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Problem definition: We consider the intraday scheduling problem in a group of Orthopaedic clinics where

the planner schedules appointment times given a sequence of appointments. We consider patient re-entry –

where patients may be required to go for an X-ray examination, returning to the same doctor they have seen

– and variability in patient behaviours such as walk-ins, earliness, and no-shows, which leads to inefficiency

such as long patient waiting time and physician overtime.

Academic/Practical relevance: In our dataset, 25% of the patients are required to go for X-ray examina-

tion. We also found significant variability in patient behaviours. Hence, patient re-entry and variability in

behaviours are common, but we found little in the literature that could handle them.

Methodology: We formulate the problem as a two-stage optimization problem, where scheduling decisions are

made in the first stage. Queue dynamics in the second stage are modeled under a P-Queue paradigm (Bandi

and Loke 2018), which minimizes a risk index representing the chance of violating performance targets, such

as patient waiting times. The model reduces to a sequence of mixed-integer linear optimization problems.

Results: Our model achieves significant reductions, in comparative studies against a sample average approx-

imation (SAA) model, on patient waiting times while keeping server overtime constant. Our simulations

further characterize the types of uncertainties under which SAA performs poorly.

Managerial insights: We present an optimization model that is easy to implement in practice and tractable to

compute. Our simulations indicate that not accounting for patient re-entry or variability in patient behaviours

will lead to suboptimal policies, especially when they have specific structure that should be considered.
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1. Introduction

The appointment scheduling problem of patients in a clinic is a traditional problem in the healthcare

operations management literature (e.g., Ho and Lau 1992, Denton and Gupta 2003, Gupta and

Denton 2008). Within this scope, the intraday scheduling problem, where patients complete their

appointments within the day, is a key problem. A planner is given a known sequence of patient
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appointments, and makes a here-and-now decision on their appointment start times. In the process,

she incurs costs on operations, such as resource idleness and overtime of healthcare providers. This

is a standard setting in intraday scheduling literature (e.g., “Theme A” in Gupta and Denton 2008)

and is followed by many recent papers (e.g., Mak et al. 2015, Qi 2017, Jiang et al. 2017). In this

paper, we focus on the intraday scheduling problem under this standard setting. More specifically,

we focus on designing better start times of appointment slots, i.e., the interarrival times between

patients.

This problem is challenging in practice because of patient re-entry and variability in patient

behaviours, arising from no-shows, earliness, and walk-ins. We partner with the Orthopaedic clinics

run by the National University Health System in Singapore. On each day, patients may not turn up,

with or without informing the clinic. In our dataset, these patients account for as many as 29% of

scheduled patients. Patients may also be early or late; on average, patients arrive around 7 minutes

earlier than their appointment times. About 27.3% patients are late for their appointments, by 14

minutes on average, which amounts to 1.4 time slots (of 10 minutes each). Some are late by more

than 60 minutes. Upon arrival, patients are routed through a registration process. Patients then

meet with a doctor for their first consultation. Subsequently, they may be required to take various

tests, such as X-rays, which would not be known at the point of scheduling. On average, 25% of

Orthopaedic patients require X-ray examinations. For other departments, this proportion can be

as large as 39%. After examination, they rejoin the queue for consultations, and are re-examined

by a doctor before completing their visit. We examine this in greater detail in the simulation study.

This data illustrates that re-entry and variability in patient behaviours are very common features

of a clinic’s operations; and they can lead to inefficiencies if not well-controlled. No-shows and

lateness create physician idleness and overtime, which are both very costly to the healthcare system.

Re-entry causes heavier traffic and usually follows a different service time distribution from first

consultations. As such, in scheduling patients, it is only reasonable for the planner to take into

consideration all of these factors, while managing the current patients in the systems, and the

expected times before they exit the system. This is a daunting challenge. In our partnering clinics,

the current practice is largely to fix each appointment slot to be 10 minutes. The slots are decided at

the planning stage and will not change in daily operations. When patients make appointments, they

are scheduled to the first available slot. However, this equal-interval policy is generally suboptimal

(Wang 1993).

Key approaches in the literature

There are three streams in the literature to approach the problem, namely stochastic programming,

queueing, and robust optimization approaches. We describe the literature in each of these areas,

before summarizing the present challenges associated with each of these approaches.
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Stochastic Programming Approach. The two-stage stochastic programming formulation is a popu-

lar approach. Most notably, Denton and Gupta (2003) employ such a formulation where scheduling

decisions are made in the first stage, before the uncertainty in patient service times materializes

in the second stage. In Denton and Gupta (2003)’s model, the state and decision variables are

represented by four different time durations – the interarrival time between appointments, the

stochastic service time of each patient, the additional waiting time for each patient beyond their

scheduled appointment time if the server is not available, and finally, the idle time incurred by

the server. The dynamics are then described as a linear relationship linking up these four time

durations. The objective is taken as the expected total cost, under some unit waiting, idleness and

overtime costs. This model is well-studied and performs well in many intraday scheduling contexts.

Consequently, this approach has been extended within a variety of applications (e.g., Denton et al.

2007, Erdogan and Denton 2013, Ge et al. 2014, Berg et al. 2014).

Robust Optimization Approach. An alternative to the stochastic programming formulation is the

robust optimization approach, often in the distributionally robust variant (e.g., Mak et al. 2014,

2015, Padmanabhan et al. 2018, Kong et al. 2019). Mak et al. (2015) is among the first to study

the distributionally robust intraday scheduling problem and they proposed a tractable formulation

under a marginal moments ambiguity set. Jiang et al. (2017) model a distributionally robust single-

server intraday scheduling problem with no-shows. Qi (2017) introduces a delay unpleasantness

measure based on the Conditional Value-at-Risk (CVaR) to describe the delay experienced by

patients, anchored on a baseline waiting time target idiosyncratic to each patient.

Queueing Approach. Broadly, there are two common approaches to evaluate queue dynamics under

complex settings – fluid approximations (Braverman et al. 2017) and diffusion models (Dai and

Tezcan 2011, Gurvich 2014). Specifically, the intraday scheduling problem and its variants have been

studied under the assumptions of Poisson arrival processes or Erlangian service time distributions

(Gurvich et al. 2010, Luo et al. 2012).

Our setting is different from those in the dynamic (or online) appointment scheduling literature

(see, e.g., Liu et al. 2010, Feldman et al. 2014, Wang et al. 2018). We agree with the relevance of the

online approach towards the matching of patients to slots dynamically on the intraday schedule.

However, in this paper, we follow the line of inquiry in Denton and Gupta (2003) and “Theme A”

in Gupta and Denton (2008) to focus on the offline question of how the interarrival times between

slots should be decided. This is independent of and consistent with the online matching process.

Challenges with the present approaches

There are two main difficulties with the present approaches. First, it remains challenging to incor-

porate all the uncertainties of patient re-entry and variability in behaviours into a single model
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formulation. This is because it is difficult to define how the uncertainty, in particular, the re-entry

patients, interact with the decisions and other uncertainties. In the Queueing setting, this trans-

lates into difficulties in computing service times and incorporating decisions into the model. In the

Stochastic programming and the Robust Optimization approach, this obscures the definition of

proper sample paths for the uncertainty, either as conditional distributions or collected within an

uncertainty set.

Second, it is unlikely that such a model formulation would result in a tractable form that would

be computable within the intraday timeframe. Indeed, the solution methodology for many of these

approaches will involve sample average approximation (SAA), wherein the number of samples

required to constitute an accurate sample of the uncertainties scales rapidly with the dimension

of uncertainties. In our ensuing analysis, we shall also see the challenge of using SAA to model

features of the intraday scheduling problem arising from uncertainties with specific patterns.

As such, to the best of our knowledge, it remains challenging to incorporate patient re-

entries, walk-ins, no-shows, and patient earliness/lateness into existing frameworks, while remaining

tractable.

1.1. Our approach and contributions

Recent attempts to harmonize ideas in robust optimization with queueing theory have opened

doors into tractable formulations with close fidelity to the flow dynamics (Bandi et al. 2015).

