduces the overall picking
time. The fundamental role of the rack assignment
policy is evident. Without good rack assignment,
obtaining a good solution with a short picking time is
difficult, regardless of the rack sequencing policy.
Figure 4 shows that the Rotation-S policy is worse

than the Our-S policy but better than the Random-S
policy if these sequencing policies are combined with
the same assignment policy. The Rotation-S policy is
based on the assumption that a picker enters a bad
state after picking from a large-level rack. Therefore,
it schedules a rack with a lower level for a picker who
has just picked from a large-level rack to relieve the
pressure on that picker and bring her back into a good
state. However, a bad state does not always follow
picking from a large-level rack. The Our-S policy
identifies the probabilities associated with the states
of a picker more accurately and schedules racks for a
picker based on the probabilities. On the contrary, the
Random-S policy fails to consider the picker state at
all and so makes finding a solution with a short pick-
ing time difficult to obtain.
Figure 5 displays the average picker states under

various policy combinations. Generally, a worse aver-
age picker state corresponds to higher probabilities of
the bad states of pickers. A larger average rack level
corresponds to greater difficulty in controlling picker
states because a picker’s state is likely to deteriorate
after she picks from a large-level rack. As shown in
the figure, as the average rack level increases, Our-A/

Table 4 All Rack Assignment and Sequencing Policies

Policy name Policy explanation

Our-A The rack assignment policy based on our approach.
Equal-A The equal assignment policy.
Our-S The rack sequencing policy based on our approach.
Random-S The random sequencing policy.
Rotation-S The rotation sequencing policy.

Table 5 Picking Tasks with Same Workload

No. R P M L Avg. rack level

1 87 6 5 5 1.5
2 68 6 5 5 2.0
3 58 6 5 5 2.5
4 50 6 5 5 3.0
5 44 6 5 5 3.5
6 39 6 5 5 4.0
7 36 6 5 5 5.0
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Our-S yields a steady trend in the average picker state
whereas the other policy combinations yield faster
worsening of states. Effective control of picker states
is required to reduce picking time as much as possi-
ble. This result also explains the picking time gaps of
Figure 4.
To gain a more detailed insight into picker states,

the probabilities of each state are summed over all the
pickers under the Our-A/Our-S and Equal-A/Rota-
tion-S policies. Figure 6, which comprises seven pairs
of columns, shows the percentage of each state for all
pickers. The left column of each pair provides the
state distribution under Our-A/Our-S, and the right
column provides that under Equal-A/Rotation-S. The
five states are colored from blue to red. As shown in
the figure, pickers under Our-A/Our-S are associated
with more blue and yellow and less pink and red than

those under Equal-A/Rotation-S. As the average rack
level increases, under Equal-A/Rotation-S, fewer
states are blue and more are pink or red, explaining
the worse average picker state and longer picking
time under Equal-A/Rotation-S because a picker gen-
erally spends more time picking from a rack in a bad
state than in a good one. In contrast, Our-A/Our-S
utilizes the variability of picker states to ensure that
pickers are in good states as often as possible. With-
out such utilization, picker states may change freely
and arbitrarily.

7.3. Comparison of Performances of Pickers with
Different Working State Variability
In Section 3.3.2, pickers were divided into three
groups by their working state variability. As dis-
cussed in that section, their average working

Figure 4 Picking Time Gaps between Our-A/Our-S and the Other Combined Policies [Color figure can be viewed at wileyonlinelibrary.com]

Figure 5 Average Picker States under Policy Combinations [Color figure can be viewed at wileyonlinelibrary.com]
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efficiencies are comparable, and the difference in the
three groups of the pickers lies only in the degree of
fluctuation of their working states. To compare the
performances of pickers with different working state
variability, pickers from the three groups are selected
to construct five sets of pickers, which are shown in
Table 6. If a group does not have enough pickers, a
picker in the group can be replicated multiple times.
In a simulation, each set of pickers performs one of
the seven picking tasks in Table 5, under a policy
combination of Our-A/Our-S or Equal-A/Rotation-S.
Thus, 35 simulations are conducted under each of
these two policy combinations.
Figure 7 presents the results obtained under Our-

