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We present a new distributionally robust optimization model called robust stochastic optimization (RSO),

which unifies both scenario-tree based stochastic linear optimization and distributionally robust optimization

in a practicable framework that can be solved using the state-of-the-art commercial optimization solvers. We

also develop a new algebraic modeling package, RSOME to facilitate the implementation of RSO models.

The model of uncertainty incorporates both discrete and continuous random variables, typically assumed in

scenario-tree based stochastic linear optimization and distributionally robust optimization respectively. To

address the non-anticipativity of recourse decisions, we introduce the event-wise recourse adaptations, which

integrate the scenario-tree adaptation originating from stochastic linear optimization and the affine adap-

tation popularized in distributionally robust optimization. Our proposed event-wise ambiguity set is rich

enough to capture traditional statistic-based ambiguity sets with convex generalized moments, mixture distri-

bution, φ-divergence, Wasserstein (Kantorovich-Rubinstein) metric, and also inspire machine-learning-based

ones using techniques such as K-means clustering, and classification and regression trees. Several interest-

ing RSO models, including optimizing over the Hurwicz criterion and two-stage problems over Wasserstein

ambiguity sets, are provided.
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1. Introduction

In the era of data analytics, the ubiquity of general purpose deterministic mathematical optimiza-

tion frameworks such as linear, mixed-integer and conic optimization models, as well as their impact

on improving management decision-making, cannot be understated. Algebraic modeling packages

and state-of-the-art optimization solvers have been developed on these successful frameworks to

facilitate implementation of prescriptive analytics to address a wide variety of real-world prob-

lems. Comparatively, frameworks to support generic modeling and optimization under uncertainty,

despite their importance, are relatively less established. These frameworks include stochastic linear
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optimization, robust optimization and more recently, distributionally robust optimization, each of

them has its strengths and weaknesses.

Stochastic linear optimization extends the linear optimization framework to minimize the total

average cost associated with the optimal here-and-now and wait-and-see (or recourse) decisions

under a known probability distribution (Danzig 1955). For enormous or infinite number of scenarios,

we can obtain approximate here-and-now solutions using the sample average approximation (SAA)

(Kall and Wallace 1994, Birge and Louveaux 2011, Shapiro and Homem-de Mello 1998, Kleywegt

et al. 2002). These approximate solutions are necessarily random and optimistically biased, i.e., the

actual realized objectives are statistically worse off than those attained by using SAA. Stochastic

linear optimization has the versatility of modeling different types of recourse decisions including

those with discrete outcomes, albeit at the expense of greater computational effort.

In classical robust optimization (Soyster 1973, Ben-Tal and Nemirovski 1998, El Ghaoui et al.

1998, Bertsimas and Sim 2004, Ben-Tal et al. 2015), the solution is obtained by reformulating

the model to a deterministic optimization problem that can be solved using available solvers. The

underlying uncertainty is a distribution-free continuous random variable with support confined to a

convex uncertainty set. The solution obtained via classical robust optimization hedges against the

worst-case outcome within the uncertainty set and hence is pessimistically biased, i.e., the realized

objective value by the robust solution would often be better than the objective value attained by

solving the robust optimization problem. To reduce the conservativeness, distributionally robust

optimization incorporates an ambiguity set of probability distributions and its solution hedges

against the worst-case distribution within the ambiguity set (Dupačová 1976, Shapiro and Kleywegt

2002, El Ghaoui et al. 2003, Shapiro and Ahmed 2004, Delage and Ye 2010, Wiesemann et al. 2014).

Under an embedded linear optimization framework, both robust optimization and distributionally

robust optimization have been extended to address problems with recourse decisions (see, for

instance, Ben-Tal et al. 2004, Takriti and Ahmed 2004, Bertsimas et al. 2019b). As these models

are generally computationally intractable (Shapiro and Nemirovski 2005, Ben-Tal et al. 2004),

approximate solutions are sought by restricting the recourse decisions to affine mappings of the

uncertainty and by requiring the recourse decisions to remain feasible almost surely.