Introduced by Bandi and Loke (2018), the Pipeline Queues paradigm is an alternative to modeling

queues. In particular, the authors illustrated in numerical simulations that the model had relatively

good performance over a range of complex networks with general service and arrival distributions.

In this paper, we propose a two-stage formulation. In the first stage, the planner commits to a

scheduling of appointments. In the second stage, we approximate the queueing cost as metrics of a

pipeline queue. The contributions of this paper are two-pronged, in the intraday patient scheduling

problem, as well as the technique of Pipeline Queues.

For the former, we illustrate that a model, which ingests high fidelity information on service

times and is flexible enough to accurately replicate queue dynamics, can lead to increases in perfor-

mance over existing methodologies. Specifically, we are able to handle patient re-entries, no-shows,

stochastic arrival times, walk-ins, and stochastic transportation times between servers, which have

traditionally been difficult to address. Our simulations illustrate this – we improve on all met-

rics including patient waiting times, server overtime, and maximum instantaneous waiting time

(defined in Section 4), achieving reductions of as much as 18%, 10% and 26% respectively when

compared against the current practice at our partnering clinics.

We also differentiate our contributions vis-á-vis Bandi and Loke (2018). At the broadest level, we

extend Pipeline Queues, originally designed for the optimization and control of flows, to scheduling
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and demand matching problems. More specifically, we illustrate that simulating queue dynamics

as a pipeline queue in the inner model remains tractable in the two-stage setting, where global

parameters are controlled in the outer problem. In particular, such a second-stage formulation with

Pipeline Queues is novel. In terms of theoretical contributions, we examine the situation where

the class of patients is revealed stochastically midway through the system, as opposed to a priori

(Proposition 6). This was not permitted by the original framework, as the modeling technique for

stochastic flows relied upon critical independence assumptions to achieve reformulations. In this

work, this is averted, and we show that it is possible to achieve reformulation even without further

assumptions (Proposition 7). In this paper, we also illustrate the technique of using dummy queues

and servers as an approximant to the true dynamics (Figure 4). Lastly, it is the first complete

illustration of the Pipeline Queue paradigm on an application from an actual business environment

and context. This departs from the numerical illustration in the original paper by Bandi and Loke

(2018), which aims to illustrate the technique and its inner workings, as opposed to illustrating its

successful application on an actual problem.

Organization of the paper

In §2, we ease the reader in by first introducing our proposed framework under a classical single-

server setting, without patient re-entry. In §3, we extend the results to the fully realistic setting with

patient re-entries, no-shows, uncertain arrival times, and random transportation times between

stations. We conduct a simulation study in §4 using a real dataset, and conclude in §5. Though

we reference the techniques in Bandi and Loke (2018), this paper is self-contained. All proofs are

deferred to the Appendix A, by default, unless they can be stated succinctly.

Notation. We use boldface lowercase letters for vectors (e.g., θ). We use [N ] to denote the running

index {1,2,3, . . . ,N} for a known integer N . We adopt the convention that inf ∅=+∞, where ∅

is the empty set. We use 1 to represent the indicator function; thus 1(C) = 1 if set C is nonempty

or 1(C) = 0 if C is empty.

2. The Single-Server Intraday Scheduling Problem

To ease the reader into our approach, we first illustrate our model on the classical single-server

intraday scheduling problem, without patient re-entry. In the succeeding section §3, only then we

extend our results to an intraday scheduling setting involving patient re-entry.

The single-server intraday scheduling problem is drawn in Figure 1. The planner schedules N ,

which is fixed and known, appointments within T discrete periods of the clinic’s operating hours.

This is done before any uncertainty unfolds. We model this scheduling decision as xt, the number

of appointments scheduled to arrive at time t ∈ T := {0,1, ..., T}. Here, we let xt be binary. All
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patients must be scheduled:
!T

t=0 xt =N . This setting closely follows that in the literature (e.g.,

Denton and Gupta 2003), where only the timing of the slots on the schedule matters. It is not

the intent to actually match patients to the slots, and operationally, the decision-maker may freely

decide on the matching. In most practical situations, the number of patients to serve, N , is usually

prescribed, and the number of patients far outstrip this number of slots; hence, we can always safely

assume that slots will be filled. In this regard, the scheduling decisions are static – the scheduled

times ought not change even if the patients allotted to the timings do. Moreover, in the intraday

scheduling context, the time window is short enough to make it infeasible to call up new patients

to arrive when there are no shows.

Figure 1 Patient flow in a single-server setup

These scheduling decisions form the first stage in our two-stage formulation. The second-stage

problem is a multi-period problem. When patients arrive at their scheduled time, e.g., t, they join

the queue, along with walk-in patients at some known arrival rate. At this point, the uncertainty in

the number and arrival times of scheduled and walk-in patients until this time period materializes.

Some patients in consultation with doctors (with maximum capacity C) also complete their service

and leave the system. This uncertainty is modeled by ht,s, the hazard rate of completing service

after being served for s periods at time t, and too materializes at this point. With freed up capacity,

the decision-maker then makes a recourse decision in the form of how to route patients through

the network. In a single-server network, recourse is trivial – it is simply the dispatch of patients

to the server if it is idle. For more complicated networks, as we shall see later, the recourse may

be non-trivial and legitimate decisions in their own right. When the next time period begins, this

process repeats. The goal is to schedule and route patients in a fashion such that the waiting time

target Cw is met as often as possible (possibly infeasible if x was decided poorly). Specifically, this

refers to having good probabilistic guarantees against violations of the waiting time constraint. We

make this clear in the exposition that will soon follow. These variables are summarized in Table 1.

A schematic of this process is illustrated in Figure 2. Specifically, time t= 0 is where the queue

is opened, and the server starts to see patients from t= 1 onwards. Patients always arrive at the

end of a period and can only be routed from the next period. Service completion happens at

the beginning of each period, after observing which, the planner can route patients in the queue

(arrived previous to this period) to see available doctors. It is important to keep in mind that
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Single-Server Setting

Parameters and known quantities

N : Number of patients to schedule

T : Last modeling time

λt : Random arrivals (walk-ins) at time t

ht,s : Known hazard rate – probability patient served for s periods at time t completes service at t+1

C : Server capacity – total number of (independent and homogeneous) doctors

Cw : Targeted total patient waiting time to keep under

State and decision variables

xt : Decision variable of patients scheduled to arrive at time t

yt,s : Random variable of patients waiting for s periods in the queue at time t

zt,s : Random variable of patients served for s periods in the server at time t

pt,s : Recourse variable of patients dispatched into server after waiting for s at time t

Table 1 List of parameters and variables in the single-server setting

our primary focus is on the scheduling decision x. The routing decisions only serve to approximate

second-stage queueing dynamics.

Figure 2 A rundown of events in two stages

Let us define the second-stage problem more precisely. Following the notation in Bandi and Loke

(2018), consider two time dimensions – model time t∈ T up to time horizon T and node time s∈ T

describing how long a patient has spent in a node (queue or server). Let yt,s and zt,s, t∈ T , s∈ T ,

denote the number of patients that have already waited for exactly s periods but still remain in

the queue and server respectively. Alternatively, yt,s can be thought of as the number of patients

who arrived at the clinic at time t− s and have yet to be served. As we start each day with the

clinic empty, we would have z0,s = 0,∀s, and y0,s = 0 for s ≥ 1; y0,0 may be positive because it

corresponds to patients that arrive at the end of time 0, i.e., at the beginning of operations. The

definition also induces the subsequent boundary conditions: zt,s = 0 for ∀t ∈ T , s≥ t and yt,s = 0

for ∀t∈ T , s > t.

Next, we describe the dynamics of the queue. Inflows to the queue are made up of scheduled

appointments and walk-ins. For now, we assume that the scheduled patients x arrive exactly at
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their appointment times. We use λt ∼ Λt, drawn from some time non-homogeneous distribution,

to represent the number of walk-in patients at time t. We assume that their moment generating

functions exist, are bounded and independent across t. Thus, the total inflow to the queue at time

t is xt + λt. Because yt,0 represents the number of patients in queue at time t, that have spent 0

periods in queue, it is equivocally the inflow to the queue at time t. Hence, for ∀t∈ T ,

yt,0 = xt +λt. (1)

As the server is freed up, patients are dispatched from the queue to the server. Let pt,s, t, s∈ T , be

the second-stage recourse variable that indicates the number of patients dispatched, after waiting

for s periods at time t in the queue. Necessarily, we cannot dispatch more patients than there are

available, i.e., pt,s ≤ yt−1,s−1. We require p0,s = 0 for s ∈ T , and pt,s = 0 for s > t subsequently.