A/Our-S and Equal-A/Rotation-S when the five
selected sets of pickers perform the seven specified
tasks. The two horizontal axes represent the average
rack level and the set of pickers, respectively, and the
vertical axis represents the total picking time. Two
surfaces can be seen in the figure. The Our-A/Our-S
surface is below the other surface, indicating that
picking times are shorter under Our-A/Our-S. The
two surfaces show different variations in picking
times over average rack level and picker set. The fol-
lowing two observations are made:
(1) Along the picker set axis, the picking time

increases slowly under Our-A/Our-S. Given a fixed
average rack level, corresponding to a fixed set of

racks from which items are to be picked, the picking
time spent by pickers in set i is slightly less than that
spent by pickers in set i + 1 (1 ≤ i < 5). The difference
between the picking times of adjacent sets of pickers
is about 1.3%. The differences between the picking
times of picker sets 1 and 3, and those of sets 3 and 5
are only about 2.5%. Such a small difference reflects
the comparable productivity of different groups of
pickers if they handle racks based on the proposed
solutions herein. However, the situation is different
under Equal-A/Rotation-S. As shown in Figure 7, the
Equal-A/Rotation-S surface reveals a more obvious
increase in the picking times spent by different sets of

Figure 6 Percentages Associated with Picker States under Policy Combinations [Color figure can be viewed at wileyonlinelibrary.com]

Table 6 Sets of Pickers from Different Groups

No.

Number of pickers from different groups

Group 1 Group 2 Group 3

1 6 0 0
2 3 3 0
3 0 6 0
4 0 3 3
5 0 0 6

Figure 7 Results of Picking Tasks Done by Sets of Pickers under Our-
A/Our-S and Equal-A/Rotation-S [Color figure can be viewed
at wileyonlinelibrary.com]
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pickers handling the same set of racks. The differ-
ences between the picking times of picker sets 1 and 3
and those of sets 3 and 5 are over 6.5%, and that
between picker sets 1 and 5 is 13.3%. The difference in
the state variability among picker groups is not
absorbed by Equal-A/Rotation-S policies. These
results imply that for a given set of racks, the greater
the average state variability of pickers, the larger the
difference in picking times between the two surfaces,
and the more advantageous and applicable the pro-
posed approach.
(2) Along the average rack level axis in Figure 7,

it can be observed that a larger average rack level
corresponds to a shorter total picking time, regard-
less of the set of pickers. This result is expected
because a heavier average workload of racks gener-
ally corresponds to more items that need to be
picked from a rack, more items caught by a picker
in a picking operation, and less time taken by a
picker to pick out the items. As the average rack
level increases, the picking times of the two sur-
faces decrease at different rates. Given a fixed
picker set, as the average rack level increases, the
picking time under Our-A/Our-S falls faster than
that under Equal-A/Rotation-S and the difference
between the picking times increases. This result
reveals the different capabilities of the two policy
combinations in adjusting picker states by assigning
and sequencing large-level racks, and that a larger
average rack level corresponds to a greater advan-
tage of the proposed approach over common
policies.

8. Conclusion

The introduction of mobile racks and robots into
warehouses provides a cost-effective solution to order
picking problems by re-distributing tasks involved in
the problem between humans and robots, but it also
creates challenges in coordinating picking activities.
In such a warehouse, robots must cooperate with
human operators whose working states are prone to
fluctuation. Robot scheduling in the warehouse is a
hard problem because it involves assigning racks with
various workloads and setting service sequences for
the pickers with different variability of working
states.
To achieve a robot schedule that can anticipate

changes in the working states of human pickers, this
work developed a data-driven approach to determin-
ing the state transition probability of each picker. The
robot scheduling problem was then formulated as an
SDP and a corresponding linear programming model
was constructed. Due to the curse of dimensionality,
the problem is reformulated as a sequence-based
model that is integrated into a branch-and-price

framework. An ADP and its dual are constructed to
make tractable the pricing sub-problem, which is the
most challenging part of the branch-and-price frame-
work.
The ADP-based branch-and-price approach is

applied to data that were provided by one of the dom-
inant e-commerce companies in China. The proposed
approach is shown to solve a case with 50 racks in
under two minutes, yielding a solution with a picking
time that is 10% shorter than the actual schedule,
which did not consider pickers’ state fluctuations. It
implies that our solution enables pickers to perform
about 10% picking work more during a given work-
ing period. This increased picker efficiency allows a
warehouse to hire one fewer picker for every 10, pro-
viding a large cost saving especially for giant compa-
nies like Amazon, JD, and Alibaba. For a company
with 25,000 pickers, this saving amounts to tens of
millions of dollars annually.

