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Many real-world optimization problems have input parameters estimated from data whose inherent impre-

cision can lead to fragile solutions that may impede desired objectives and/or render constraints infeasible.

We propose a joint estimation and robustness optimization (JERO) framework to mitigate estimation uncer-

tainty in optimization problems by seamlessly incorporating both the parameter estimation procedure and

the optimization problem. Toward that end, we construct an uncertainty set that incorporates all of the data,

where the size of the uncertainty set is based on how well the parameters would be estimated from that data

when using a particular estimation procedure: regressions, the least absolute shrinkage and selection operator,

and maximum likelihood estimation (among others). The JERO model maximizes the uncertainty set’s size

and so obtains solutions that—unlike those derived from models dedicated strictly to robust optimization—

are immune to parameter perturbations that would violate constraints or lead to objective function values

exceeding their desired levels. We describe several applications and provide explicit formulations of the JERO

framework for a variety of estimation procedures. To solve the JERO models with exponential cones, we

develop a second-order conic approximation that limits errors beyond an operating range; with this approach,

we can use state-of-the-art SOCP solvers to solve even large-scale convex optimization problems. Finally, we

apply the JERO model to a case study, thereby addressing a health insurance reimbursement problem with

the aim of improving patient flow in the healthcare system while hedging against estimation errors.
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1. Introduction

Data are used to estimate the input parameters for many optimization problems. Because such data

are seldom sufficient to estimate those parameters precisely, the solutions to optimization problems

may be so fragile that they fail to serve their intended purposes or to satisfy relevant constraints.

Ben-Tal et al. (2009) points out that, in linear optimization problems, a small perturbation of the

parameters—that is, of no more that 0.1% from their nominal values—can render the concept of

an “optimal” solution practically meaningless given the consequent potential for severe violations
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of the problem’s constraints. Hence, there is a clear need to consider a framework that mitigates

the inherent inaccuracy of parameter estimation.

Robust optimization (RO), an approach that has witnessed an explosive growth in the past two

decades, is well suited for this purpose. It was introduced by Soyster (1973) and popularized by

Ben-Tal and Nemirovski (1998), El Ghaoui et al. (1998) and Bertsimas and Sim (2004). In classical

robust optimization, the input parameters are not specified exactly but instead are characterized

by a so-called uncertainty set. Simple uncertainty sets, such as the “ellipsoidal” version of Ben-Tal

and Nemirovski (1998) and the “budgeted” version of Bertsimas and Sim (2004), are ubiquitous in

robust optimization models thanks to their computational tractability. More recently, Bertsimas

et al. (2018a) use data to design uncertainty sets for robust optimization that are based on statistical

confidence intervals.

Another recent development is distributionally robust optimization (DRO), which enhances the

modeling of uncertainty by defining an ambiguity set of probability distributions that are con-

strained by their moments and/or statistical distances. Van Parys et al. (2017) offer an elegant

justification of DRO models. Scarf (1957) was the first to apply the moment-based approach to

study a single-item newsvendor problem, which has now been extended to more general optimiza-

tion frameworks (see e.g., Breton and El Hachem 1995, Shapiro and Kleywegt 2002, Delage and

Ye 2010, Wiesemann et al. 2014, Bertsimas et al. 2018b). There is also considerable interest in

DRO models based on statistical distance, which—much as in our proposed joint estimation and

robustness optimization (JERO) model—incorporate data in the ambiguity set. For discrete dis-

tributions, Ben-Tal et al. (2013) study robust optimization problems with uncertain probabilities

defined by φ-divergences (see also Wang et al. 2016). For continuous distributions, the use of statis-

tical distance based on the Wasserstein metric has been popular in DRO models (see, e.g., Esfahani

and Kuhn 2018, Zhao and Guan 2018).

The JERO framework developed here incorporates both the parameter estimation procedure

and the optimization problem. The uncertainty set in this model is based on how well the param-

eters are estimated from data via particular estimation procedures; examples include, inter alia,

regressions, the least absolute shrinkage and selection operator (LASSO), and maximum likelihood

estimation (MLE). In contrast to models of robust optimization, JERO’s robustness optimization

maximizes the size of the uncertainty set in order to derive solutions that are far less subject

to estimation errors. So unlike classical robust optimization techniques, our procedure does not

require stipulating the exact size of the uncertainty set; such exactness can be elusive, even with

the help of performance bounds, because the bounds are often weak and/or reliant on assumptions

that need not apply to the estimation problem at hand (see, for instance, Bertsimas and Sim 2004).
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Our JERO framework is derived from both RO and DRO models.Yet it differs from those models

by specifically, and crucially, incorporating the parameter estimation procedure.

Our paper’s contributions can be summarized as follows.

1. We propose a joint estimation and robustness optimization framework, which seamlessly incor-

porates both the parameter estimation procedure and the optimization problem in the same

model. The uncertainty set used in this JERO framework is based on how well the parameters

are estimated—from the available data—by various estimation procedures. Given that esti-

mation, the JERO model maximizes the uncertainty set’s size so as to obtain solutions that

are relatively immune to estimation errors.

2. We detail a number of applications that involve explicit JERO formulations for several different

standard estimation procedures.

3. We use a real-world data set in adapting the JERO framework to address a health insurance

reimbursement problem. The goal of this case-study exercise is to improve patient flow in a

healthcare system while hedging against estimation errors.

4. To address the computational issues that arise in some of the JERO applications, we exploit

practical second-order conic (SOC) approximations of exponential cones and thereby reduce

the approximation errors associated with extreme values. Hence we can use state-of-the-art

second-order conic programming (SOCP) solvers (e.g., CPLEX, Gurobi) and find solutions

even to large-scale convex optimization problems. As our SOC approximation of an exponential

cone is of independent interest, we present our approach in Appendix B.

The rest of our paper proceeds as follows. Section 2 develops our framework for joint estimation

and robustness optimization. In Section 3, we describe some applications and related formulations

of the JERO framework for a variety of estimation procedures. Section 4 presents a case study,

based on real data, of improving patient flow in a healthcare system. We conclude in Section 5

with a brief summary. The proofs of all formal propositions are given in the Appendix.

Notation. We use boldface lowercase letters, such as x ∈ RN , to represent vectors; we use xi

to denote the ith element of the vector x. In addition, boldface uppercase letters—such as A ∈

RM×N—are used to denote matrices while Ai denotes the ith row of the matrix A. Special vectors

include 0, e, and ei; these represent (respectively) the vector of 0s, the vector of 1s, and the

standard unit basis vector. We denote by [N ] the set of positive running indices up to N ; thus, [N ] =

{1,2, · · · ,N}. We use SM+ to denote the set of symmetric positive semidefinite M ×M matrices,

and use SM++ to denote the set of symmetric positive definite M ×M matrices. Given a set S, we

denote its relative interior by ri(S). Finally, we follow the convention that 0 ln(0/w) = 0 if w≥ 0.
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2. Joint Estimation and Robustness Optimization Model

We consider the following optimization problem:

Z = min a0(x, β̂)

s.t. ai(x, β̂)≤ τi ∀i∈ [I],

x∈X .

(1)

Here x∈X ⊆RN is the decision variable, β̂ ∈W ⊆RM is the input parameter, and the ai : X̄ ×W̄ 7→

R are saddle functions on the domain X̄ ×W̄ ⊆RN×RM (note X ⊆ X̄ ,W ⊆W̄), i.e., ai(x,β) being

concave in β given x∈ X̄ and convex in x given β ∈ W̄.

The optimization problem’s input parameter, β̂, is determined from data via an estimation

procedure. Conceivably, when the estimated parameter differs from the true value, the objective

value of problem (1) may deviate and some of the constraints may become infeasible. To address

this issue, classical robust optimization solves the following semi-infinite optimization problem:

ZR(r) = min τ

s.t. a0(x,β)≤ τ ∀β ∈ U(r),

ai(x,β)≤ τi ∀β ∈ U(r), ∀i∈ [I],

x∈X ;

(2)

here U(r) is the uncertainty set, which is usually a normed ball of radius r centered at the esti-

mate β̂, defined by

U(r), {β ∈ W̄ | ‖β− β̂‖ ≤ r}.

One challenge faced by the robust optimization model is to determine the size of the uncertainty

set, r, which is typically difficult for the decision maker to specify. Although that size has some

connection to probability constraints, the bounds are usually loose and strongly dependent on

the imposed distributional assumptions and the functions ai. We therefore propose the following

robustness optimization model:

ZS(τ0) = max r

s.t. a0(x,β)≤ τ0 ∀β ∈ U(r),

ai(x,β)≤ τi ∀β ∈ U(r), ∀i∈ [I],

x∈X , r≥ 0.

(3)

In this robustness optimization, the objective function is the size of the uncertainty set and the goal

is to find a solution x that remains feasible for the largest possible uncertainty set. Observe that

we must specify the cost target τ0 in problem (3), a task that is more intuitive than specifying the

uncertainty set’s size r in problem (2). For instance, we may specify the the cost target τ0 relative
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to the optimum cost of problem (1), Z∗. Since the uncertainty set U(r) is nondecreasing in r, it

follows that we can obtain the solution to the robustness optimization problem (3) by solving—via

binary search—a sequence of robust optimization problems (2) until r= r∗ such that ZR(r∗) = τ0.