These definitions lead to the dynamics:

yt,s := yt−1,s−1 − pt,s = yt−s,0 −
s−1"

τ=0

pt−τ,s−τ , ∀t∈ [T ],∀s= 1, ..., t− 1. (2)

For the server, inflow originates from patients dispatched from the queue. As such, for ∀t∈ T ,

zt,0 =
t"

s=0

pt,s, (3)

where summing over s gives the total patients dispatched at time t.

Patients leave once their consultation ends, with probability ht,s, after being in consultation for

s periods at time t. This is the hazard rate of the service time distribution. Indeed, any general

discrete-time service distribution can be modeled via this approach (Dai and Shi 2017). Moreover,

these probabilities can be readily obtained from data. The distribution need not be stationary.

Assumption 1. Service times are independent and identically distributed across patients.

Assumption 1 is realistic because each doctor sees patients of the same ailment, one at a time.

Hence, this service process is independent and identical for all patients. This induces a Binomial

model on the outflow from the server. More specifically, whether a patient in consultation for s

periods at time t, will complete service at time t+1, is a Bernoulli variable with probability ht,s.

Hence, aggregating over all patients,

zt,s ∼Bin
#
zt−1,s−1,1−ht−1,s−1

$
, ∀t∈ [T ], s∈ [T ]. (4)

Proposition 1. The state variable zt,s obeys:

zt,s ∼Bin
%
zt−s,0, ĥt,s

&
, ∀t∈ [T ], s∈ [t],

where ĥt,s ≜
's

τ=1(1−ht−τ,s−τ ), and ĥt,s := 1 when s= 0.
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Proof of Proposition 1 This is most easily shown by the law of iterated expectations. □

Constant ĥt,s can be interpreted as the cumulative survival probability for s periods amongst

patients who arrived at time t−s. As such, this Proposition allows us to characterize the dynamics

as dependent only on the cohort of patients entering the server.

Optimization problem

Our full model can be written formally as:

min
x

Q(x) (5)

s.t.
T"

t=0

xt =N

xt ∈ {0,1} ∀t∈ T ,

where Q(x) represents a yet-defined second-stage queueing cost of making scheduling decisions x.

The goal of the optimization is to ensure that operational targets on waiting time and capacity

constraints, are attained as frequently as possible. This can be phrased as chance constraints on

the upper bounds for the queue length and patient waiting time at different times, such as

P
( t"

s=0

yt,ss−Cw ≤ 0

)
> 1− ε. (6)

!t

s=0 y
t,ss represents the total waiting time experienced by all patients currently in the queue at

time t. Indeed, every patient in yt,s has waited in the queue for precisely s time periods. As such,

they contribute yt,ss to the total waiting time in the queue. Summing over all s obtains the result.

The decision-maker would be interested in making ε as small as possible, so as to obtain the best

guarantees on the constraint being satisfied. As a result, a plausible second-stage model is:

Q(x) := min
p,ε≥0

ε

s.t. P
( t"

s=0

zt,s −C ≤ 0

)
> 1− ε ∀t∈ T

P
( t"

s=0

yt,ss−Cw ≤ 0

)
> 1− ε ∀t∈ T

P
(
pt,s − yt−1,s−1 ≤ 0

)
> 1− ε ∀t∈ T .

The first constraint represents capacity constraints. The second constraint states that the total

waiting time of all patients in the queue at any time must be bounded by Cw. The third constraint,

termed ‘push constraint’, ensures patient dispatch, p, does not exceed the number of patients in

queue, y.
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However, constraints in the form of (6) are non-convex, and it is hard to derive a tractable

reformulation in general.

Now, (6) can be written equivalently as P
*!t

s=0 y
t,ss−Cw ≥ 1

+
= P

*!t

s=0 y
t,ss−Cw > 0

+
≤ ε,

due to integrality requirements on yt,s. Let us instead consider a stronger formulation. Suppose

there is a decreasing convex function f : R+ → R+, such that f(1) ≤ ε and f(δ) → 0 as δ → ∞.

Then we want to consider the (infinite) family of chance constraints:

P
( t"

s=0

yt,ss−Cw ≥ δ

)
≤ f(δ) ∀δ> 0. (7)

Evidently, this includes (6) by definition. Hence, if we can find some f and some policy under f

that satisfies this family of chance constraints, then we are done.

Definition 1 (Entropic measure of risk). An entropic measure of risk with k > 0 for ran-

dom variable ξ̃ is defined as gk(ξ̃) = k logE
*
exp

%
ξ̃/k

&+
. Call gk(ξ̃)≤ 0 an entropic risk constraint.

The entropic measure of risk is a popular convex measure of risk (see e.g., Follmer and Schied

2002, Follmer and Knispel 2011). It is convex and additive (under independence) in the uncer-

tainty ξ̃, while also being convex in the risk index k. Moreover, the exponential function inside

k logE [exp (·/k)] operator penalizes positive values of ξ̃ more than proportionately to negative val-

ues, and therefore is consistent with risk-aversion. Recent works (e.g., Hall et al. 2015, Jaillet et al.

2016, in portfolio management and vehicle routing respectively) are based on this measure and

have been relatively successful in achieving tractable models to otherwise challenging problems.

Proposition 2. Let fk(δ) = exp(−δ/k) where k ≤ −1/ log(ε), and Γ ∈ R be a specified target

that random variable ξ̃ ought to be kept under.

a) fk fulfills our requirements, i.e., for any k > 0, it is a convex decreasing function with fk(1)≤ ε

and fk(δ)→ 0 as δ→∞.

b) gk

%
ξ̃−Γ

&
≤ 0 implies P

*
ξ̃−Γ≥ δ

+
≤ fk(δ).

In particular, gk

%!t

s=0 y
t,ss−Cw

&
≤ 0 implies that the bound on probability of constraint violation

(7) is satisfied.

Proof of Proposition 2. It is easy to check that fk satisfies all properties stated in (a). As a

simple consequence of the Chernoff bound, if gk

%
ξ̃−Γ

&
≤ 0, then

P
%
ξ̃−Γ≥ δ

&
≤ exp(−δ/k) = fk(δ).

The last part of the proposition is a direct consequence of the above bound. □

As a result of Proposition 2, as long as we can find some particular k≤−1/ log(ε) such that the

constraint gk

%!t

s=0 y
t,ss−Cw

&
≤ 0 is satisfied, then we are done. This can be done by searching
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for the smallest k such that gk

%!t

s=0 y
t,ss−Cw

&
≤ 0, then checking if k ≤−1/ log(ε). The other

interpretation of this is that we want to minimize the chance fk(δ) of constraint violation by

minimizing k. As a result, this leads to the following second-stage model:

Q(x) = min
p,k>0

k (8)

s.t. k logE

,
exp

-!t

s=0 z
t,s −C

k

./
≤ 0 ∀t∈ [T ] (9)

k logE

,
exp

-!t

s=0 y
t,ss−Cw

k

./
≤ 0 ∀t∈ [T ] (10)

k logE
(
exp

0
pt,s − yt−1,s−1

k

1)
≤ 0 ∀t∈ [T ],∀s∈ [T ] (11)

+overtime constraint.

Notice that (10) can be generalized to any affine constraint
!t

s=0 y
t,sr(s)≤ b for some constants

r(s), s= 0, . . . , t, and b.

There are a few options on how overtime constraints can be modeled. The simplest is to require

k logE

,
exp

-!T

s=0 y
T,s −L

k

./
≤ 0, (12)

which bounds the queue length at the end of the time horizon T . It indicates that we want to clear

the queue, or have no more than L patients in the queue, by clinic closure, where L is the budgeted

overtime patients. Similarly, we can also impose a constraint to control the server utilization at the

end of horizon, i.e., we require the server to be free at T with high probability. Another approach

might be to count the actual periods of overtime service, e.g., as written in (28). As that would

require additional machinery, we defer this discussion till the next section.