8.1. Theoretical and Practical Implications
The robot scheduling problem is a multi-agent SDP in
which each agent has an independent state transition
distribution and a state-dependent working effi-
ciency. The problem is NP-hard because it can be
reduced to the single machine scheduling problem
with sequence-dependent setup times, which has
already been proved to be NP-hard. The spaces of
joint actions and states grow exponentially with the
numbers of jobs, agents, and their states, making the
computation of the value functions of multiple agents
very challenging.
Due to the mutual independence of the agents’ state

transitions, the problem is transformed herein into
multiple single-agent SDPs; ADP is introduced to for-
mulate single-agent value functions, and an ADP-
based branch-and-price approach is developed. To
handle the nonlinear function that is encountered
when ADP is embedded into the pricing sub-prob-
lem, the dual of an approximate LP (DALP) and a
DALP-based dual are created. The method makes the
sub-problem tractable and thus ensures the efficiency
of the overall solution approach. Effective methods
are also developed to assign jobs to, and sequence
jobs for, agents, which are the two most important
parts of handling a multi-agent SDP. Herein, jobs are
assigned to agents based on their comparative advan-
tages in performing different sets of jobs; jobs are
sequenced for each agent according to the probability
distribution, derived from the DALP, over the pairs of
agent state and job. These methods contribute
considerably to finding a good job assignment and
sequencing solution to the multi-agent SDP.
Multi-agent SDPs can be found in a variety of

domains, such as robotics, economics, and manufac-
turing. These SDPs share common characteristics,
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such as multiple agents, mutually independent state
transition distributions of agents, sequence-depen-
dent processing costs, and considerable solution chal-
lenges. The approach herein provides an innovative
and effective framework for solving multi-agent SDPs
with the characteristics.
This work has the following implications for man-

agerial practices.
Implication 1. Robot scheduling has direct effects

on the working states of human pickers, which would
further influence the performance of an order picking
system. This conclusion is drawn from Section 3 and
Appendix S7. The data analysis in Section 3 shows
that the working states of human pickers may fluctu-
ate with the workloads of the racks that they handle.
Human working states are important since they sig-
nificantly affect the performance of an order picking
system. As revealed by the analysis, a picker can
spend twice as long handling a rack in a bad state as
in a good state, and the picking times of multiple
pickers in different states can vary even more. The
model-based analysis in Appendix S7 further shows
that a favorable handling sequence for multiple racks
by a picker can reduce picking time by 18.7%. There-
fore, scheduling robots to assign racks to, and
sequence racks for, pickers and to align rack work-
loads with the working state fluctuations of human
pickers, is crucial to enhancing the performance of an
order picking system.
Implication 2. Pickers’ degrees of fluctuation of

working states may vary significantly. However, this
variation does not result in a large variation among
their picking times if scheduling is effective. This con-
clusion is drawn from Section 7.3. Case studies in that
section show that as the working states of pickers fluc-
tuate more drastically, the workers tend to spend
longer picking from a set of racks, so schedules must
be designed to adapt to such drastic fluctuations.
Common policies fail to provide good schedules for
volatile pickers, who take much longer than steady
pickers. In contrast, the variation in picking times
among pickers is insignificant if racks are handled
based on our solutions.
Implication 3. Understanding fluctuations of

human working states and responding to them proac-
tively can improve the performance of human–robot
coordinated systems. This conclusion is drawn from
SSections 7.1 and 7.2. These sections show that a
solution that proactively responds to fluctuations of
human working states outperforms the schedules
from common policies and the actual schedule,
which did not consider these fluctuations, with a
10% shorter picking time. This improvement does
not arise from any additional incentives or penalties
(such as picker training, rewards, or working condi-
tion improvements). This result is satisfactory for

not only decision makers but also pickers. The sub-
stantial improvement in the performance of the
picking system confirms the importance of under-
standing fluctuations of human working states and
responding to them proactively. This finding
demonstrates the promise of human circadian
rhythm-based robot scheduling for human–robot
coordinated systems.

8.2. Limitations and Future Directions
Several limitations of this research and future direc-
tions for research should be considered. First, the
proposed approach can be generalized for schedul-
ing picker rotations. Order picking is labor-intensive
and rotations are required to enable pickers to
relax. Grouping pickers and specifying rotations
with different lengths based on daily picking work-
load the variability of every picker’s working state
are challenging. Second, limited by the obtained
data, this work did not model working behaviors of
pickers, which may play an important role in deter-
mining working state and performance. Once
behavior-related data, concerning for example the
videos about the operations of pickers, are obtained,
the causal chain, “picker behavior → working
state → picking performance” could be studied.
Third, variations in the behaviors of pickers in
warehousing systems among countries would also
be significant. These issues are left for future
research.
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