Given a data set D, we obtain the parameter β̂ by using an estimation procedure that solves

the following optimization problem:

β̂= arg min ρ (β;D)

s.t. β ∈W;
(4)

here ρ(β;D) is referred to as the estimation metric. In ordinary least-squares (OLS) estimation,

for example, ρ is the sum of the squares of prediction errors.

Definition 1 (Estimate Uncertainty Set). We define the uncertainty set of an estimate

as

E(r;D), {β ∈W | ρ(β;D)≤ ρ̂+ r}, (5)

where ρ̂ = ρ(β̂;D) is the minimal value of the estimation metric and r ≥ 0 is the gap from the

optimal value ρ̂.

Thus E(r;D) denotes the set of estimates that are feasible within the optimality gap, where

E(0;D) = {β̂}. The corresponding joint estimation and robustness optimization (JERO) model is

given by

ZE(τ0) = max r

s.t. a0(x,β)≤ τ0 ∀β ∈ E(r;D)

ai(x,β)≤ τi ∀β ∈ E(r;D), ∀i∈ [I]

x∈X , r≥ 0.

(6)

This model incorporates the estimation procedure and the optimization problem in a seamless

framework.

For a fixed r≥ 0, the constraint in model (6) is convex in the decision variable x—althougth, the

model might not be jointly convex in r and x. Nevertheless, we can obtain the optimal solution by

solving a sequence of subproblems as follows:

ZrE(τ0) = min t− τ0

s.t. a0(x,β)≤ t ∀β ∈ E(r;D),

ai(x,β)≤ τi ∀β ∈ E(r;D), ∀i∈ [I],

x∈X ;

(7)

here β ∈W is the input parameter and E(r;D) is the uncertainty set of estimates. Assuming that

there exists a method for finding the optimal solution of model (7), we propose the following binary

search to obtain the optimal solution for model (6).
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Algorithm 1 Binary Search

Input A routine that solves model (7) optimally, ∆> 0, and r̄ is a large enough positive number.

Output: x

Step 1. Set r1 = 0 and r2 = r̄.

Step 2. If r2− r1 ≤∆, stop. Output: x.

Step 3. Let r := (r1 + r2)/2. Compute ZrE(τ0) from model (7) and obtain the corresponding

optimal solution.

Step 4. If ZrE(τ0)≤ 0, update r1 := r; otherwise, update r2 := r.

Step 5. Go to Step 2.

Proposition 1. Suppose that model (6) is feasible. Then Algorithm 1 finds a solution x with

objective r̃ satisfying |r̃−r∗|<∆ in at most dlog2(r̄/∆)e computations of the subproblem (7). Here

r∗ is the optimal objective of model (6), ∆> 0 is an arbitrary number, and r̄ > 0 is a sufficiently

large number.

The tractability of JERO depends on a tractable representation of what is known as the robust

counterpart. We focus here on JERO’s nonlinear constraints,

ai(x,β)≤ τi, i∈ [I]∪{0}, (8)

where x ∈ X̄ is the decision variable and β ∈ E(r;D) is the uncertain estimate. The robust coun-

terpart of (8) is then

ai(x,β)≤ τi ∀β ∈ E(r;D) (9)

or, equivalently,

max
β∈E(r;D)

ai(x,β)≤ τi.

Deriving the robust counterpart requires our next proposition.

Proposition 2. Assume that ri (E(r;D)) 6= ∅ and that ai(x, ·) is closed concave for all x ∈ X̄ .

Then x satisfies (9) if and only if x and ν (x∈ X̄ , ν ∈ W̄) satisfy

δ∗r (ν)− a∗i (x,ν)≤ τi. (10)

Here a∗i (x,ν) is the concave conjugate of ai(x,ν), defined as

a∗i (x,ν), inf
β∈W̄
{β′ν − ai(x,β)};

and δ∗r (ν) is the support function of the set E(r;D), defined as

δ∗r (ν), sup
β∈W
{β′ν | ρ(β;D)≤ ρ̂+ r} .
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More interestingly, we show in the next result that the support function of E(r;D) can be

obtained by computing the conjugate function of the corresponding estimation metric.

Proposition 3. Assume that r > 0 and that ρ(β;D) is convex in β. Then the support function

of E(r;D) can be represented as

δ∗r (ν) = infµ>0{(ρ̂+ r)µ+µρ∗(ν/µ;D)}; (11)

here ρ∗(ν;D) is the convex conjugate of the estimation metric ρ(β;D) and is defined as

ρ∗(ν;D), sup
β∈W̄
{β′ν − ρ(β;D)}.

In the next section, we focus on the estimation metrics and support functions of estimate sets

E(r;D). We refer to Ben-Tal et al. (2015), and the references therein, for computing conjugate

functions.

3. Estimation Procedures, Explicit Formulations and Applications

The tractability of the robust counterpart (9) depends on the chosen estimation metric. We now

describe several applications with explicit formulations of the JERO framework for a variety of

estimation procedures.

3.1. Regression-based or Least squares estimation metric

OLS. Suppose that data D = {z,Y } are given, where z ∈ RP is a vector of P observations of

the response variable and where Y = {1,y1, . . . ,yM−1} ∈ RP×M is a full column rank matrix of

observations of M −1 dependent variables. Then ordinary least squares (OLS) solves the following

optimization problem:

min
β∈RM

‖z−Y β‖22,

where β ∈RM is a vector of regression coefficients. Hence the estimation metric is

ρ(β;D) = ‖z−Y β‖22. (12)

It is known that the OLS estimate is β̂= (Y ′Y )−1Y ′z and ρ̂= ‖z−Y (Y ′Y )−1Y ′z‖22.

Proposition 4. Let r > 0. Then the corresponding support function of the estimate uncertainty

set E(r;D), given the estimation metric (12), is

δ∗r (ν) = min
√
ρ̂+ r‖w‖2 +z′w

s.t . Y ′w= ν,

w ∈RP .

(13)
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LASSO. Given the same data D= {z,Y } as before, the least absolute shrinkage and selection

operator (LASSO) introduced by Tibshirani (1996) solves the l1 penalized regression problem

min
β∈RM

{
1

P
‖z−Y β‖22 +λ‖β‖1

}
,

where β ∈ RM is a vector of regression coefficients and λ ∈ R+ is a prespecified parameter. The

corresponding estimation metric is

ρ(β;D) =
1

P
‖z−Y β‖22 +λ‖β‖1. (14)

Note that LASSO reduces to OLS when λ= 0.

Proposition 5. Let r > 0. Then the corresponding support function of the estimate uncertainty

set E(r;D), given the estimation metric (14), is

δ∗r (ν) = min (ρ̂+ r)s+u− v+z′w

s.t . Y ′w− t= ν,∥∥∥∥ 2v

w

∥∥∥∥
2

≤ 2u,

‖t‖∞ ≤ λs,

Pu+Pv≤ s,

u, s∈R+, v ∈R, w ∈RP , t∈RM ;

(15)

here ρ̂ is the optimal value of the corresponding estimation metric.

Example 1 (Store Location). Consider the problem of setting up stores in N different

areas. There is a fixed cost ci of putting a store in area i. Suppose that data D = {zt,Yt}Pt=1

are given, where zt ∈ RN is a vector of demand observations for N areas in period t and where

Yt = {1,y(t)
1 , . . . ,y

(t)
M−1} ∈RN×M is a matrix of observations in period t for factors that may affect

demand. We can apply the following JERO framework to solve this store location problem:

max r

s.t.
∑N

i=1β
′fixi ≥ τ ∀β ∈ E(r;D),

xi +xj ≤ 1 ∀(i, j)∈A,∑N

i=1 cixi ≤B,

x∈ {0,1}N .

In this problem, x is the decision variable, τ is the target for service level, β ∈RM is a vector of

regression coefficients, and A is a set of arcs denoting two locations with at most one store. In

addition, B is the total budget available for opening stores and fi ∈ RM is a vector of values for
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factors at current that may influence demand in area i. Using the estimation metric (14), we can

reformulate this optimization problem as follows::

max r

s.t. (ρ̂+ r)s+u− v+
∑N

i=1 z
′
iwi + τ ≤ 0,∑P

i=1Y
′
i wi +

∑N

i=1 fixi− t= 0,∥∥∥∥∥∥∥∥∥∥∥∥

2v

w1

...

wP

∥∥∥∥∥∥∥∥∥∥∥∥
2

≤ 2u,

‖t‖∞ ≤ λs,

PNu+PNv≤ s,

xi +xj ≤ 1 ∀(i, j)∈A,∑N

i=1 cixi ≤B,

x∈ {0,1}N ,

u, s∈R+, v ∈R, t∈RM ,

wi ∈RN ∀i∈ [P ];

here ρ̂ is the optimal value of the corresponding estimation metric. Observe that the optimization

problem is a mixed-integer SOCP, which can be addressed by state-of-the-art solvers such as

CPLEX and Gurobi.