2.1. Reformulation

It turns out that these constraints can be evaluated into a form affine in decisions x, and hence

the optimization model (8) can be tractably solved under the following assumption:

Assumption 2. The recourse push variable p is a static variable, i.e., it is a function only of

the decision variables x and distributional information Λt and ht,s.

In general, p is state-dependent; instead, p is restricted to be static. The reasoning is deferred

to Remark 2 later.

Proposition 3. For any t∈ [T ], capacity constraints (9) are affine in push variables p:

k logE

,
exp

-!t

s=0 z
t,s −C

k

./
=

t"

s=0

βt,s

t−s"

τ=0

pt−s,τ −C, (13)
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for constants β that can be calculated directly from primitive data:

βt,s ≜ k log

0
1− ĥt,s + ĥt,s exp

0
1

k

11
∀t∈ [T ], s∈ [t].

This Proposition states that we can reformulate the capacity constraint in a linear form in p.

Let us examine the representation in (13). If we had simply evaluated
!t

s=0 z
t,s in expectation,

we would have obtained the expression
!t

s=0 ĥ
t,s

!t−s

τ=0 p
t−s,τ . As such, in moving to the entropic

risk constraint, we have replaced ĥt,s with βt,s = k log
%
1− ĥt,s + ĥt,se1/k

&
. Figure 3 illustrates this

transformation. Over ĥt,s ∈ [0,1], the transformation βt,s is always larger than ĥt,s. In other words,

by comparing k logE
*
exp

%!t
s=0 zt,s

k

&+
against the target of Cw, a buffer is allocated as opposed to

the risk neutral E
*!t

s=0 z
t,s
+
. The index k controls how large this buffer is, approaching the risk

neutral case as k→∞, and the fully robust case, i.e., no violations on the constraint are permitted,

as k→ 0. Therefore, as k decreases, the buffer grows more conservative. As such, βt,s in (13) can

be interpreted as a risk averse correction to the cumulative survival probabilities ĥt,s, which yields

guarantees against constraint violation in Proposition 2.

Figure 3 Illustration of how the entropic risk constraint constitutes a risk adjustment

Proposition 4. For any t∈ T and a given cost function r(s), the expression

k logE

,
exp

-!t

s=0 r(s)y
t,s

k

./

=
t"

s=0

r(s)

-
xt−s −

s−1"

τ=0

pt−τ,s−τ

.
+

t"

s=0

k logE [exp (λt−sr(s)/k)] (14)

is affine in decision variables x,p. In particular,

1. Waiting cost constraints (10) corresponds to the case where r(s) = s:

k logE

,
exp

-!t

s=0 y
t,ss

k

./
=

t"

s=1

s

-
xt−s −

s−1"

τ=0

pt−τ,s−τ

.
+

t"

s=1

k logE [exp (λt−ss/k)] . (15)
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2. End-of-horizon queue length constraint (12) corresponds to the case where r(s) = 1:

k logE

,
exp

-!T

s=0 y
T,s

k

./
=

T"

s=0

-
xT−s −

s−1"

τ=0

pT−τ,s−τ

.
+

T"

s=0

k logE [exp (λT−s/k)] . (16)

Proposition 5. For any t∈ T , s∈ T , push constraints (11) are affine in decision variables x,p:

k logE
(
exp

0
pt,s − yt−1,s−1

k

1)
=

s−1"

τ=0

pt−τ,s−τ −xt−s + k logE [exp (−λt−s/k)] . (17)

Theorem 1 (Reformulation). Under Assumptions 1 and 2, Problem (8) can be reformulated

and solved via a bisection search where each sub-problem is a mixed-integer linear optimization

problem.

Proof of Theorem 1. By Proposition 2, our risk constraints are monotonically decreasing in k.

Thus, model (8) can be solved by bisection search on k, where each sub-problem is a mixed-integer

linear optimization problem by Propositions 3 – 5. □

Remark 1. At this point, we should emphasize that almost all parameters can be treated as

decision variables. The model (8) is just one possible optimization approach. An alternative is to

fix the risk level k and optimize some linear objective, e.g., minimize the number of servers used

such that all entropic risk constraints hold at a prescribed risk level k. This can be useful when

the clinic wants to optimize the shift schedule of doctors; when capacity Ct at time t is treated as

a decision variable, the model optimizes the (time-varying) capacity of the clinic.

Remark 2. The static nature of push decisions p is the price that we paid for tractability; to the

best of our abilities, we do not know how to form a tractable model if the pushes were not static.

However, the push decisions do provide us a certificate of guarantee for the scheduling decisions,

in the sense that if we choose to execute the first-stage decisions, then there will exist at least

one method of managing the queue dynamics, namely the push decisions, that guarantees desired

outcomes on waiting time and overtime under the entropic measure of risk. More critically, we see,

in the numerical experiments, that this, despite being a crass reduction of the solution space, is

more than sufficient to arrive at a model that uniformly performs better than the baseline sample

average approximation (SAA) model. This justifies the trade-off we made for tractability, because

we gained in terms of flexibility to model all kinds of uncertainties, otherwise difficult in traditional

formulations.

We also make one final quick comment about the multiple server setting. In the above discussion,

we have used C to represent the capacity of the server. In the literature, this is often handled

as a single-server system with C = 1. Under the Pipeline Queues framework, extending from the
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single-server case to the multiple-server case requires nothing more than removing the requirement

that C = 1, as long as servers are assumed to be independent and homogeneous. Indeed, one can

imagine the servers (with states zt,si over index i) arranged in parallel, fanning out from the same

queue. The queue decides when patients are pushed into the servers, as capacity is freed up. As

such, servers do not account for any waiting time; that, is accounted by the queue. This means

that all service times, no matter which servers the patients are in, are independent and identically

distributed. This allows the sum zt,s :=
C!
i=1

zt,si to be described by the Binomial random variable,

and the difference C−
!
s

zt,s to be understood as the number of idle servers at time t. For further

description of this, we recommend the original narrative in Bandi and Loke (2018). Hence, Theorem

1 extends to the case where C > 1 under the following assumption:

Assumption 3. Service times for all patients across all doctors are assumed to be independently

and identically distributed.

3. General Setting with Re-entries

In the preceding section, we considered a single-server network to illustrate key model primitives.

In this section, we extend the problem to general networks and as realistic a setting as possible.

Consider the general setting where the planner is required to schedule all N appointments by T ,

the last allowed slot on the schedule. As before, walk-in patients are modeled as λt. For scheduled

patients, there is a chance that they will not show up for the appointment with probability 1− γ.

If it is desired to incorporate no shows into the model, then the inflow can be modified to

yt,0 =Bin (xt,γ)+λt.

For brevity, we will consider the case where γ = 1 in the subsequent derivation. Additional variables

and that are different from those in Table 1 are summarized in Table 2.

General Setting

Parameters and known quantities

γ : No show probability

ht,s
j : Hazard rate—probability patient in block j served for s periods at time t completes service at t+1

C2 : Server capacity – total number of X-ray doctors

Cw,j : Targeted total patient waiting time to keep under in block j

State and decision variables

xt : Decision variable of patients scheduled to arrive at time t

yt,s
j : Random variable of patients waiting for s periods in the queue of block j at time t

zt,sj : Random variable of patients served for s periods in the server of block j at time t

pt,sj : Recourse of patients dispatched into server of block j after waiting for s at time t

Table 2 List of additional parameters and variables in the general setting
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The most important feature we want to incorporate is the element of patient re-entry. In our

context, a portion of patients are required to undertake an X-ray examination, before returning to

consult with the doctor again. There are three difficulties with this. First, it is not clear how to

model the dynamics and uncertainty involved in patient re-entry. In our model, we shall introduce a

virtual network that represents the service dynamics accurately. Second, there are now non-trivial

decisions in the routing process, e.g., between two patients, one who has just arrived and one

returning from an X-ray examination, who should be routed to see the doctor first? In our model,

we shall house these patients in two separate queues and denote separate routing decisions for each

queue. Third, knowledge about whether patients require an X-ray examination only emerges after

the scheduling. In our model, we use a random variable to represent this uncertainty, which can

be tractably reformulated.