In this paper, we introduce a new distributionally robust optimization model that we call robust

stochastic optimization (RSO). From the methodological perspective, the RSO model unifies both

scenario-tree based stochastic linear optimization and distributionally robust optimization in a

tractable framework. Specifically, the RSO framework incorporates both discrete and continuous

random variables, and introduces the event-wise static and event-wise affine adaptations to address

the non-anticipativity of recourse decisions. The equipped event-wise ambiguity set is rich to cap-

ture traditional statistic-based ambiguity sets and also opens up new ones based on machine learn-

ing techniques such as K-means clustering, and classification and regression trees. We showcase
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several interesting models that we can integrate in our framework. From the practical perspective,

a wide variety of stochastic and disrtributionally robust optimization problems can be effectively

prototyped and tested in an algebraic modeling package based on such a unified RSO model.

Indeed, we design the RSO framework with the mindset that it can be integrated in a general pur-

pose software that would be accessible to modelers. As a proof of concept, we develop an algebraic

modeling package, RSOME (Robust Stochastic Optimization Made Easy) to facilitate modeling of

problems under the RSO framework. With its intuitive syntax, RSOME provides a convenient way

for modelers to specify RSO models and interfaces with state-of-the-art commercial solvers such

as CPLEX, Gurobi, and MOSEK to obtain the optimal solutions to these models.

Our work significantly extends the frameworks of Wiesemann et al. (2014) and Bertsimas et al.

(2019b). In terms of modeling uncertainty, the ambiguity sets in these two models do not include

discrete random variable and they are special cases of our event-wise ambiguity set. Moreover,

their ambiguity sets are chiefly moment-based and do not naturally incorporate statistical-distance-

based-information such as Wasserstein metric or φ-divergence. We also would like to highlight

the difficulties of developing an algebraic modeling toolbox based on the Wiesemann et al. (2014)

framework. Among other things, to ensure tractability, the model requires to impose a nesting

condition on the confidence sets and a key challenge is to check whether the nesting condition

holds. To resolve these issues collectively, we introduce a discrete random variable as part of the

event-wise ambiguity set and associate its outcome with confidence sets. An immediate consequence

is the assurance of tractability without having to impose additional conditions on the confidence

sets such as nesting and disjoint. In terms of recourse adaptation, Wiesemann et al. (2014) do not

consider recourse decisions, while the model of Bertsimas et al. (2019b) is based on affine recourse

adaptation, which is a special case of our event-wise affine adaptation.

Notations. Boldface uppercase and lowercase characters denote matrices and vectors, respectively.

We denote by [N ], {1,2, . . . ,N} the set of positive running indices up to N . We use P0(RI) to

represent the set of all distributions on RI . A random variable, z̃ is denoted with a tilde sign and

we use z̃ ∼ P, P∈P0(RIz) to define z̃ as an Iz-dimensional random variable with distribution P.

2. Framework for Robust Stochastic Optimization

We now introduce the robust stochastic optimization (RSO) model, which combines both scenario-

tree based stochastic linear optimization and distributionally robust optimization in a unified

framework. The uncertainty associated with the RSO model comprises both discrete and continuous

random variables. Specifically, s̃ represents a discrete random scenario taking values in [S], while

z̃ represents a continuous random variable with outcomes in RIz . Conditioning on the realization
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of a scenario s∈ [S], the support set of the random variable z̃ is tractable conic representable and

is denoted by Zs. The joint distribution of (z̃, s̃) is denoted by P∈F , where F is the ambiguity set

of probability distributions that share some identical distributional information.

We denote by w ∈ RJw the here-and-now decision of the RSO model. The recourse decisions

depend on the realization of the random variables z̃ and s̃. As it would become clear shortly, to

obtain a tractable reformulation, we introduce two types of recourse decisions, which are function

maps respectively denoted by x(s) : [S] 7→RJx and y(s,z) : [S]×RIz 7→RJy . Here, x(·) adapts only

to the outcome of the random scenario s̃, while y(·, ·) adapts to the outcomes of s̃ and z̃. Similar

to most tractable adaptive robust optimization problems, the RSO model requires that for each

given scenario s∈ [S], the function map y(s,z) is affinely dependent on z as follows:

y(s,z), y0(s) +
∑
i∈[Iz ]

yi(s)zi,

where y0(s), . . . ,yIz(s) account for the raw decision variables associated with y(·, ·) at scenario s.