3.2. Maximum Likelihood Estimation Metric

Given the data D, which consists of P independent and identically distributed (i.i.d.) observations

zi and a family of density functions f(· |β), the average log-likelihood function is defined as

`(β;D),
1

P
ln

( P∏
i=1

f(zi |β)

)
.

We can now derive different estimate uncertainty sets (and their support functions) under various

distributions, as described next.

Multivariate Normal. Suppose we are given data D = {z1, . . . ,zP} with zi ∈ RM . Let these

data be characterized by a multivariate normal distribution with mean β and covariance Σ, and

let the sample covariance matrix be positive definite. Then the average log-likelihood function can

be written as

`(β,Σ;D) =−1

2

(
M ln(2π) + lndetΣ +

1

P

P∑
i=1

(zi−β)′Σ−1(zi−β)

)
,
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which is not a jointly concave function with respect to the parameters β ∈ RM and Σ ∈ SM+ .

Suppose, we are keen in estimating the mean, β, then the corresponding estimation metric would

be

ρ(β;D) = min
Σ∈SM+

1

2

(
lndetΣ +

1

P

P∑
i=1

(zi−β)′Σ−1(zi−β)

)
.

It is known that the maximum likelihood estimates are

β̂=
1

P

P∑
i=1

zi, Σ̂ =
1

P

P∑
i=1

(
zi− β̂

)(
zi− β̂

)′
,

and ρ̂= 1
2
(det Σ̂ +M).

Proposition 6. The corresponding estimation metric ρ(β;D) is equivalent to

ρ(β;D) =
1

2

(
M + lndet Σ̂ + ln(1 + (β− β̂)′Σ̂−1(β− β̂))

)
, (16)

and the corresponding support function of the estimate uncertainty set E(r;D), given the estimation

metric (16), is

δ∗r (ν) = β̂′ν +
√
e2r− 1‖Σ̂ 1

2ν‖2. (17)

Example 2 (Robust Portfolio Optimization). Consider an instance of portfolio optimiza-

tion with N assets or stocks held over a period of time. Suppose we have the data D= {z1, . . . ,zP},

where zi ∈RN is an observation of the returns on N assets. To derive a robust solution that will

meet a prespecified target even in the worst-case scenario, we can solve the JERO problem

max r

s.t. β′x≥ τ ∀β ∈ E(r;D),

x′e= 1,

x∈RN+ , r ∈R+,

where x∈RN+ is the investment portfolio, τ is the target for portfolio, and β ∈RN is the estimate

(i.e., the mean value) of the portfolio. If we use the estimation metric (16), then the optimization

problem would be equivalent to

max r

s.t. −β̂′x+
√
e2r− 1‖Σ̂1/2x‖2 + τ ≤ 0,

x′e= 1,

x∈RN+ , r ∈R+,

where β̂= 1
P

∑P

i=1 zi and Σ̂ = 1
P

∑P

i=1

(
zi− β̂

)(
zi− β̂

)′
. Note that

−β̂′x+
√
e2r− 1‖Σ̂1/2x‖2 + τ ≤ 0
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can be rewritten as

S(x),
β̂′x− τ
‖Σ̂1/2x‖2

≥
√
e2r− 1,

where S(x) is the Sharpe ratio (introduced by Sharpe 1966). The JERO here is equivalent to

maximizing the Sharpe ratio of the portfolio selection with respect to N(µ̂, Σ̂) (Sharpe 1994).

Finite Support. Suppose we are given data D= {z1, . . . ,zP} with zi ∈RN . Let the underlying

distribution of these data be the finite support distribution on support Ξ with probability distri-

bution β ∈RM+ in a probability simplex, where Ξ, {ξ1,ξ2, . . . ,ξM} and ξi ∈RN . Then the average

log-likelihood function is given by

`(β;D) =
1

P

M∑
i=1

Pi ln(βi),

where Pi =
∑P

j=1 I (zj = ξi) for i∈ [M ]. The corresponding estimation metric would be

ρ(β;D) =− 1

P

M∑
i=1

Pi ln(βi). (18)

It is known that the maximum likelihood estimates are β̂i = Pi/P , i ∈ [M ], from which it follows

that the optimal value of the estimation metric is ρ̂= 1
P

∑M

i=1Pi ln(P/Pi). Note that the estimation

metric here is similar to the Burg entropy divergence (see Ben-Tal et al. 2013).

Proposition 7. Let r > 0. Then the corresponding support function of the estimate uncertainty

set E(r;D), given the estimation metric (18), is

δ∗r (ν) = min (ρ̂+ r)Pu+ v+e′s

s.t . v−wi ≥ νi ∀i∈ [M ],

Piu ln(Piu/wi)−Piu− si ≤ 0 ∀i∈ [M ],

u∈R+, v ∈R, w ∈RM+ , s∈RM .

(19)

Example 3 (Two-stage Stochastic Programming). Consider an instance of two-stage

stochastic programming (cf. Shapiro et al. 2009). The first-stage, “here and now” decision is x ∈
RN1 , which is chosen over the feasible set X ⊆ RN1 . The cost incurred during the first stage is

deterministic and given by c′x with c∈RN1 . In the second stage, the random variable with support

Ξ = {ξ1,ξ2, . . . ,ξM} is realized, where ξi = (d(i),A(i),B(i),b(i)), d(i) ∈ RN2 , A(i) ∈ RI×N1 , B(i) ∈
RI×N2 , and b(i) ∈ RI . Given the realization of that variable, we can determine the cost incurred

in the second stage. For a decision x and a realization ξ= (d,A,B,b) of the random variable, we

assess the second-stage costs via the optimization problem

min d′y

s.t. Ax+By≥ b,

y ∈RN2 .
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Suppose we are given dataD= {z1, . . . ,zP} that amounts to second-stage realizations of the random

variable. Then we can solve the following JERO problem:

max r

s.t. c′x+
∑M

i=1 y
′
id

(i)βi ≤ τ ∀β ∈ E(r;D),

A(i)x+B(i)yi ≥ b(i) ∀i∈ [M ],

yi ∈RN2 ∀i∈ [M ],

x∈X , r ∈R+;

here τ is the cost target and β ∈RM+ is the probability distribution over Ξ. If we use the estimation

metric (18), then this optimization problem would be equivalent to

max r

s.t. c′x+ (ρ̂+ r)Pu+ v+e′s≤ τ,

v−wi ≥ y′id(i) ∀i∈ [M ],

Piu ln(Piu/wi)−Piu− si ≤ 0 ∀i∈ [M ],

A(i)x+B(i)yi ≥ b(i) ∀i∈ [M ],

yi ∈RN2 ∀i∈ [M ],

x∈X , u, r ∈R+, v ∈R, w ∈RM+ , s∈RM ,

where ρ̂ is the optimal value of the corresponding estimation metric.

Linear Regression. Suppose we have the data D= {z,Y }, where z ∈RP is a vector of obser-

vations of the response variable and Y = {1,y1, . . . ,yM−1} ∈RP×M is a full column rank matrix of

observations of dependent variables. We consider the linear regression model

z =Y β+ ε, (20)

where β ∈ RM is a vector of regression coefficients and the εi are i.i.d. normal noises. The corre-

sponding average log-likelihood function is given by

`(β, σ2;D) =−1

2

(
ln(2πσ2) +

1

Pσ2
‖z−Y β‖22

)
.

The corresponding estimation metric would be

ρ(β;D) = min
σ2∈R+

1

2

(
ln(σ2) +

1

Pσ2
‖z−Y β‖22

)
=

1

2

(
ln
t‖z−Y β‖22

P
+ 1

)
. (21)

It is known that the maximum likelihood estimate is β̂ = (Y ′Y )−1Y ′z. Hence the optimal value

of the estimation metric is ρ̂ = 1
2

(ln (‖z−Y (Y ′Y )−1Y ′z‖22/P ) + 1). Note that the ML estimate
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β̂ here is exactly the same as the OLS estimate derived when using the estimation metric (12).

Moreover, the uncertainty set of estimates here has the same geometric characterization as the set

defined by (12).

Proposition 8. Let r > 0. Then the corresponding support function of the estimate uncertainty

set E(r;D), given the estimation metric (21), is

δ∗r (ν) = min γ(r)‖w‖2 +z′w

s.t. Y ′w= ν,

w ∈RP ,

(22)

where γ(r) =
√
P exp(2ρ̂+ 2r− 1).

Example 4 (Robust Newsvendor). Here we consider a single-product newsvendor problem

in which the newsvendor, who faces uncertain demand, must simultaneously determine the stock-

ing quantity and the selling price (see, for instance, Kunreuther and Schrage 1973, Federgruen

and Heching 1999, Petruzzi and Dada 1999, Ramachandran et al. 2018). Suppose the given data

are D = {z,Y }, where z ∈ RP is a vector of demand observations for the past P periods, and

Y = {1,y1, · · · ,yM−1} is a matrix of observations of factors—such as selling price, advertising,

promotion, and so forth—that affect demand. To derive a robust solution that can control the over-

all targeted reward even in worst-case scenarios, the newsvendor could solve the following JERO

problem:

max r

s.t. pmin{x,β′f}− cx≥ τ ∀β ∈ E(r;D),

f1 = p,

(x,f)∈X , p∈L, r ∈R+.