Consider a network with three blocks as in Figure 4. Each block consists of a queue and a server.

Compared to our earlier model in Figure 1, we have two additional blocks – one for X-ray examina-

tions and the other for re-entry. We refer to these queue-server blocks as: First consultation, X-ray

examination, and Return consultation. In fact, first and return consultations feed into the same

queue and server. However, patients in both queues and the decisions taken can be differentiated.

We assume, for convenience, patients go for an X-ray examination at most once.

Figure 4 Patient flow network

As before, the planner makes scheduling decisions, x, in the first stage, in order to obtain the

best guarantees Q(x) on having waiting time constraints observed.

min
x

Q(x) (5)

s.t.
T"

t=0

xt =N

xt ∈ {0,1} ∀t∈ T .
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Informally, the second-stage decision to route patients attempts to minimize the risk parameter k,

so as the seek the best guarantee level ε, through a series of entropic risk constraints.

Q(x) = min
p≥0,k>0

k (18)

s.t. entropic risk constraints.

We now proceed to describe these routing decisions and entropic risk constraints.

Variables and definition

We make the following definitions for the different blocks j = 1,2,3 representing the First consul-

tation, X-ray examination and Return consultation: yt,s
j , zt,sj , pt,sj denote the number of patients in

the queue, the server, and the push variables for their respective blocks with time indices t and s

as before. In this model, the routing decisions are essentially the push variables. Similarly, let ht,s
j

represent the hazard rates for patients in block j.

The complication arises in the first block, where first, we have to determine if the patient requires

X-ray examination. This would be information that the planner would not have at the point of

scheduling and only manifests at the point of the first consultation. Let us suppose that the doctor

would assess each patient to require an X-ray with a known probability of q.

Second, we need to differentiate the hazard rates. In practice, doctors, with knowledge that the

patient requires an X-ray examination, will likely delay their prognosis till after the X-ray results

are ready. As such, patients requiring X-ray will likely end their first consultation much faster

than other patients. To that end, let ht,s
0 refer specifically only to the hazard rates of patients not

requiring X-ray examination after first consultation (and hence leave the system thereafter) and

let ht,s
1 denote the likelihood of service completion for patients requiring X-ray examination, where

they are routed to the X-ray queue thereafter. In general, h0 ∕=h1 ∕=h3.

Dynamics

The dynamics for the queues and servers in each of the blocks remain largely the same; the intro-

duction of X-rays only affects the server in the first consultation block and the inflow to the X-ray

queues. The rest are easily defined.

zt,sj ∼Bin(zt−s,0
j , ĥt,s

j ) for j = 2,3

zt,0j =
"

s∈T

pt,sj for j = 1,2,3

yt,s
j = yt−1,s−1

j − pt,sj for j = 1,2,3

yt,0
1 = xt +λt,
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where ĥt,s
j ≜

's

τ=1(1−ht−τ,s−τ
j ) for j = 2,3, are the cumulative probabilities that extend naturally

from Proposition 1.

It turns out, for the server in the First consultation block, zt,s1 , the dynamics can be written in

the same form, except where ĥt,s
1 is defined slightly differently: Consider this definition on zt,s1 .

zt,s1 =

z
t−s,0
1"

ℓ=1

%
1(bℓ,t−s = 1, patient ℓ stays till time t)+1(bℓ,t−s = 0, patient ℓ stays till time t)

&
,

(19)

where bℓ,t ∼Bernuolli(q) indicates whether the ℓth patient that is pushed into the server at time t

requires X-ray examination. Let us examine this. First, patients in the server zt,s1 originated from

the cohort zt−s,0
1 . For any patient in cohort zt−s,0

1 , there are three possibilities by the time of t:

(i) Patient is still in the server at time t, and would require an X-ray examination.

(ii) Patient is still in the server at time t, but would not require an X-ray examination.

(iii) Patient is no longer in the server at time t.

Suppose patients are labelled ℓ= 1, . . . , zt−s,0
1 . Then 1(bℓ,t−s = 1,patient ℓ stays till time t) denotes

the first case and 1(bℓ,t−s = 0,patient ℓ stays till time t) the second. The third case no longer con-

tributes to zt,s1 . Hence, expression (19) is obtained by summing over all the zt−s,0
1 patients.

We are also left to define the inflows to queues at the X-ray examination and return consultation

blocks, yt,0
j for j = 2,3, which comprise patients who have completed service from the earlier blocks.

yt,0
2 =

t−1"

s=0

z
t−1−s,0
1"

ℓ=1

1
#
bℓ,t−s−1 = 1, ut−1,s

ℓ = 1
$
, (20)

yt,0
3 ∼

t−1"

s=0

Bin
#
zt−1,s
2 , ht−1,s

2

$
, (21)

where ut,s
ℓ = 1 if the ℓth patient that is pushed to first consultation server at time t−s will complete

his service at time t + 1. Equation (20) is obtained from the same logic as in (19), while (21)

describes that the inflow into yt,0
3 is simply all patients who finished their X-ray examination.

Proposition 6. For any t∈ [T ], s∈ [t],

a) Server variables obey zt,s1 ∼Bin
%
zt−s,0
1 , ĥt,s

1

&
, with cumulative survival probability after s peri-

ods for cohort (t− s) given by ĥt,s
1 ≜ q

s'
τ=1

(1−ht−τ,s−τ
1 )+ (1− q)

s'
τ=1

(1−ht−τ,s−τ
0 ), ĥt,0

1 = 1.

Queue variables can be written as

b) yt,0
2 ∼

t−1!
s=0

Bin
#
zt−s−1,0
1 , h̄t−1,s

1

$
, where we define h̄t−1,s

1 ≜ qht−1,s
1

s'
τ=1

(1−ht−1−τ,s−τ
1 ), and

c) yt,0
3 ∼

t−1!
s=0

Bin
%
zt−s−1,0
2 , ht−1,s

2 ĥt−1,s
2

&
.

Remark 3. For fixed t, zt,s1 are independent across all s ∈ T because different patients are

independent of each other, i.e., the RHS of (19) is independent across s∈ T .
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Constraints and reformulation

Consider the full problem (5) where the second-stage problem Q(x) is given by

Q(x) := min
p,k>0

k (22)

s.t.k logE

,
exp

-!t

s=0

#
zt,s1 + zt,s3

$
−C

k

./
≤ 0 ∀t∈ T (23)

k logE

,
exp

-!t

s=0 z
t,s
2 −C2

k

./
≤ 0 ∀t∈ T (24)

k logE

,
exp

-!t

s=0 sy
t,s
j −Cw,j

k

./
≤ 0 ∀t∈ T ,∀j ∈ [3] (25)

k logE

,
exp

-
pt,sj − yt−1,s−1

j

k

./
≤ 0 ∀t∈ [T ], s∈ [T ],∀j ∈ [3]. (26)

The constraints we apply on the model are similar as before, where (23) and (24) are capacity

constraints on the servers, (25) are the queue waiting time constraints, and (26) are the push con-

straints. Specifically, (23) indicates that capacity is shared between first and return consultations,

because the same server (doctor) is used for them. We leave waiting time constraints separate in

(25), however. This imposes different priorities among first and return consultation services.

Because of Proposition 6, we are able to express zt,s1 in the same form as before, so Proposition

3 applies as per usual. The only additional result we require is how to deal with the slightly

different forms of yt,0
2 and yt,0

3 . We cover the reformulation of k logE
*
exp

%!t

s=0 r(s)y
t,s
2 /k

&+
in

the Proposition below. For all other constraints, the reformulation is written out clearly in the

Appendix A.