To characterize the objective function (with index 0) and constraints (with indices m∈ [M ]), we

first define the following random variable mappings for all m∈ [M ]∪{0},
am(s,z) , a0

ms +
∑

i∈[Iz ]a
i
mszi

bm(s,z) , b0ms +
∑

i∈[Iz ] b
i
mszi

cm(s) , cms

dm(s,z) , d0ms +
∑

i∈[Iz ] d
i
mszi

(1)

for given parameters

aims ∈RJw ,bims ∈RJx ,cms ∈RJy , dims ∈R ∀i∈ [Iz]∪{0}, s∈ [S].

The objective function of the RSO model to be minimized,

sup
P∈F

EP
[
a>0 (s̃, z̃)w+ b>0 (s̃, z̃)x(s̃) + c>0 (s̃)y(s̃, z̃) + d0(s̃, z̃)

]
,

reflects the ambiguity aversion of the decision maker against an ambiguity set F that we will

introduce subsequently. Note that the random variable z̃ , (ũ, ṽ) includes both the primary Iu-

dimensional random variable ũ and the auxiliary (or lifted) Iv-dimensional random variable ṽ

associated with ũ. As in the same spirit of linear optimization models, the provision of the auxiliary

random variable ṽ would greatly enhance the modeling power of the RSO model.

There are two types constraints: hard and soft ones, which are respectively associated with the

partition M1,M2 ⊆ [M ] of indices of constraints.
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The hard constraints (with indices m∈M1) of the RSO model, which must be satisfied almost

surely, are given by the following set of semi-infinite constraints:

a>m(s,z)w+ b>m(s,z)x(s) + c>m(s)y(s,z) + dm(s,z)≤ 0 ∀z ∈Zs, s∈ [S], m∈M1.

Observe that for each given scenario s∈ [S], the semi-infinite constraint corresponds to the standard

linear robust counterpart, which can be transformed to a modest sized constraint system that can

be handled by modern solvers. Scenario-tree based stochastic linear optimization is a special case

of the RSO model when in the absence of the recourse decision y(·, ·). Likewise, adaptive robust

optimization is also a special case when S = 1.

To enhance the modeling, RSO also supports soft constraints (with indices m∈M2), which must

be satisfied in expectation over all distributions within the ambiguity set F :

sup
P∈F

EP
[
a>m(s̃, z̃)w+ b>m(s̃, z̃)x(s̃) + c>m(s̃)y(s̃, z̃) + dm(s̃, z̃)

]
≤ 0 ∀m∈M2.

As in the objective function, soft constraints are evaluated in the expected sense, and hence,

they capture the risk neutrality of the decision maker under ambiguity aversion. By introducing

additional recourse decisions that are also embedded in the hard constraints, the RSO model is

capable to capture risk-averse objective functions or safeguarding constraints; see Section 5.

Apart from hard and soft constraints, for a given scenario s, we can impose additional constraints

jointly on the decisions w, x(s) and y0(s), . . . ,yIz(s). Specifically, we have

r(s),
(
w,x(s),y0(s), . . . ,yIz(s)

)
∈Xs ∀s∈ [S],

where the feasible set Xs may encompass nonlinear constraints such as conic and integral ones.

3. Event-Wise Recourse Adaptations

Stochastic linear optimization and distributionally robust optimization have different approaches

for addressing dynamic decision-making, where uncertainty is revealed in stages and recourse deci-

sions taken in different stages should be non-anticipative to uncertainty realization. In distribution-

ally robust optimization, this can be achieved by restricting the dependency of a recourse decision

on only a subset of the uncertainty z̃ that has been revealed (see an example in Figure 1). In stark

contrast, dynamic modeling in scenario-tree based stochastic linear optimization is more involved

and requires enumerating the complete sample paths from the beginning to the end of the decision

horizon. In this regard, a scenario represents a sample path and a scenario tree is typically used to

showcase sample paths as well as decisions (Høyland and Wallace 2001, Pflug 2001, Heitsch and

Römisch 2009). Figure 2 presents the scenario tree for a three-stage problem with five scenarios: in

accordance of non-anticipativity, the first-stage decision w is independent of the scenarios; while
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Figure 1 Timeline of a multi-stage problem. Uncertain parameters are revealed in stages as z1, . . . , zT . The decision

w, made before any uncertainty realizes, is non-adaptive to any uncertain parameters. The recourse

decision yt, made after observing the uncertainty realization zt, is adaptive to all revealed z1, . . . , zt.