Here x is the stocking quantity; f is a vector of factors, which include the selling price p, τ is the

reward target; and β ∈RM is a vector of regression coefficients. In addition, c > 0 is the ordering

cost per unit and L= {p1, . . . , pK}, k ∈ N+. If we use the estimation metric (21), then the JERO

problem has the tractable reformulation

max r

s.t. px− cx≥ τ,

γ(r)‖w‖2 +z′w+ cx+ τ ≤ 0,

Y ′w+ pf = 0,

f1 = p,

(x,f)∈X , p∈L, r ∈R+, w ∈RP ,
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where γ(r) =
√
P exp(2ρ̂+ 2r− 1) and ρ̂ is the optimal value of the corresponding estimation

metric. The optimal solution can be obtained by fixing the price and solving the corresponding

sequence of SOCPs for each p∈L.

Poisson Regression. Suppose we are given data D= {z,Y }, where z ∈NP is a vector of obser-

vations of the response variable and Y = {1,y1, . . . ,yM−1} ∈RP×M is a matrix of observations of

dependent variables. Then we consider the linear model (20) with respect to a Poisson distribution.

The corresponding average log-likelihood function is given by

`(β;D) =
1

P

P∑
i=1

(
zi ln(β′Yi)−β′Yi− ln(zi!)

)
,

where β ∈ RM is a vector of regression coefficients and Yi is the ith row of the matrix Y . The

corresponding estimation metric would be

ρ(β;D) =
1

P

P∑
i=1

(
β′Yi− zi ln(β′Yi)

)
. (23)

Proposition 9. Let r > 0. Then the corresponding support function of the estimate uncertainty

set E(r;D), given the estimation metric (23), is

δ∗r (ν) = min (ρ̂+ r)Pu+e′w

s.t . ν +
∑P

i=1 viYi−u
∑P

i=1Yi = 0,

ziu ln(ziu/vi)− ziu−wi ≤ 0 ∀i∈ [P ],

u∈R+, v ∈RP+, w ∈RP ,

(24)

where ρ̂ is the optimal value of the corresponding estimation metric.

Remark 1. The nonlinear (or, equivalently, exponential) constraints

ziu ln

(
ziu

vi

)
− ziu−wi ≤ 0 ∀i∈ [P ]

in (24)—as well as those in the following propositions and examples—are generally challenging. We

address this issue by constructing an SOC approximation for the exponential cone in Appendix B.

Logistic Regression Suppose we have the data D = {z,Y }, where z ∈ {0,1}P is a vector

of observations of the binary response variable and Y = {1,y1, . . . ,yM−1} ∈ RP×M is a matrix

of observations of dependent variables. Assume that values of the dependent variable exhibit a

Bernoulli distribution whose probability is of the form

p(x) =
exp(β′x)

1 + exp(β′x)
, (25)

where x∈RM is a vector of factors and β ∈RM is a vector of regression coefficients.
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For simplicity, we have re-ordered the data such that z1 = z2 = . . .= zQ = 1 for Y1,Y2, . . . ,YQ and

such that zQ+1 = zQ+2 = . . .= zP = 0 for YQ+1,YQ+2, . . . ,YP ; here Yi is the ith row of the matrix Y .

The corresponding average log-likelihood function is then given by

`(β;D) =
1

P

Q∑
i=1

β′Yi−
1

P

P∑
i=1

ln(1 + exp(β′Yi)),

and the corresponding estimation metric would be

ρ(β;D) =
1

P

P∑
i=1

ln(1 + exp(β′Yi))−
1

P

Q∑
i=1

β′Yi. (26)

Proposition 10. The corresponding support function of the estimate uncertainty set E(r;D),

given the estimation metric (26), is

δ∗r (ν) = min (ρ̂+ r)Pu+ (v+f + t)′e

s.t . u

Q∑
i=1

Yi−
P∑
i=1

siYi +ν = 0,

u−wi− si = 0 ∀i∈ [P ],

wi ln(wi/vi)−wi− fi ≤ 0 ∀i∈ [P ],

si ln(si/vi)− si− ti ≤ 0 ∀i∈ [P ],

u∈R+, v,w,s∈RP+, f , t∈RP ,

(27)

where ρ̂ is the optimal value of the corresponding estimation metric.

Example 5 (Epidemic Management). Consider an epidemic management problem, where a

decision maker aims to control the spread of disease by interventions that depend on various risk

factors (Prentice and Pyke 1979). Suppose that the relevant data are D= {z,Y }, where z ∈ {0,1}P

is a vector of binary observations of disease outcomes and Y = {1,y1, . . . ,yM−1} ∈ RP×M is a

matrix of observations of risk factors. To undertake a robust intervention, the decision maker could

solve the following JERO problem:

max r

s.t. β′x≤ τ ∀β ∈ E(r;D),

x∈X ⊆RM , r ∈R+;

In this problem, x is the decision variable, eτ/(1 + eτ ) is the target incident rate, and β ∈ RM

is a vector of regression coefficients. If we use the estimation metric (26), then the optimization
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problem would be equivalent to

max r

s.t. (ρ̂+ r)Pu+ (v+f + t)′e≤ τ,

u

Q∑
i=1

Yi−
P∑
i=1

siYi +ν = 0,

u−wi− si = 0 ∀i∈ [P ],

wi ln
(
wi
vi

)
−wi− fi ≤ 0 ∀i∈ [P ],

si ln
(
si
vi

)
− si− ti ≤ 0 ∀i∈ [P ],

x∈X ⊆RN ,

r, u∈R+, v,w,s∈RP+, f , t∈RP ,

where ρ̂ is the optimal value of the corresponding estimation metric.

Independent Marginal. Suppose that our data are given by D and that the underlying

distribution consists of |J | independent marginal distributions. Then the corresponding average

log-likelihood function and estimation metric for the jth marginal distribution are, respectively,

`j(β;D) and ρj(β;D). Instead of using the average log-likelihood, we can use the weighted average

log-likelihood, `(β;D) =
∑J

j=1 `j(β;D). There are many alternatives for the estimation metric. For

example, one could define it as ρ(β;D) =
∑J

j=1 ρj(β;D). Here we focus on the estimation metric

defined as ρ(β;D) = maxj∈[J] ρj(β;D).

Proposition 11. Assume that ri (E(r;D)) 6= ∅ and that ρj(β;D) is convex in β for all j ∈ [J ];

then the support function of E(r;D) is

δ∗r (ν) = inf

{ J∑
j=1

(δjrj )
∗(νj) |

J∑
j=1

νj = ν

}
. (28)

Here (δjr)
∗(νj) is the corresponding support function of the estimate set defined by ρj(β;D); ρ̂ and ρ̂j

are the respective optimal values of the estimation metrics ρ(β;D) and ρj(β;D); and rj = ρ̂− ρ̂j +r.

We now provide an example of independent marginal distributions.

Example 6 (Mixture Independent Case). Consider the data D = {D1,D2} and a distri-

bution consisting of two independent marginal distributions: a finite support distribution on

Ξ = {ξ1, ξ2, · · · , ξM} with data D1 = {z(1)
1 , · · · , z(1)

P (1)} and a Poisson distribution with data D2 =

{z(2)
1 , · · · , z(2)

P (2)}. Let

ρ1(β(1);D1) =− 1

P (1)

M∑
i=1

P
(1)
i ln(β

(1)
i ),

and

ρ2(β(2);D2) = β(2)− z̄(2) lnβ(2),
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where β(1) ∈RM+ is the probability distribution of the finite support distribution, β(2) ∈R+ is the

mean of the Poisson distribution, P
(1)
i =

∑P (1)

j=1 I
(
z

(1)
j = ξi

)
for i ∈ [M ], and z̄(2) = 1

P (2)

∑P (2)

i=1 z
(2)
i .

Then the estimation metric would be

ρ(β(1), β(2);D) = max

{
− 1

P (1)

M∑
i=1

P
(1)
i ln(β

(1)
i ), β(2)− z̄(2) lnβ(2)

}
.

Let r > 0. Then the corresponding support function of E(r;D) becomes

min (ρ̂+ r)P (1)u+ v+e′s+ (ρ̂+ r)h+ g

s.t. v−wi ≥ ν1
i ∀i∈ [M ],

P
(1)
i u ln

(
P

(1)
i u

wi

)
−P (1)

i u− si ≤ 0 ∀i∈ [M ],

h− d≥ ν2,

z̄(2)h ln(z̄(2)/d)− z̄(2)h− g≤ 0,

d, h,u∈R+, g, v ∈R, w ∈RM+ , s∈RM ,

where ρ̂ is the optimal value of the corresponding estimation metric.