Proposition 7. For any t ∈ [T ], k logE
*
exp

%!t

s=0 r(s)y
t,s
2 /k

&+
is affine in decision variables

p1,p2:

k logE

,
exp

-
t"

s=0

r(s)yt,s
2 /k

./
=

t−1"

τ̄=0

t−τ̄−1"

τ=0

pt−τ̄−1,τ
1 ηt,τ̄

2 −
t"

s=0

r(s)
s−1"

τ=0

pt−τ,s−τ
2 , (27)

where h̄t,s
1 are as defined in Proposition 6 and constants

ηt,τ̄
2 ≜ k log

-
1+

τ̄"

s=0

h̄t−s−1,τ̄−s
1

0
exp

0
r(s)

k

1
− 1

1.
, ∀t∈ [T ], τ̄ = 0,1, . . . , t− 1

can be calculated from primitives.

Remark 4. The proof of Proposition 7 is technical but noteworthy in the sense that it features

a technique in the reformulation that is not seen in the original paper by Bandi and Loke (2018).

Moreover, the derivation proves that we can consider other sources of inflows to the X-ray station,

as long as they are independent, for example, if the same X-ray station serves patients from multiple

clinics, or if we also have random walk-in patients to the X-ray station.
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As before, we have the result: Practically, these sub-problem, while posed as mixed-integer linear

optimization problems, can be solved quickly.

Theorem 2 (Reformulation). Under Assumptions 1 – 3, Problem (22) can be reformulated

and solved via a bisection search where each sub-problem is a mixed-integer linear optimization

problem.

Proof of Theorem 2. This follows from the proof of Theorem 1, Propositions 6 – 7, and Propo-

sitions ?? – ?? in Appendix A. □

3.1. Incorporating additional realistic features

We have set up a basic structure to obtain a scheduling with high guarantees on short wait times

for the intraday scheduling problem with patient re-entry, walk-ins and no-shows. In this section,

we illustrate how the model may be extended to better describe actual operations, in particular,

random transportation time between service stations, and uncertain appointment arrival times.

Transportation times

To address the transportation times between servers, we can model the transportation as a service

by adding new “traffic” blocks (Figure 5). Similar results can be derived for such a model.

Figure 5 Patient flow network with transportations

Uncertain arrival times

In practice, scheduled patients may not show up at precisely their appointment times. Let Ãt

denote the random arrival time of a patient initially scheduled to arrive at time t. Suppose we

know the probability distribution of actual arrival time Ãt, which are independent across t ∈ T .

Then we rewrite yt,0
1 as:

yt,0
1 =

T"

τ=0

xτ1
%
Ãτ = t

&
+λt ∀t∈ T .

The entropic risk constraint (10) can still be evaluated.



Zhou et al.: Intraday Scheduling with Patient Re-entries and Variability in Behaviours

20 Article submitted;

Proposition 8. The term k logE
(
exp

0
t!

s=0

T!
τ=0

xτa(s)1
%
Ãτ = t− s

&
/k

1)
is affine in x:

k logE

,
exp

-
t"

s=0

T"

τ=0

xτa(s)1
%
Ãτ = t− s

&
/k

./
=

T"

τ=0

xταt,τ ,

where αt,τ ≜ k logE
(
exp

0
t!

s=0

a(s)1
%
Ãτ = t− s

&
/k

1)
for t, τ ∈ T are constants that can be calcu-

lated from primitive data.

Proof of Proposition 8 This follows because random variables Ãt are independent across t∈ T

and the fact that xt for t∈ T are binary. □

Remark 5. From data, we can estimate the probability P
%
Ãτ = t

&
. Then, for all (discrete)

τ, t∈ T , the above constants αt,τ can be computed as:

αt,τ = k log

-
t"

s=0

P
%
Ãτ = t− s

&
exp (a(s)/k)+ 1−

t"

s=0

P
%
Ãτ = t− s

&.
.

Overtime man-hours

Now we discuss how to capture the overtime man-hours, e.g., the number of man-hours operated

beyond the operational horizon T . We let Tc be a large constant, at which point the no patient

should remain in the system. The total number of busy periods of all servers from time T +1 to

time Tc can be written as:
3"

j=1

Tc"

t=T+1

t"

s=1

zt,sj . (28)

Therefore, we can impose targets on overtime man-hours using entropic risk constraints. In Propo-

sition 9, we show this can be evaluated efficiently.

Proposition 9. The term k logE
*
exp

%!3

j=1

!Tc

t=T+1

!t

s=1 z
t,s
j /k

&+
is affine in p1,p2,p3:

k logE

,
exp

-
3"

j=1

Tc"

t=T+1

t"

s=1

zt,sj /k

./
=

3"

j=1

T"

t̄=0

t̄"

τt̄=1

pt̄,τj φt̄
j,

where φt̄
j ≜ k log

%!Tc

t=T+1 ĥ
t,t̄+t
j exp (1/k)

&
are constants that can be calculated from primitive data.

4. Numerical Study on Hospital Data from NUHS

In this section, we conduct a numerical study on our model (5). We illustrate that appropriately

considering re-entries and variability in patient behaviours can significantly improve performance,

and our model does so without compromising tractability.
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4.1. The setting and data

Our data originates from clinics run by 29 Orthopaedic consultant led teams in a tertiary healthcare

institution in Singapore – National University Health System (NUHS). The clinics are divided into

six different sub-specializations, and the data is collected over one year for patient appointment

and visits along these divisions. Our data contains over 80,000 patient visits to over 100 doctors.

Data fields include patient appointment time, arrival time (or no-show), first consultation duration,

whether they are required for an X-ray examination, and return consultation duration.

Our data suggests that consultation times approximately follow a geometric distribution, with a

slight skew towards shorter consultation times. We show the histogram of consultation times from

one particular specialization in Figure 6. For a simple reference, the coefficient of determinant is

above 97% in both fits. The consultation times from other specializations behave similarly. For

convenience, we shall use geometric distributions as the underlying true service time distribution

in our simulations; though our model remains tractable even if we adopted the empirical service

time distributions. We observe that average service time of first consultations is slightly longer

than that of return consultations. In addition, return consultations have a lighter tail.

Figure 6 Empirical distribution of consultation time

Patient re-entry and variability in patient behaviours are apparent in our data. This is reflected

in Table 3. As we can see, no-show probability can be as high as 29% and the probability that a

patient is required to go for an additional X-ray examination can be as high as 39%. In addition,

more than 20% of the patients arrive later than their appointment time by at least 10 minutes, and

more than 47% of the patients arrive earlier by at least 10 minutes. Therefore, one cannot ignore

these factors in scheduling and a high fidelity model can be helpful. It is also important to note that

the patterns of patient re-entry and variability in behaviours vary significant from specialization

to specialization. As such, the optimal policy for scheduling patients will expectedly vary across
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specializations. Moreover, some clinics are knowledgeable of the composition of the patients at the

point of making the scheduling decisions. For example, some Orthopaedic clinics see a mixture of

first time patients and patients on repeat consultation. The former usually are required to undergo

a series of tests, whereas the latter is far less likely to require the tests. Table 3 also illustrates the

proportion of first time visit. As a final note on this, the walk-ins to our partnering clinics are not

systematically recorded, although they indeed exist. As such, it is not reflected in Table 3.

Table 3 Summary of no-show, X-ray probability, and proportion of
first time visit

Specialization

1 2 3 4 5

Average no-show probability 19% 23% 27% 29% 29%

Average X-ray probability 39% 24% 18% 15% 13%

Proportion of first time visit 27% 32% 34% 35% 41%

In these Orthopaedic clinics, the day is divided into the morning and afternoon shifts, which

we can safely treat as being separate. In addition, as doctors are required to perform treatments

beyond their consultation shifts, each shift is only T = 120 minutes long. As such, in all subsequent

analysis, we will consider this as our time window of one shift. Each clinic is staffed by a single

doctor in that shift. We consider a fixed number of 12 patients, which the planner needs to schedule.

The current practice in the clinics is to schedule patients in equal intervals of ten minutes over these

120 minutes, filling up the slots as long as there is a backlog of patients. Equal-interval scheduling

policy is common in practice due to its simplicity. It is also reasonably successful – in many cases,

such equal-interval policy does not deteriorate performance severely (Stein and Cote 1994).