Figure 2 Scenario tree. The recourse decision x1(·) satisfies x1(1) = x1(2) = x1(3) and x1(4) = x1(5), while the

recourse decision x2(·) can take differently depending on the outcome from scenarios 1,2, . . . ,5. The

second level of the scenario tree gives a collection of two MECE events {1,2,3} and {4,5}, while the

third level gives a collection of five singleton MECE events {1}, {2}, {3}, {4}, and {5}. The collection

of MECE events associated with a lower level (e.g., the third level) is nested in the collection associated

with a higher level (e.g., the second level).

the second-stage decision x1(·) shall be indifferent among scenarios 1, 2, and 3 and be indifferent

between scenarios 4 and 5, and the third stage decision x2(·) can adapt to scenarios 1,2, . . . ,5.

Inspired by these two distinctive approaches, we propose a novel event-wise recourse adaptation

scheme that incorporates their essences in terms of modeling dynamic decision-making: the pro-

posed scheme allows the recourse decision to be adaptive to event realization, as in stochastic linear

optimization, and affinely adaptive to revealed uncertainty, as in distributionally robust optimiza-

tion. When there is only one scenario (i.e., event), the event-wise recourse adaptation reduces to

the affine recourse adaptation in Bertsimas et al. (2019b).

To formally specify the event-wise adaptation of the recourse decision, x(·), we first define

an event E ⊆ [S] by a subset of scenarios. A partition of scenarios then induces a collection C
of mutually exclusive and collectively exhaustive (MECE) events. Correspondingly, we define a

mapping HC : [S] 7→ C such that HC(s) = E , for which E is the only event in C that contains the

scenario s. Given a collection C of MECE events, we define the event-wise static adaptation,

A (C),

x : [S] 7→R

∣∣∣∣∣∣ x(s) = xE , E =HC(s)

for some xE ∈R

 ,

which follows along a similar vein as in scenario-tree based stochastic linear optimization. Note

that each level of the scenario tree naturally gives a partition of scenarios that induces a collection
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of MECE events, which in turn is used in the input of event-wise recourse adaptations for recourse

decisions associated with that level (i.e., stage); see Figure 2. In Appendix E, we provide a financial

planning example to illustrate the use of event-wise static adaptation to formulate a multi-stage

stochastic linear optimization problem via scenario tree.

Similarly, for the recourse decision, y(·, ·), we define the event-wise affine adaptation,

Ā (C,I),

y : [S]×RIz 7→R

∣∣∣∣∣∣∣
y(s,z) = y0(s) +

∑
i∈I

yi(s)zi

for some y0, yi ∈A(C), i∈ I


for a subset I ⊆ [Iz]. As in distributionally robust optimization, the information set I of the recourse

decision y(·, ·) taken at a certain stage tracks the indices of revealed uncertainties up to that stage,

and y(·, ·) is affinely adaptive to those components of z residing in the information set. Along with

the collection C of MECE events, the information set captures the non-anticipativity of y(·, ·).

Armed with the event-wise recourse adaptations, we propose the following RSO framework:

min sup
P∈F

EP
[
a>0 (s̃, z̃)w+ b>0 (s̃, z̃)x(s̃) + c>0 (s̃)y(s̃, z̃) + d0(s̃, z̃)

]
s.t. a>m(s,z)w+ b>m(s,z)x(s) + c>m(s)y(s,z) + dm(s,z)≤ 0 ∀z ∈Zs, s∈ [S], m∈M1

sup
P∈F

EP
[
a>m(s̃, z̃)w+ b>m(s̃, z̃)x(s̃) + c>m(s̃)y(s̃, z̃) + dm(s̃, z̃)

]
≤ 0 ∀m∈M2

(w,x(s),y0(s), . . . ,yIz(s))∈Xs ∀s∈ [S]

xj ∈A(Cjx) ∀j ∈ [Jx]

yj ∈ Ā(Cjy,Ijy) ∀j ∈ [Jy],

(2)

for given Cjx, j ∈ [Jx] and Cjy, j ∈ [Jy] of MECE events, and information index sets Ijy , j ∈ [Jy].

The RSO model (2) includes both static and adaptive multi-stage problems in its presentation: it

is static when there is only one MECE event of scenarios and no event-wise affine adaptation, and

is dynamic otherwise; it spans across more than two stages when there are uncertainty realizations

in more than one stage and recourse decisions taken after each time of uncertainty realization.