Example 7 (Queue Management). Consider a queueing system of N parallel M/M/1

queues. In queue i ∈ [N ], the exogenous arrival rate is λi and the service rate is modeled as

µi = β′ixi, where βi ∈ RM is a vector of coefficients affecting the service rate and xi ∈ RM is a

vector of resources allocated to queue i. On a medical team, for example, the resources may include

the number of physicians and nurses with different skill sets, medical equipment and materials,

and so forth. Suppose the data are D = {zi,Y i}Ni=1, where zi ∈ RP (i)
is a vector of service rate

observations for queue i and Y i ∈RP (i)×M is a matrix of historical values of resources allocated to

that queue. Then the service system manager could solve the following JERO problem to obtain a

robust solution—for resource allocation—such that each queue meets the prespecified service level:

max r

s.t. β′ixi−λi ≥ 1/τi ∀β ∈ E(r;D), ∀i∈ [N ],∑N

i=1xi ≤ c,

(x1, . . . ,xN)∈X , r ∈R+.

Here xi ∈RM is the decision variable denoting resources allocated to queue i and c is a vector of

constraints on different resources; and τi is the targeted average response time or average sojourn

time, where the latter is the total time a customer spends in the system. The estimation metric in

this case is given by

ρ(β,D) = max
i∈[N ]

{
1

P (i)

P (i)∑
j=1

(zijβ
′
iY

i
j − ln(β′iY

i
j ))

}
,
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where Y i
j is the jth row of the matrix Y i. If we use the estimation metric just given, then the

optimization problem would be equivalent to

max r

s.t. P (i)(ρ̂+ r)ui +e′wi + τiλi + 1≤ 0 ∀i∈ [N ],∑P (i)

j=1 (zijui− vij)Y i
j + τixi = 0 ∀i∈ [N ],

ui ln(ui/vij)−ui−wij ≤ 0 ∀i∈ [N ], ∀j ∈ [P (i)],∑N

i=1xi ≤ c,

wi ∈RP
(i)
, vi ∈RP

(i)

+ ∀i∈ [N ],

r ∈R+, u∈RN , (x1, · · · ,xN)∈X ,

where ρ̂ is the optimal value of the corresponding estimation metric. It is worth noting that some

components of the decision variable here could be integers.

4. An Application to Improve Patient Flow

In the healthcare system that is the subject of our case study, insurance reimbursement is an

important problem. Since every beneficiary pays a premium and shares the cost of treatment,

health insurance can reduce the financial risk faced by covered families. Here we illustrate how the

proposed framework can be used to solve a design problem of health insurance reimbursement and

to improve patient flow in the healthcare system. We then test the viability of our proposed JERO

framework with real-world data. To compare the JERO model’s performance with the traditional

model while using deterministic input parameters, we separate the original data into a training set

and a test set according as whether the data were collected on an odd- or even-numbered day. Our

criterion for the optimization model’s performance is the number of constraints violated under the

test set.

4.1. Data Set

The data used in our study comes from the New Rural Cooperative Medical Insurance (NRCMI)

in the Anhui province of China. In this case study, we include 26 hospitals that admitted a total

number of 25,500 cerebral infarction (CI) patients during 2015. Each data record includes patient

information (e.g., patient ID, age, gender, cost, reimbursement, admission data, discharge date,

length of stay, location) and hospital information (hospital ID, hospital level, number of beds,

location, etc.). In these 26 hospitals, the total medical expenditure in 2015 for these admitted CI

patients was about U156 million while the total amount of reimbursement from health insurance

companies amounted to some U102 million; thus the average reimbursement ratio was 65.41%, and

it varied from 43.81% to 82.37% depending on the hospital. The number of CI patients admitted

to a hospital in 2015 ranged between 519 and 3,813 and the average length of stay varied from 5.47

to 20.25 days. The average cost per inpatient ranged between U1,352 and U21,405. Basic statistics

are summarized in Table 1.
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Table 1 Basic statistics for data

Hospital ID
Number

of patients

Average

LOS (days)

Number

of beds

Average

cost (U)

Average reim-

bursement (U)

Reimbursement

ratio (%)

485926898 1,601 9.00 424 6,550 4,355 66.49

486177120 659 7.76 380 4,518 3,240 71.72

05445776-X 930 9.74 210 4,945 3,832 77.49

08520520-7 643 10.36 60 3,150 2,320 73.64

48500116-6 709 13.27 1,214 21,405 9,378 43.81

48500425-2 511 20.25 300 16,819 9,150 54.40

48520931-1 707 7.49 300 4,151 3,154 75.97

48539625-X 810 8.09 80 3,975 3,146 79.14

48539640-1 704 6.93 260 3,729 2,855 76.56

48570467-0 876 9.04 300 4,339 3,061 70.54

48571563-6 755 7.89 341 6,659 4,854 72.90

48585855-7 1,059 12.76 1,070 8,813 4,433 50.30

48593620-1 1,896 12.00 560 8,339 5,511 66.09

48593738-6 519 13.40 80 1,432 1,143 79.82

48593799-2 725 5.47 50 1,352 1,086 80.28

48596897-5 3,813 9.00 700 6,652 4,716 70.90

48604020-0 1,279 11.23 570 4,766 3,578 75.08

48616610-6 786 5.72 150 3,464 2,782 80.31

48617707-5 537 13.57 200 7,372 5,699 77.31

48617713-9 736 12.52 50 1,886 1,491 79.07

48641950-5 1,049 7.44 800 4,493 2,948 65.62

48641952-1 689 9.82 300 3,996 2,816 70.47

73003174-9 1,213 10.20 165 5,231 3,857 73.74

73003431-7 616 8.85 80 1,638 1,349 82.37

78493096-9 949 9.84 400 7,650 4,822 63.04

N031246 729 8.20 600 8,633 4,153 48.11

Total [Avg.] 25,500 156,239,029 102,196,990 [65.41]

4.2. Regression Model

Reimbursement is widely acknowledged to be a key factor affecting hospital demand, and regression

methods can be used to estimate the extent to which that demand is influenced by insurance
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reimbursement levels. For example, one can calculate that if the reimbursement were increased by

U1,000, then the number of bed-days would increase by 151. In this case study, we use a linear

model to characterize the relationship between hospital demand (measured in bed-days) and four

factors: length of stay (LOS), medical cost, hospital capacity and reimbursement,

Bed − days = β0 +β1LOS +β2Cost +β3Capacity +β4Reimbursement ;

in this expression, β ∈R5 is the coefficient to be estimated.

Table 2 reports the coefficients estimated from data—which include the training set (odd days)

and the test set (even days)—using the proposed estimation metrics (21) and (23). When we use

linear regression, the coefficient β5 for reimbursement is 151.11 with the training data set and

139.94 with the test data set. When we use Poisson regression, the coefficient β5 for reimbursement

is 104.56 with the training set and 100.73 with the test set; these coefficients are smaller but more

robust than those estimated via linear regression.

Table 2 Deterministic estimates from data

Data set Estimation metric
Intercept

β1

LOS

β2

Cost

β3

Capacity

β4

Reimbursement

β5

Training set
Linear regression -18.71 2.26 -92.63 0.05 151.11

Poisson regression –8.61 1.90 -70.79 0.05 104.56

Test set
Linear regression -15.47 2.19 -85.93 0.04 139.94

Poisson regression –7.43 1.97 -68.31 0.04 100.73

4.3. Traditional Deterministic Optimization Model

Using coefficients estimated from data as input parameters, we can formulate an optimization

problem. The decision variable is the average reimbursement value per bed-day (or, equivalently,

the reimbursement ratio) for each hospital, and the objective is to minimize the total amount

(budget) of reimbursement while serving no fewer than the data set’s 25,500 patients. We set the

reimbursement ratio’s lower bound at 40%, which is a little under the lowest value (43.81%) in the

data. Note that each hospital must also satisfy some patient flow constraints. The deterministic

optimization model is given by

min
∑4

i=1x
′yiβ̂i + β̂5x

′x

s.t.
∑4

i=1 d
′yiβ̂i + β̂5d

′x≥ 25500,

τ ≤
∑4

i=1 diag(d)yiβ̂i + β̂5diag(d)x≤ τ̄ ,

l≤x≤u, x∈R26,
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where x∈R26 is a decision variable denoting the average reimbursement value per bed-day, d∈R26

represents the reciprocals of the length of stay in each hospital, and l,u∈R26 are (respectively) the

lower bound and upper bound on the reimbursement. Also, y1 ∈R26 is the vector of 1s, y2 ∈R26 is

the LOS vector, y3 ∈R26 is the vector of the cost, y4 ∈R26 is the vector representing the number

of beds in each hospital, and τ , τ̄ ∈ R26 are (respectively) the lower bound and upper bound on

the patient flow.

Solving this optimization model yields, for each hospital, the reimbursement value that mini-

mizes the budget: about U91 million, which is 10.78% less than the average budget in the data

(The reimbursement rates are reported in Table 3; see Section 4.5.). Absent any consideration of

uncertainty in the coefficient estimation, the solution obtained from the deterministic model is

quite attractive. That said, the actual parameter almostly certaintly differs from the ML estimate.

Hence the actual objective value may escalate and render some of the constraints infeasible.