4.2. Simulation set-up

In this section, we examine the performance of our model (5) and attempt to understand the

consequences of planning without considering patient re-entries, or variability in behaviours. To

do so, we compare our model against two benchmarks, the current equal-interval scheduling policy

in the clinics, and the solution obtained from the sample average approximation (SAA) model in

Denton and Gupta (2003) where only service time uncertainty is considered. The rationale for the

former is that equal-interval policy ignores all information regarding the stochastic nature of the

random variables, hence provides a measure of the potentiality of considering them. The baseline

SAA model has been extended to handle uncertainties such as sequencing decisions and no-shows

(e.g., Erdogan and Denton 2013, Berg et al. 2014, Jiang et al. 2017). However, to the best of our

knowledge, we do not know of the means to incorporate all the uncertainties we consider into
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SAA, while remaining tractable. Hence, any performance gains that our model makes over the

baseline SAA model will represent both the improvement as a result of the paradigm adopted by

our approach, as well as, the potential gains that can be reaped by considering the uncertainties

otherwise difficult to incorporate into an SAA model.

Limitations of the SAA approach in our problem context

Specific to our problem, the difficulty arises when modeling the interaction between uncertainties

and decisions. Here, SAA would be required to enumerate over all possible scenarios, leading to

an exponentially large optimization problem, which is not realistic. For example, when walk-ins

and no-shows are considered, the sequence of service is stochastic, and this uncertainty is decision-

dependent. As such, one needs to generate samples over all possible times at which the walk-in is

to occur. When re-entries are considered, the time at which the patient re-joins the consultation

queue is stochastic and depends on the scheduling and routing decisions. Moreover, we can only

make routing decisions after the type of patient, whether they are re-entry patient or otherwise,

materializes. In all these cases, we are not aware of how the interdependence of the uncertainty and

presence of counterfactual modeling could be supported by SAA, without requiring an exponential

large sample of data that enumerates over all possible scenarios.

As the previous subsection illustrated, re-entries, no-shows, and walk-ins, are common not only

in Orthopaedic clinics but also other clinics, in general. The setting of having different patient

compositions is a particularly important feature at our partnering clinics, who observe starkly

different re-entry probabilities and service times between first-time patients and repeat patients.

Such settings further complicate matters.

We expect our model to outperform baseline SAA model in these realistic settings because SAA

struggles to utilize all available information. We have structured the simulations later to illustrate

precisely that our high fidelity model outperforms benchmarks in these practical situations at

clinics. We will describe the specific experiments in detail later.

Solving the benchmark models

The solution to the SAA model is derived as follows. First, we generate 300 sample paths of the

twelve patient consultation times as the input to the SAA model. Then, cost parameters (overtime

cost and waiting time cost) for the SAA model are chosen such that the overtime metric in our

model and the SAA model roughly matches. Finally, we solve the SAA model and get its optimal

scheduling policy.

To perform the comparison, we run our optimal policy against the equal-interval policy and the

baseline SAA model under 50,000 simulations, independently and identically generated according

to the information we derived from data or assumed. Under each simulation, we implement the
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three scheduling policies and use the same routing policy for all, which is a first-come, first-served

policy. In other words, first consultation patients (including walk-ins) always arrive at the end of

the first consultation queue. After X-ray examination, patients join the end of returning queue upon

returning. The doctor always sees the next patient in the queues, and always clears the returning

queue before first consultation patients.

We compute the metrics of total waiting time, system overtime, and maximum instantaneous

waiting time for each of the policies and then average them over the 50,000 simulations. Total

waiting time is the sum of waiting times of all 12 patients in the queue, and overtime is the

amount of excess time experienced by the doctor beyond T = 120 minutes to finish all consultations.

Instantaneous waiting time at any time t is the total waiting time among patients in the queue at t,

i.e., it is
!nt

i=1wit, where nt is the number of patients in the queue at time t and wit is the waiting

time that patient i has experienced until time t. This can be seen a proxy for the queue length at

time t. Thus, the maximum instantaneous waiting time refers to the largest of these instantaneous

waiting times amongst all times t= 1, . . . , T , which can be interpreted as the longest length of the

queue achieved at any time point.

In the subsequent discussion, we will conduct several numerical studies. First, we study only

the effect of patient re-entries, by varying the proportion of patients requiring X-ray examination.

Then, upon this framework, we will now consider the effects of incorporating other modeling

features. In particular, we will illustrate this for patient walk-ins and no-shows. Finally, we consider

cases with heterogeneous patients. More specifically, we consider a situation where there are two

types of patients (Type A and B), who may have very different consultation times, likelihoods

of requiring X-ray examination, and earliness patterns, as discussed in the above section. In our

clinics, the current policy is to schedule all first timers first and to fill the returning patients into

later slots on the schedule. The logic behind this practice is that repeat consultations require

shorter consultations and hence scheduling them later would front-load the demand and reduce

server idle time. We will see in our simulations later if this is a good policy.

For each performance metric, the performance gap between the benchmark policies and our

policy is calculated with our policy as the base, i.e., (benchmark metric− our metric)/our metric,

with positive values indicating worse performance compared to our model. Standard deviations of

the performance metrics of our policy are also reflected, and a 1% significance level is assumed.

For all subsequent simulations and experiments (except experiment 2), we took care to ensure

that parameters were always varied in a manner that roughly maintains the same system load.

In particular, we chose to ensure that the system is always within the heavy traffic regime. This

ensures that any observed differences in performance do not arise from changes in the system loads.
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4.3. Varying X-ray re-entry probability

As previously motivated, the planner would not, a priori, know whether or not the patients require

X-ray examinations. Instead, after the first consultation, each patient requires an X-ray examina-

tion with probability q. Otherwise, with probability 1−q, the patient leaves after first consultation.

In experiment 1, we vary this probability q. We summarize the performance of our model in

Table 4. Both our model and the SAA model consistently outperform the equal-interval policy,

though the former two display no statistically significant difference in performance.

Table 4 Performance comparison (Experiment 1): varying X-ray probability q

Metrics (mins)

Total waiting Overtime Max. instantaneous waiting

q= 0.25 Equal-interval 163.5 (3.0%) 28.1 (7.3%) 65.5 (10.1%)

SAA 160.2 (0.9%) 26.1 (-0.4%) 60.0 (0.8%)

Ours (± s.d.) 158.8 (± 0.61) 26.2 (± 0.10) 59.5 (± 0.25)

q= 0.30 Equal-interval 170.5 (3.5%) 29.8 (7.2%) 68.7 (10.8%)

SAA 166.1 (0.9%) 27.7 (-0.4%) 62.6 (1.0%)

Ours (± s.d.) 164.7 (± 0.62) 27.8 (± 0.11) 62.0 (± 0.27)

q= 0.35 Equal-interval 180.6 (3.5%) 32.0 (7.0%) 73.3 (11%)

SAA 176.1 (0.9%) 29.8 (-0.3%) 66.6 (0.9%)

Ours (± s.d.) 174.5 (± 0.64) 29.9 (± 0.10) 66.0 (± 0.27)

We also illustrate the structure of the optimal policies for ours and the SAA model in Figure 7.

Here, the x-axis is the order of arrival of the patients, and the y-axis is the interarrival times

between successive patients, that is, the gap of time before the next patient arrives. Critically, both

models advocate a ‘dome-shaped’ structure in the interarrival times. This is a classical observation

(Wang 1993). The intuition is that queues are more likely to build up in the middle of the planning

horizon; therefore, a longer interarrival time in the middle balances this out. As both models

advocate similar structure, their performances are similar. Nonetheless, we show in the ensuing

discussion, that this classical optimality of the dome-shaped policy, can be broken.

4.4. Variability in patient behaviours and distinct patient classes

The previous discussion is only meant to serve as a basis to gain some initial intuition on the

structure of the optimal policy, and what are the initial gains we can expect to reap from consid-

ering just one dimension of uncertainty. In what ensues, we conduct four groups of independent

experiments, each of which, built upon the basic re-entry model above:

Experiments 2 and 3: In this pair of experiments, we fix the probability of re-entry at q= 0.25

and include exogenous uncertainties of walk-ins and no-shows. Walk-ins λt at time t are assumed to
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Figure 7 Optimal interarrival times (ours and SAA) in Experiment 1

follow a non-time-homogeneous Poisson distribution with rates αt for t∈ [T ]. We suppose scheduled

patients will not show up with (an independent) probability 1− γ, which is allowed to vary over

γ = 0.8 to γ = 0.9. This is done for two instances:

Experiment 2: Where α65 = 1 and αt = 0 everywhere else, creating an single influx of random inflow

to the system; and,

Experiment 3: Where α38 = α75 = α and αt = 0 everywhere else, creating two separate waves of

walk-ins. α is varied for a few choices ranging from 0.7 to 0.85.