It has been well known that affine recourse adaptation can be extended to multi-stage problems,

by restricting a recourse decision to be selectively dependent on a subset of uncertain parameters

which would have been realized when that recourse decision has to be made. When there is only

one scenario (i.e., S = 1) and no soft constraint (i.e., without the second collection of constraints),

the RSO model (2) would recover the general multi-stage problems in Bertsimas et al. (2019b,

§ 3.2). We refer interested readers to Bertsimas and Thiele (2006), See and Sim (2010), Delage

and Iancu (2015) and references therein for more details and examples of modeling and optimizing

multi-stage problems using distributionally robust optimization.
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For a given scenario s∈ [S], the objective function and constraints in the RSO model are bi-affine

functions of the underlying decision variable r(s)∈RJr . Hence, we can write

a>m(s,z)w+ b>m(s,z)x(s) + c>m(s)y(s,z) + dm(s,z), r>(s)Gm(s)z+hm(s) ∀m∈ [M ]∪{0},

for parametersGm(s)∈RJr×Iz and hm(s)∈R. This relation would enable us to reformulate the hard

constraints into deterministic constraint systems using standard robust optimization techniques

for the tractable representation of an uncertainty-affected linear inequality; see Theorem 1.3.4 and

Chapter 1 in Ben-Tal et al. (2009).

The expansive RSO model can be reformulated as a deterministic optimization problem using

our developed algebraic modeling toolbox, RSOME. Before we could do so, we will next introduce

the ambiguity set for the objective function and constraints.

4. Event-Wise Ambiguity Set

We propose the event-wise ambiguity set, which is representable in the format

F =


P∈P0

(
RIz × [S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(z̃, s̃)∼ P

EP [z̃ | s̃∈ Ek]∈Qk ∀k ∈ [K]

P [z̃ ∈Zs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = ps ∀s∈ [S]

for some p∈P


(3)

for given events Ek, k ∈ [K] and given closed and convex sets Zs, s∈ [S], Qk, k ∈ [K], and P ⊆ {p∈
RS++ |

∑
s∈[S] ps = 1}. The random variable s̃ indicates a set of random scenarios whose realization

probabilities may be uncertain. For different scenarios, the support of the random variable z̃ could

be different, while conditioning on the event realization, the expecation of z̃ can also differ. Quite

notably, we can effectively determine the worst-case expectation over the event-wise ambiguity set

F by solving a classical robust optimization problem.

Theorem 1. Assuming the Slater’s condition holds, the worst-case expectation

sup
P∈F

EP
[
r>(s̃)Gm(s̃)z̃+hm(s̃)

]
is equivalent to the optimal value of the following classical robust optimization problem:

inf γ

s.t. γ ≥α>p+
∑
k∈[K]

β>k µk ∀p∈P, µk∑
s∈Ek

ps
∈Qk, k ∈ [K]

αs +
∑
k∈Ks

β>k z ≥ r>(s)Gm(s)z+hm(s) ∀z ∈Zs, s∈ [S]

γ ∈R, α∈RS, βk ∈RIz ∀k ∈ [K],

(4)

where for each s∈ [S], Ks = {k ∈ [K] | s∈ Ek}.
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The tractability of problem (4) depends on the uncertainty sets Zs, s∈ [S],Qk, k ∈ [k] and P. For

practicability, these sets are confined to tractable conic representable sets such as polyhedral or

second-order conic representable ones. By using an algebraic modeling toolbox such as RSOME,

the classical robust optimization problem is automatically transformed to a polynomial sized linear

or second-order conic optimization problem, which can be solved by commercial solvers such as

CPLEX, Gurobi and MOSEK. In terms of generalization, the event-wise ambiguity encompasses

a wide spectrum of existing ambiguity sets in its intuitive expression and may inspire new ones

based on machine learning techniques.

Uncertain Discrete Distribution

The event-wise ambiguity set can naturally specify uncertain discrete distributions as follows:

F =


P∈P0

(
RIz × [S]

)
∣∣∣∣∣∣∣∣∣∣∣

(z̃, s̃)∼ P

P [z̃ ∈Zs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = ps ∀s∈ [S]

for some p∈P


,

where each Zs = {ẑs} is a singleton set. As proposed in Ben-Tal et al. (2013), φ-divergences can be

used to characterize the uncertainty set P of discrete probability distributions. If the uncertainty

set P is a singleton set, i.e., p is fixed, then the corresponding ambiguity set would also shrinkage

to a singleton set containing only the known discrete distribution 1
S

∑
s∈[S] psδẑs .