4.4. JERO Model

As an alternative to the deterministic model, for which the exclusion of uncertainty casts some

doubt on derived solutions, we solve the corresponding JERO problem:

max r

s.t.
∑4

i=1x
′yiβi +β5x

′x≤B ∀β ∈ E(r;D),∑4

i=1 d
′yiβi +β5d

′x≥ 25500 ∀β ∈ E(r;D),

τ ≤
∑4

i=1 diag(d)yiβi +β5 diag(d)x≤ τ̄ ∀β ∈ E(r;D),

l≤x≤u, x∈R26;

here B is an acceptable budget, such as U102 millions (the current budget).

Normal Demand The tractability and solution of this robustness optimization problem depend

on how we characterize the estimate uncertainty set. One possibility is to derive the estimation

metric via linear regression while assuming that the demand for hospital services is normally

distributed. Under this assumption, we will show that the JERO problem can be reformulated as

a tractable optimization problem. Here we consider the JERO problem based on linear regression

with the estimate set E(r;D) given by

E(r;D) =

β ∈R5

∣∣∣∣∣∣
1
2

ln (‖z−Y β‖22/P ) + 1
2
≤ ρ̂+ r

β5 ≥ 0

 ,
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where z ∈ R26 is the vector representing the average bed days in each hospital, y5 ∈ R26 is the

vector of average reimbursement in the data, ρ̂ = 1
2

(ln (‖z−Y (Y ′Y )−1Y ′z‖22/P ) + 1), and Y =

(y1,y2,y3,y4,y5). The optimization problem under this estimate set can be reformulated as

max r

s.t. γ‖u‖2 +z′u≤B,

y′iu= y′ix ∀i∈ {1,2,3,4},

‖x‖22 ≤ y′5u,

γ‖v‖2 +z′v+ 25500≤ 0,

y′iu+y′id= 0 ∀i∈ {1,2,3,4},

y′5v+d′x≥ 0,

γ‖wj‖2 +z′wj ≤ τ̄j ∀j ∈ {1, . . . ,26},

y′iwj = djyij ∀i∈ {1,2,3,4}, ∀j ∈ {1, . . . ,26},

y′5wj ≥ djxj ∀j ∈ {1, . . . ,26},

γ‖sj‖2 +z′sj + τ j ≤ 0 ∀j ∈ {1, . . . ,26},

y′isj + djyij = 0 ∀i∈ {1,2,3,4}, ∀j ∈ {1, . . . ,26},

y′5sj + djxj ≥ 0 ∀j ∈ {1, . . . ,26},

u,v ∈R26, wj,sj ∈R26 ∀j ∈ {1, . . . ,26}.

(29)

Here γ =
√

26exp(2ρ̂+ 2r− 1) and yij is the jth element of the vector yi. We remark that the

feasibility of this model for a given r≥ 0 can be checked by solving the corresponding optimization

problem, which can be accomplished using SOCP.

Poisson Demand After careful reflection, we may decide that it would be preferable to use

a Poisson rather than a normal distribution—that is, because hospital demand is measured in

bed-days, which are integers. Recall from Section 4.2 that Poisson regression is more robust than

linear regression. Hence we now consider the JERO problem based on Poisson regression, using the

estimate set E(r;D) given by

E(r;D) =

β ∈R5

∣∣∣∣∣∣∣∣
1
26

∑26

i=1(Yiβ− zi ln(Yiβ))≤ ρ̂+ r

Yiβ≥ 0 ∀i∈ {1, . . . ,26}

β5 ≥ 0

 ;

here

ρ̂= min

{
1

26

26∑
i=1

(Yiβ− zi ln(Yiβ)) | β5 ≥ 0, Yiβ≥ 0 ∀i∈ {1, . . . ,26}
}
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and Yi is the ith row of the matrix Y . The optimization problem under this estimate set can be

reformulated as

max r

s.t. 26(ρ̂+ r)u+e′w≤B,

y′ix+
∑26

j=1(vj −u)Yji = 0 ∀i∈ {1,2,3,4},

‖x‖22 +
∑26

j=1(vj −u)Yj5 ≤ 0,

zju ln(zju/vj)− zju−wj ≤ 0 ∀j ∈ {1, . . . ,26},

26(ρ̂+ r)f +e′h+ 25500≤ 0,

y′id+
∑26

j=1(f − gj)Yji = 0 ∀i∈ {1,2,3,4},

d′x+
∑26

j=1(f − gj)Yj5 ≤ 0,

zjf ln(zjf/gj)− zjf −hj ≤ 0 ∀j ∈ {1, . . . ,26},

26(ρ̂+ r)kj +e′qj ≤ τ̄j ∀j ∈ {1, . . . ,26},

djyij +
∑26

j′=1(pjj′ − kj)Yj′i = 0 ∀i∈ {1,2,3,4}, ∀j ∈ {1, . . . ,26},

djxj +
∑26

j′=1(pjj′ − kj)Yj′5 ≤ 0 ∀j ∈ {1, . . . ,26},

zjki ln(zjki/pij)− zjki− qij ≤ 0 ∀i∈ {1, . . . ,26}, ∀j ∈ {1, . . . ,26},

26(ρ̂+ r)sj +e′αj + τ j ≤ 0 ∀j ∈ {1, . . . ,26},

djyij +
∑26

j′=1(sj − tjj′)Yj′i = 0 ∀i∈ {1,2,3,4}, ∀j ∈ {1, . . . ,26},

djxj +
∑26

j′=1(sj − tjj′)Yj′5 ≤ 0 ∀j ∈ {1, . . . ,26},

zjsi ln(zjsi/tij)− zjsi−αij ≤ 0 ∀i∈ {1, . . . ,26}, ∀j ∈ {1, . . . ,26},

f, u∈R+, g,k,s,v ∈R26
+ , h,w ∈R26,

pj, tj ∈R26
+ , qj,αj ∈R26 ∀j ∈ {1, . . . ,26}.

(30)

In this formulation, there are 1,404 exponential constraints. Exponential cone solvers such as

MOSEK, SCS, ECOS are unable to handle such large-scale problems. However, we can exploit

Proposition 12 (see Appendix B) to replace all the exponential constraints in problem (30) with

1404(L+ 3) SOC constraints. Then, for L of moderate size, this problem can be solved by using

state-of-the-art solvers such as Gurobi and CPLEX. Although one might expect that assuming a

Poisson distribution of demand would complicate the computation, numerical results reported in

the next section reveal that doing so actually yields better solutions.

4.5. Numerical Results

We now evaluate, via binary search, the output of problem (30) and compare it with the output

of problem (29). We start by optimizing the budget of reimbursement in the deterministic model

using estimates from the training set. The optimal budget is about U91.2 million under a Poisson

distribution of demand and about U91.7 million under a normal distribution. Next we use our

JERO model to solve the problem directly for a budget about U102 million, which is 0.045% less
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Table 3 Optimal reimbursement rates under different optimization models

Hospital

ID

Optimal reimbursement rate (%)

Current Normal Poisson JERO-Normal JERO-Poisson

485926898 66.49% 62.99% 62.52% 70.14% 66.84%

486177120 71.72% 74.61% 77.14% 72.97% 75.36%

05445776-X 77.49% 78.14% 77.71% 87.74% 83.49%

08520520-7 73.64% 100.00% 100.00% 100.00% 100.00%

48500116-6 43.81% 40.98% 40.00% 40.00% 40.00%

48500425-2 54.40% 54.00% 55.24% 40.00% 58.50%

48520931-1 75.97% 79.45% 83.02% 77.57% 80.85%

48539625-X 79.14% 97.56% 99.99% 94.24% 99.93%

48539640-1 76.56% 81.38% 84.86% 79.30% 82.52%

48570467-0 70.54% 83.54% 82.56% 83.24% 88.38%

48571563-6 72.90% 66.28% 67.60% 70.27% 71.61%

48585855-7 50.30% 40.00% 40.00% 40.00% 40.00%

48593620-1 66.09% 46.95% 43.38% 52.68% 47.12%

48593738-6 79.82% 100.00% 100.00% 100.00% 99.86%

48593799-2 80.28% 100.00% 100.00% 100.00% 100.00%

48596897-5 70.90% 56.40% 53.89% 57.76% 57.16%

48604020-0 75.08% 62.10% 54.75% 69.68% 61.70%

48616610-6 80.31% 83.07% 87.33% 80.51% 84.18%

48617707-5 77.31% 61.40% 60.01% 61.59% 62.09%

48617713-9 79.07% 100.00% 100.00% 100.00% 99.87%

48641950-5 65.62% 50.98% 45.45% 47.32% 40.57%

48641952-1 70.47% 85.56% 82.91% 88.83% 90.43%

73003174-9 73.74% 75.89% 75.58% 84.93% 81.00%

73003431-7 82.37% 100.00% 100.00% 100.00% 99.99%

78493096-9 63.04% 57.21% 56.62% 63.32% 60.29%

N031246 48.11% 53.72% 53.85% 59.08% 57.00%

Budget U102,196,990 U91,724,427 U91,206,700 U102,151,504 U102,151,504

than the current budget. Table 3 summarizes the results for problems (29) and (30). Each row

gives the reimbursement rates of a hospital in the current data set (second column) and under four

different optimization models (third–sixth columns).
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Figure 1 Robustness of solutions

In Figure 1, we use the test data set to show how the number of constraints violated declines when

the corresponding budget increases. We use 15 different budgets (ranging from U92.1 million to

U104.9 million) in testing the robustness of our solutions to problems (29) and (30). The number of

constraints that are violated falls from 4 to 0 in problem (30) and falls from 5 to 2 in problem (29).