Experiments 4 and 5: In the next pair of experiments, we consider the situation where there are

two distinct patient types, having different probabilities of requiring X-ray examination. Suppose

there are nA Type A patients, who are likely (with probability q) to require an X-ray examination

than the 12−nA Type B patients, who do not. In this case, the sequence of service (i.e., sequence

of Type A and B patients to schedule) enters the decision variables. In our model, this is achieved

by allowing our decision variables xt
A and xt

B to be indexed by the type. This is not possible, to

the best of our knowledge, for the SAA model because of re-entry. Hence for SAA, like the equal-

interval policy, all Type A patients are assumed to be scheduled ahead of all Type B patients.

The SAA model retains the freedom to decide on the interarrival timings. Again, two instances are

modeled:

Experiment 4: Where chance of re-entry q, and number of Type A patients, nA, are varied; and,

Experiment 5: Where we fix q = 1.0 and nA = 3, but allow Type A patients to randomly arrive

earlier than their scheduled time, uniformly within some margin D, ranging from 2 to 5 periods.

For Experiments 2 to 5, we replicate Table 4 in appendix. These are tabulated in Tables 6 – 9

in Appendix B, summarizing the performance metrics of our model against the two benchmarks.
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we summarize their differences in Figure 8. Each chart in the figure plots one of two metrics,

the waiting time metric and the maximum instantaneous waiting time metric. Because we have

constructed the SAA model by matching its overtime metric to coincide with ours (which can be

verified in the performance tables themselves), the overtime metric has been omitted. For each

chart, the horizontal and vertical axes represents the performance gap recorded by the benchmark

equal-interval policy and the SAA policy in comparison to our model respectively. Each point refers

to an instance in each Experiment.

Figure 8 Summary of performance gaps relative to our model

Discussion of results and insights

From Figure 8, we can see that in all cases, our model is able to achieve significant improvements

over the equal-interval policy, sometimes by as much as almost 20% in waiting time reductions and

also in excess of 25% reductions in maximum instantaneous waiting times, and hence maximum

queue lengths. More interestingly, the performance between our model and the SAA model also

begins to diverge for Experiments 2 to 5. In fact, the performance of our model is superior to

that of the SAA model in all these 4 experiments, showing that our model is more effective in

practical settings compared to benchmarks. Where our model outperforms SAA, could broadly be

due to two different reasons, both arising from the limitations of SAA to accurately model different

features of the problem, whereas our model is precisely designed to do so.

Walk-ins and no-shows: Let us first examine the differences going from Experiment 1 to Experi-

ments 2 and 3. In the former, we only had the uncertainty pertaining to whether patients required
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X-ray examination or not. In the latter two, we included non-time-homogeneous walk-in patterns

and no-shows, leading our model to outperform SAA when it had not before.

As we had discussed in our subsection on the ‘Limitations of the SAA approach’, once walk-ins

and no-shows are incorporated, it is no longer possible to model them using the SAA approach

without requiring exponential number of samples. The baseline SAA approach we considered simply

ignores them, yielding the same dome-shaped policy, as before. In Figure 9, we see that our model

no longer gives a dome-shaped policy. In Experiment 2, our model leaves a much longer interarrival

time in the middle, anticipating the single influx of walk-ins; in Experiment 3, interarrival time

is bimodal, anticipating two waves of walk-ins. In these cases, the traditional dome-shaped policy

given by the baseline SAA model is suboptimal, resulting in statistically significant differences

in both waiting time and maximum instantaneous waiting time. This observation is consistently

replicated across different combinations of γ and α.

Figure 9 Optimal interarrival times (ours and SAA) in Experiments 2 (left) and 3 (right)

This behaviour arises because the walk-ins are non-time-homogeneous. Hence, the optimal policy

ought to adapt to variations in walk-ins across time. In other words, failing to account for the

specific structure in the underlying uncertainty, in this case, the spike in arrivals at specific times,

necessarily leads to suboptimal solutions. General purpose models, such as the baseline SAA model,

cannot be expected to handle such structure adequately. For instance, in Experiment 2, as show-up

probability γ decreases, our model provides more significant improvements compared to the SAA

model (Table 6). This is because the influx of walk-in creates a more significant relative change

in traffic to the system as no-show probability increases. Indeed, capturing the structure of the

uncertainty is a common theme in the literature. In many threads of Robust Optimization, the

definition of the uncertainty set is critical to defining the geometry of the uncertainty, and this

determines the nature of the optimal solutions (e.g., Jiang et al. 2017).
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Heterogeneous patients: Larger differences in performance are observed between our model and

SAA in Experiments 4 and 5, showing that our model is more effective than our benchmarks in

complex and practical settings. As explained in the ‘Limitations of the SAA approach’ subsection,

differentiating two classes of patients was a planning consideration faced by our partnering clinics.

Similar to considering walk-ins and no-shows, having heterogeneous patients leads to a partic-

ular structure in the underlying uncertainties. For instance, a patient with high probability of

X-ray examination creates more uncertainty in downstream waiting times, because of the greater

potentiality of re-entry. Models that fail to account for this would result in suboptimal solutions.

Our model reacts to such information, as we can see this in terms of the optimal policy of our

model. Table 5 illustrates the case where nA = 3, q = 0.9. It is clear from the results that the

optimal sequencing of patients is not strictly arranging all the Type A patients first, even though,

it does come quite close to doing so. Our model schedules two types of patients alternately. This

distributes the Type A patients evenly across the earlier part of the shift and hence reduces the

chance that there would be snowballing of waiting times as a result of having too many Type A

returning from X-ray examinations at the same time. Nonetheless, such a change already induces

a performance gap in the SAA model of as much as 7%, even if their chosen interarrival times are

relatively similar. The difference is further aggravated if earliness is added to the mix.

Table 5 Scheduling policy in Experiment 4 when nA = 3, q= 0.9

Patient order

1 2 3 4 5 6 7 8 9 10 11 12

Appointment time (our model) 0 2 11 24 35 45 58 71 83 93 102 111

Patient sequence (our model) A B A B A B B B B B B B

Appointment time (SAA model) 0 4 13 25 35 47 58 70 83 93 104 114

Patient sequence (SAA model) A A A B B B B B B B B B

5. Concluding Remarks and Insights

We have considered a high fidelity intraday scheduling problem with patient re-entry, and also

incorporating uncertain elements such as no-shows, walk-ins, earliness, and distinct patient types.

Our model remains tractable, and simulations illustrate that the model is able to improve existing

policies significantly, including a methodology that employs SAA. Most importantly, by being able

to handle this myriad of uncertainties, our model surely performs better than one that is unable

to handle some subset of them, hence necessarily ignoring them.

Our numerical simulations also illustrate some key insights. First, there are critical types of

uncertainties that need to be handled very carefully, and that which general purpose methodologies,

such as SAA, do not necessarily handle well. These usually occur when the uncertainty in question
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depends on either earlier uncertainties or decisions. Secondly, the classical observation that ‘dome-

shaped policies’ are optimal in intraday scheduling problems can be broken. In general, they seem to

perform well. Nonetheless, when coupled with non-time-homogeneous walk-ins, re-entries, distinct

patient types, and other decision features, such as the sequencing in the types of patients, the

dome-shaped structure may be insufficient to guarantee good performance.

Features we considered in our model that pertain to the optimization of scheduling are not

confined to the healthcare setting. In particular, wafer fabrication, machine scheduling and ride-

sharing also involve a multi-step process with re-entry and stochastic service time distributions.

As such, the wider applicability of the model we introduced here to areas beyond healthcare are

potentially numerous. We intend to work on these in the future.
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