Generalized-Moment Ambiguity Set

Wiesemann et al. (2014) formally introduce the following generalized-moment ambiguity set that

is based on a convex function φ :RIu 7→RIv :

G =


P∈P0

(
RIu
)
∣∣∣∣∣∣∣∣∣∣∣

ũ∼ P

EP [ũ]∈Q

EP [φ(ũ)]≤σ

P [ũ∈ U ] = 1


.

The generalized moments characterized by the convex function φ can provide useful statistical

characterizations of the uncertainty ũ, including (co)-variance, absolute deviation, semi-variance,

and expected utility, among others. Based on the lifting and projection theorem (Wiesemann et al.

2014 , Theorem 5), it holds that ΠũF = G, where

F =


P∈P0

(
RIu+Iv ×{1}

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((ũ, ṽ), s̃)∼ P

EP [ũ | s̃= 1]∈Q

EP [ṽ | s̃= 1]≤σ

P [(ũ, ṽ)∈Z | s̃= 1] = 1

P [s̃= 1] = 1


,
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where Z = {(ũ, ṽ) | u ∈ U ,v ≥ φ(u)}. That is to say, a generalized-moment ambiguity set can be

mapped into an event-wise ambiguity set with only one scenario, i.e., S = 1.

Wasserstein Ambiguity Set

We consider a data-driven setting as in Mohajerin Esfahani and Kuhn (2018) on the design of

a Wasserstein ambiguity set centered around the empirical distribution P̂ = 1
S

∑
s∈[S] δûs . Given

a tractable distance metric ρ : RIu × RIu 7→ [0,+∞), the Wasserstein metric (a.k.a Kantorovich-

Rubinstein metric) between any two distributions P and P̂ is defined via an optimization problem:

dW (P, P̂), inf
Q∈Q(P,P̂)

EQ
[
ρ(ũ, ũ†)

]
, (5)

where ũ∼ P, ũ† ∼ P̂, and Q(P, P̂) is the set of all joint probability distrbutions on RIu ×RIu with

marginals P and P̂. The Wasserstein ambiguity set is then defined by

GW (θ) =

P∈P0(U)

∣∣∣∣∣∣ ũ∼ P

dW (P, P̂)≤ θ

 , (6)

which is a ball of radius θ≥ 0 around P̂. Interestingly, we can provide a new lifted representation

of the Wasserstein ambiguity set in the format of an event-wise ambiguity set.

FW (θ) =


P∈P0

(
RIu+1× [S]

)
∣∣∣∣∣∣∣∣∣∣∣

((ũ, ṽ), s̃)∼ P

EP [ṽ | s̃∈ [S]]≤ θ

P [(ũ, ṽ)∈Zs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = 1
S

∀s∈ [S]


, (7)

where the primary random variable ũ and the auxiliary random variable ṽ jointly reside in lifted

support sets Zs = {(u, v) |u∈ U , v≥ ρ(u, ûs)}, s∈ [S] for different scenarios.

Theorem 2. The Wasserstein ambiguity set GW (θ) is equivalent to the marginal distribution of

ũ under P, for all P∈FW (θ). That is, for all θ≥ 0, GW (θ) = ΠũFW (θ).

Such a lifted representation can be extended to type-p Wasserstein metric for any p∈ [1,∞] and

the result about the type-∞ originates from Bertsimas et al. (2018); see Appendix C.

Mixture-Distribution Ambiguity Set

We can use the event-wise ambiguity set to specify a mixture distribution as proposed in Hanasu-

santo et al. (2015), which is useful, for example, in modeling ambiguous multi-modal distributions.