Figure 1 reveals that the solution obtained from (30) is more robust than the solution obtained

from (29). The reason may well be that problem (30) benefits from the assumption of an underlying

Poisson distribution.

5. Conclusion

We propose a new framework that accounts for the uncertainty in parameter estimation and incor-

porates a problem’s entire data set during optimization. We also propose a new method for approx-

imating the exponential cone—via a sequence of second-order cones—that can be instrumental in

rendering larger-scale optimization problems more tractable. Finally, we present a case study that

demonstrates how the the proposed framework can be applied to solve a design problem of health

insurance reimbursement and to balance patient flow in a healthcare system.
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A. Proofs of Propositions

Proof of Proposition 1. Observe that each loop in Algorithm 1 reduces the gap between r2 and

r1 by half (see Step 3). We now establish the correctness of this binary search. Suppose that

ZrE(τ0) ≤ 0. Then r is feasible in model 6 and so r∗ ≥ r, since otherwise r would be infeasible

in 6. Because the function ZrE(τ0) is nondecreasing in r, we have r∗ < r. Hence the number of

computations K must satisfy r̄/2K <∆; that is, K ≥ dlog2(r̄/∆)e, which completes the proof. �

Proof of Proposition 2. Let δr(β) the indicator function on E(r;D) defined by

δr(β),

 0, if β ∈ E(r;D)

∞, otherwise.

Then, we have

max
β∈E(r;D)

ai(x,β)

= max
β∈RM

{ai(x,β)− δr(β)}

= min
ν∈RM

{δ∗r (ν)− a∗i (x,ν)}, (31)

where the first equality is due to the definition of indicator function, and the second equality is

due to Fenchel’s duality theorem in Rockafellar (2015). The assertion now follows if we apply (31)

to the robust counterpart (9). �

Proof of Proposition 3. Observe that

δ∗r (ν) = sup
β∈W̄
{β′ν | ρ(β;D)≤ ρ̂+ r}

= inf
µ>0

{
sup
β∈W̄
{βν +u(ρ̂+ r− ρ(β;D))}

}
= inf

µ>0

{
u(ρ̂+ r) + sup

β∈W̄
{βν −µρ(β;D)}

}
= inf

µ>0
{u(ρ̂+ r) +µρ∗(ν/µ;D)}.

Here the second equality is due to strong Lagrangian duality (cf. Bertsekas 1999) and the last

equality follows from the definition of ρ∗(ν;D). �

Proof of Proposition 4. By definition, we have

δ∗r (ν) = max
β

{
β′ν | ‖z−Y β‖22 ≤ ρ̂+ r

}
.
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Hence strong duality implies that

δ∗r (ν) = min
√
ρ̂+ r‖w‖2 +z′w

s.t. Y ′w= ν,

w ∈RP ,

which completes the proof. �

Proof of Proposition 5. By definition, we have

δ∗r (ν) = max
β

{
β′ν | 1

P
‖z−Y β‖22 +λ‖β‖1 ≤ ρ̂+ r

}
= max
β,g≥0, h≥0

{
β′ν | ‖z−Y β‖22 ≤ g, ‖β‖1 ≤ h,

1

P
g+λh≤ ρ̂+ r

}
.

It follows from strong duality that

δ∗r (ν) = min (ρ̂+ r)s+u− v+z′w,

s.t. Y ′w− t= ν,∥∥∥∥ 2v

w

∥∥∥∥
2

≤ 2u

‖t‖∞ ≤ λs,

Pu+Pv≤ s,

u, s∈R+, v ∈R, w ∈RP , t∈RM .

This completes the proof. �

Proof of Proposition 6. We first consider the estimation metric

ρ(β;D) = min
Σ∈SM+

1

2

(
lndetΣ +

1

P

P∑
i=1

(zi−β)′Σ−1(zi−β)

)

= min
Σ∈SM+

1

2

(
lndetΣ +

1

P

P∑
i=1

(zi− β̂+ β̂−β)′Σ−1(zi− β̂+ β̂−β)

)

= min
Σ∈SM+

1

2

(
lndetΣ +

1

P

P∑
i=1

(zi− β̂)′Σ−1(zi− β̂) +
1

P

P∑
i=1

(β̂−β)′Σ−1(β̂−β)

)
= min

Σ∈SM+

1

2

(
lndetΣ + tr(Σ−1Σ̂) + (β− β̂)′Σ−1(β− β̂)

)
= min
S∈SM+

1

2

(
tr(SΣ̂) + (β− β̂)′S(β− β̂)− lndetS

)
, (32)

where the third equality is due to regular computations and the last equality follows from the

change-of-variable trick.
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Define a new function

f(β,S) =
1

2

(
tr(SΣ̂) + (β− β̂)′S(β− β̂)− lndetS

)
for β ∈RM and S ∈ SM++. Note that f(β,S) is convex in S. If we set to zero the gradient of f(β,S)

with respect to S, then

∂f(β,S)

∂S
=

1

2

(
Σ̂ + (β− β̂)(β− β̂)′−S−1

)
= 0,

which has only one solution:

Ŝ =
(
Σ̂ + (β− β̂)(β− β̂)′

)−1

. (33)

Applying (33) to (32) and using the optimal condition of convex optimization, we obtain

ρ(β;D) =
1

2

(
tr(ŜΣ̂) + (β− β̂)′Ŝ(β− β̂)− lndet Ŝ

)
=

1

2

(
tr(ŜΣ̂) + tr(Ŝ(β− β̂)(β− β̂)′)− lndet Ŝ

)
=

1

2

(
tr(Ŝ(Σ̂ + (β− β̂)(β− β̂)′))− lndet Ŝ

)
=

1

2

(
M + lndet(Σ̂ + (β− β̂)(β− β̂)′)

)
=

1

2

(
M + lndet(Σ̂1/2(I + Σ̂−1/2(β− β̂)(β− β̂)′Σ̂−1/2)Σ̂1/2)

)
=

1

2

(
M + lndet Σ̂ + lndet(I + Σ̂−1/2(β− β̂)(β− β̂)′Σ̂−1/2)

)
=

1

2

(
M + lndet Σ̂ + ln(1 + (β− β̂)′Σ̂−1(β− β̂))

)
.

Next we derive the support function of E(r;D). By definition, we have

δ∗r (ν) = max
β

{
β′ν | 1

2
ln(1 + (β− β̂)′Σ̂−1(β− β̂)) +

M

2
+

1

2
lndet Σ̂≤ ρ̂+ r

}
= max

β

{
β′ν | 1

2
ln(1 + (β− β̂)′Σ̂−1(β− β̂))≤ r

}
= max

β
{β′ν | (β− β̂)′Σ̂−1(β− β̂)≤ e2r− 1}

= β̂′ν +
√
e2r− 1‖Σ̂1/2ν‖2.

This completes the proof. �

Proof of Proposition 7. By definition,

δ∗r (ν) = max β′ν

s.t. 1
P

∑M

i=1Pi ln(βi) + ρ̂+ r≥ 0,∑M

i=1 βi = 1,

β ∈RM+ ;
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this problem is equivalent to

δ∗r (ν) = max β′ν

s.t. 1
P

∑M

i=1Piti + ρ̂+ r≥ 0,

ln(βi)≥ ti ∀i∈ [M ],∑M

i=1 βi = 1,

β ∈RM+ , t∈RM .

It follows from strong duality that, equivalently,

δ∗r (ν) = min (ρ̂+ r)Pu+ v+e′s

s.t. v−wi ≥ νi ∀i∈ [M ],

Piu ln
(
Piu
wi

)
−Piu− si ≤ 0 ∀i∈ [M, ]

u∈R+, v ∈R, w ∈RM+ , s∈RM .

This completes the proof. �

Proof of Proposition 8. By definition, we have

δ∗r (ν) = max
β

{
β′ν | 1

2

(
ln
‖z−Y β‖22

P
+ 1

)
≤ ρ̂+ r

}
= max

β
{β′ν | ‖z−Y β‖2 ≤ γ},

where γ =
√
P exp(2ρ̂+ 2r− 1).

By strong duality, we have

δ∗r (ν) = min γ‖w‖2 +z′w

s.t. Y ′w= ν,

w ∈RP ,
which completes the proof. �

Proof of Proposition 9. By definition, we have

δ∗r (ν) = max β′ν

s.t. 1
P

∑P

i=1(β′Yi− zi ln(β′Yi))≤ ρ̂+ r,

β ∈RM .