F =


P∈P0

(
RIu+Iv × [S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((ũ, ṽ), s̃)∼ P

EP [ũ | s̃= s]∈Qs ∀s∈ [S]

EP [ṽ | s̃= s]≤σs ∀s∈ [S]

P [(ũ, ṽ)∈Zs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = ps ∀s∈ [S]


, (8)
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where for each s ∈ [S], Zs = {(ũ, ṽ) | u ∈ Us,v ≥ φ(u)}. Note that any distribution P ∈ F can be

written as P =
∑

s∈[S] psPs, where each mixture component Ps is an ambiguous distribution with

support Us and moments EPs [ũ]∈Qs and EPs [φ(ũ)]≤σs. Hanasusanto et al. (2015) have used the

mixture-distribution ambiguity set to model the uncertain demand in the textile apparel industry,

which is known for the multimodality and ambiguity.

K-means Ambiguity Set

We can incorporate clustering techniques in machine learning to construct event-wise ambiguity

sets directly from data. Given N historical observations û1, . . . , ûN for the primary random variable

ũ, we can partition the support set U into S clusters Us, s ∈ [S] using the K-means clustering

(MacQueen et al. 1967, Dubes and Jain 1988), which gives centroids µ̂s, s ∈ [S] of these clusters

(see an illustration in Figure 3). Associated with each cluster, we can determine its support set by

Us = {u∈ U | 2u>(µ̂r− µ̂s)≤ µ̂>r µ̂r− µ̂>s µ̂s ∀r ∈ [S]},

where the hyperplane 2u>(µ̂r − µ̂s) = µ̂>r µ̂r − µ̂>s µ̂s corresponds to the perpendicular bisector of

ûs and ûr. Let I denote the indicator function. The weight of a cluster is

p̂s =
1

N

∑
n∈[N ]

I[ûn ∈ Us]

and the parameters associated with the convex generalized moments are

σ̂s =
1

p̂sN

∑
n∈[N ]

I[ûn ∈ Us]φ(ûn).

The corresponding K-means ambiguity set is a special mixture-distribution ambiguity set in the

form (8) with cluster-wise estimates Qs = {µ̂s}, ps = p̂s, σs = σ̂s, s∈ [S]. To account for uncertainty

in these estimates, we can further specify uncertainty sets for them.

We refer interested readers to a recent work by Perakis et al. (2018) of using data to construct

the K-means ambiguity set to address a joint pricing and production problem. In a simpler example

presented in Appendix F, we study a three-period portfolio management problem to show how a

two-layer K-means ambiguity set can be constructed directly from historical returns. We show that

complex RSO models can be effectively formulated with the help of RSOME. A wealth of portfolio

literature based on the stochastic programming approach can also address the non-anticipativity

of recourse decisions by using cluster heuristics that group samples into different bundles (see, e.g.,

Bogentoft et al. 2001, Hibiki 2006 and reference therein). We acknowledge that further empirical

studies should be done to evaluate and compare their performance in practice, which would benefit

from the algebraic modeling package, RSOME in implementing different RSO models.
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Figure 3 K-means clustering. The distance from a point to its corresponding centroid is not larger than the distance

from it to any other centroid. The boundary of a cluster is determined by the boundary of the support

set (solid lines) and the perpendicular bisectors of its centroid and centroids of other clusters (dash lines).

Side-Information Ambiguity Set

Recently, Hao et al. (2019) give a novel interpretation of the event-wise ambiguity set to incorporate

side information. Suppose that the uncertainty of the primary random variable ũ is strongly asso-

ciated with some uncertain side information (i.e., covariates), represented by an auxiliary random

variable ṽ, and collectively, one accesses to the data (û1, v̂1), · · · , (ûN , v̂N). Such side information

can be captured in the event-wise ambiguity set by grouping the primary random variable ũ based

on the side information ṽ. In particular, a broad range of machine learning techniques, including

classification and regression trees, can separate v̂i, i ∈ [N ] into S scenarios. Correspondingly, one

could partition ûi, i ∈ [N ] into S scenarios and specify the statistical information of each scenario

(see the example in Figure 4). In the original attempt of incorporating side information, Hao et al.

(2019) use the weather information as side information to characterize the uncertain demands

of taxis and apply multivariate regression tree to obtain the scenarios. By doing so, the authors

achieve significant improvement in taxis allocation under demand uncertainty.