This problem is equivalent to

δ∗r (ν) = max β′ν

s.t. 1
P

∑P

i=1(β′Yi− zifi)≤ ρ̂+ r,

ln(β′Yi)≥ fi ∀i∈ [P ],

β ∈RM , f ∈RP .
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It now follows from strong duality that, equivalently,

δ∗r (ν) = min P (ρ̂+ r)u+e′w

s.t. ν +
∑P

i=1 viYi−u
∑P

i=1Yi = 0,

ziu ln
(
ziu
vi

)
− ziu−wi ≤ 0 ∀i∈ [P ],

u∈R+, v ∈RP+, w ∈RP .

This completes the proof. �

Proof of Proposition 10. By definition, we have

δ∗r (ν) = max
β

{
β′ν | 1

P

P∑
i=1

ln(1 + exp(β′Yi))−
1

P

Q∑
i=1

β′Yi ≤ ρ̂+ r

}
,

which is equivalent to

δ∗r (ν) = max β′ν

s.t.
∑P

i=1 fi−
∑Q

i=1 β
′Yi ≤ P (ρ̂+ r),

gi +hi ≤ 1 ∀i∈ [P ],

exp(−fi)≤ gi ∀i∈ [P ],

exp(β′Yi− fi)≤ hi ∀i∈ [P ].

By strong duality, we have

δ∗r (ν) = min P (ρ̂+ r)u+ (v+ r+ t)′e

s.t. u
∑Q

i=1Yi−
∑P

i=1 siYi +ν = 0,

u−wi− si = 0 ∀i∈ [P ],

wi ln(wi/vi)−wi− ri ≤ 0 ∀i∈ [P ],

si ln(si/vi)− si− ti ≤ 0 ∀i∈ [P ],

u∈R+, v,w, s∈RP+, r, t∈RP .

This completes the proof. �

Proof of Proposition 11. By definition, we have

δ∗r (ν) = sup
β∈W
{β′ν | ρ(β;D)≤ ρ̂+ r ∀j ∈ [J ]}

= sup
β∈W
{β′ν | ρj(β;D)≤ ρ̂+ r ∀j ∈ [J ]}

= sup
βj∈W,β=βj

{β′ν | ρj(βj;D)≤ ρ̂+ r ∀j ∈ [J ]}

= inf∑J
j=1 νj=ν

{
sup
βj∈W

{
β′ν +

J∑
j=1

(βj −β)′νj | ρj(βj;D)≤ ρ̂+ r ∀j ∈ [J ]

}}
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= inf∑J
j=1 νj=ν

{
sup
βj∈W

{ J∑
j=1

β′jνj | ρj(βj;D)≤ ρ̂+ r ∀j ∈ [J ]

}}

= inf∑J
j=1 νj=ν

{ J∑
j=1

(δjrj )
∗(νj)

}
.

This completes the proof.

�

B. SOC Approximation for Exponential Cone

Because of the logarithm involved in the MLE metric, the JERO model’s tractability will depend

mainly on the exponential constraint

α exp(x/α)≤ t or α ln (t/α)≥ x

for some α > 0. Current exponential cone solvers—such as Mosek, SCS and ECOS—cannot solve

optimization problems on the scale that we consider when there are exponential constraints; and

neither, a fortiori, can such problems be solved via mixed-integer programming. To address the

computational issue that arises from the JERO model’s logarithm-related constraints, we provide

a practical second-order conic approximation for exponential cones that curtails the approximation

errors at extreme values. This approximation allows us to use state-of-the-art SOCP solvers capable

of solving large-scale convex optimization problems.

Our aim in this section is to show that the exponential constraint can be approximately rep-

resented in the form of SOCs. Chen and Sim (2009) discuss one method (originally described by

Ben-Tal and Nemirovski 2001) of approximating the exponential cone constraint. Thus we can use

Taylor’s series expansion to write

exp(x) = exp

(
x

2L

)2L

=

(
1 +

x

2L
+

1

2

(
x

2L

)2

+ · · ·+ 1

K!

(
x

2L

)K
+ o(xK+1)

)2L

,

where K and L are positive integers. The precision level of this expansion increases as K and L

become larger (see Table 4).

We can, in theory, approximate ex to an arbitrary level of numerical precision. However, the

complexity of using Taylor expansion to approximate the exponential constraint increases with

the precision; that is, we then need more auxiliary variables and SOC constraints (see Table 5).

Thus, there is, as usual, a tradeoff between the level of numerical precision and the complexity of

computation.

Using only a few second-order cones, we can accurately approximate such constraints to a rea-

sonably good level of numerical precision (Chen and Sim 2009). In contrast, using the Taylor
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Table 4 Relative error of Taylor expansion in the interval [-20, 60]

K\L 4 5 6 7 8 9 10

4 > 1 7× 10−1 2× 10−1 2× 10−2 1× 10−3 9× 10−5 6× 10−6

6 8× 10−1 1× 10−1 4× 10−3 8× 10−5 2× 10−6 3× 10−8 5× 10−10

8 2× 10−1 5× 10−3 4× 10−5 3× 10−7 1× 10−9 5× 10−12 4× 10−13

10 3× 10−2 1× 10−4 3× 10−7 5× 10−10 6× 10−13 2× 10−13 4× 10−13

Table 5 Complexity of SOC approximation

K\L L= 4 L= 5 L= 6 L= 7 L= 8 L= 9 L= 10

Number of variables
K = 4

9 10 11 12 13 14 15

Number of constraints 10 11 12 13 14 15 16

Number of variables
K = 6

17 18 19 20 21 22 23

Number of constraints 18 19 20 21 22 23 24

Number of variables
K = 8

25 26 27 28 29 30 31

Number of constraints 26 27 28 29 30 31 32

Number of variables
K = 10

41 42 43 44 45 46 47

Number of constraints 42 43 44 45 46 47 48
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Figure 2 Error of approximation when using Taylor expansion with K=4 and L=6

expansion approximation technique of Chen and Sim (2009) produces significant errors in the tails,

as Figure 2 illustrates.
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We circumvent this problem by first trimming the tails of the exponential function and then

using the Taylor expansion only within the truncated interval. Observe that ex is smaller than

10−9 when x≤−20 and is larger than 1026 when x≥ 60. Hence we ease the exposition by trimming

the left tail via f1(x) , 0 with x ≤ −20 and trimming the right tail via f3(x) ,∞ with x ≥ 60.

Furthermore, we use the following Taylor expansion to approximate ex for x∈ [−20,60]:

f2(x),

(
1 +

x

2L
+

1

2

(
x

2L

)2

+
1

6

(
x

2L

)3

+
1

24

(
x

2L

)4)2L

for L a positive integer. Because f3(x) =∞ when x≥ 60, we use the following infimal convolution

of f1(x) and f2(x) to approximate α exp(x/α), α> 0:

f(x,α), inf

{
α1f1

(
x1

α1

)
+α2f2

(
x2

α2

)
| x1 +x2 = x, α1 +α2 = α, α1, α2 > 0

}
.

Then α exp(x/α)≤ t (α> 0) can be approximated by f(x,α)≤ t, which in turn can be represented

by a series of SOC constraints.

Proposition 12. The exponential constraint α exp(x/α)≤ t or α ln (t/α)≥ x, for some α > 0,

can be approximated by a series of SOC constraints as follows:

x1 +x2 = x, α1 +α2 = α,

y= x2/2
L, z = α2 +x2/2

L,

1
24

(23α2 + 20y+ 6f +h)≤ v1,∥∥∥∥ y

(f −α2)/2

∥∥∥∥
2

≤ f+α2
2
,

∥∥∥∥ z

(g−α2)/2

∥∥∥∥
2

≤ g+α2
2
,

∥∥∥∥ g

(h−α2)/2

∥∥∥∥
2

≤ h+α2
2
,

∥∥∥∥ vi

(vi+1−α2)/2

∥∥∥∥
2

≤ vi+1+α2

2
∀i∈ [L− 1],

∥∥∥∥ vL

(t−α2)/2

∥∥∥∥
2

≤ t+α2
2
,

x1/α1 ≤−20, −20≤ x2/α2 ≤ 60,

α1, α2, f, g, h∈R+, v ∈RL+.

(34)
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Proof of Proposition 12. First, we approximate α exp(x/α) by the following infimal convolution:

min α2 exp(x2/α2)

s.t. x1 +x2 = x,

α1 +α2 = α,

x1
α1
≤−20, −20≤ x2

α2
≤ 60,

α1, α2 ≥ 0.

It is then sufficient to approximate α2 exp(x2/α2)≤ t in the form of second-order cones as

y= x2/2
L,

z = α2 +x2/2
L,

y2 ≤ α2f, z
2 ≤ α2g, g

2 ≤ α2h,

1
24

(23α2 + 20y+ 6f +h)≤ v1,

v2
i ≤ α2vi+1 ∀i∈ [L− 1],

v2
L ≤ α2t,

f, g, h≥ 0, v≥ 0.

Finally, we use the well-known result that

w2 ≤ st, s, t≥ 0,

is SOC representable as ∥∥∥∥ w

(s− t)/2

∥∥∥∥
2

≤ s+ t

2
.

This completes the proof. �
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