5. Modeling Examples

The RSO framework is expansive and encompasses scenario-tree based stochastic linear optimiza-

tion and distributionally robust optimization models. Although it is based on expectations of

bi-affine functions, it can also provide a tight characterization of the worst-case expectations of

some classes of quadratic functions known in the literature, including the seminal works of Ben-

Tal and Nemirovski (1998) and Tütüncü and Koenig (2004), and extend them to include discrete

scenarios (Appendix B). We next provide several examples in our framework, including optimizing

over the Hurwicz criterion and models which have both discrete and continuous recourse decisions
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Figure 4 Realizations v̂n ∈ R2, n ∈ [N ] of the auxiliary random variable are separated into 2 groups (black and

white). Correspondingly, realizations ûn ∈ R3, n ∈ [N ] of the primary random variable are grouped into

2 scenarios (black and white). The empirical information of these two groups can be different.

and where the uncertainty is characterized using the Wasserstein ambiguity set as well as the K-

means ambiguity set (Appendix F)—both are directly constructed from data. We show that an

algebraic modeling toolbox such as RSOME could greatly facilitate the implementation without

worrying about the tedious reformulation.

Hurwicz Criterion

Hurwicz (1951) is arguably first to propose a decision criterion that articulates the tradeoff between

pessimistic and optimistic objectives, which under distributional ambiguity can be formulated as

(1−ϕ) sup
P∈F

EP [f(w, ũ, s̃)] +ϕ inf
P∈F

EP [f(w, ũ, s̃)] ,

where the cost function f(w,u, s) depends on the here-and-now decision w, and it is typically

convex in u for given w ∈X and scenario s∈ [S]. Here ϕ∈ [0,1] is the level of optimism, with ϕ= 0

(ϕ= 1) being the most pessimistic (optimistic) perception of the objective value. In order to obtain

a computationally tractable model, we often consider the most pessimistic objective (i.e., ϕ= 0)

because the best-case expectation for the most optimistic objective (i.e., ϕ= 1) is typically non-

convex in its decision w. Quite notably, there is a class of ambiguity sets for which the best-case

expectation would also be tractable.

Proposition 1. Consider an event-wise ambiguity set F in (3) such that for any P ∈ F , it

satisfies EP[ũ | s̃ = s] = µs and P[s̃ = s] = ps with known µs and ps for all s ∈ [S]. Then for any

function g(u, s) :RIu × [S] 7→R that is convex in u for a given s∈ [S], we have

inf
P∈F

EP [g(ũ, s̃)] =
∑
s∈[S]

psg(µs, s).
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Proof. The proposition follows immediately from Jensen’s inequality. �

The mixture-distribution ambiguity set with singleton setsQs, s∈ [S] and the K-means ambiguity

set fit in this class, for which we can optimize over the Hurwicz criterion

min
w∈X

(1−ϕ) sup
P∈F

EP [f(w, ũ, s̃)] +ϕ
∑
s∈[S]

psf(w,µs, s)


by formulating via the RSO framework. Note that it would also be possible to account for scenarios

with uncertain probabilities vector p= (ps)s∈[S] ⊆P, as long as the uncertainty set P is a polytope

with modest number of extreme points, pe, e∈ [E]. In such circumstances, we would solve

min
e∈[E]

min
w∈X

(1−ϕ) sup
P∈F

EP [f(w, ũ, s̃)] +ϕ
∑
s∈[S]

pesf(w,µs, s)

 .

Expectation of Convex and Piecewise Affine Functions

Expectation of convex and piecewise affine functions are commonly encountered in modeling risk

aversion based on the utility (Gilboa and Schmeidler 1989) or risk measure including the shortfall

risk measure (Föllmer and Schied 2002) and the optimized certainty equivalent (Ben-Tal and

Teboulle 2007). We show that by simply introducing a recourse decision y(·, ·), we can achieve an

equivalent formulation under the RSO framework.

Theorem 3. The worst-case expectation

sup
P∈F

EP

[
max
`∈[L]

{
r>(s̃)G`(s̃)z̃+h`(s̃)

}]
(9)

for a finite index set [L], is equivalent to the following problem

min sup
P∈F

EP [y(s̃, z̃)]

s.t. y(s,z)≥ r>(s)G`(s)z+h`(s) ∀z ∈Zs, s∈ [S], `∈ [L]

y ∈ Ā(C̄, [Iz]),

(10)

where the collection C̄ , {{s} | s∈ [S]} consists of singleton MECE events.

Expected Utility with Mean-Covariance Ambiguity Sets

Consider the mean-covariance ambiguity set that commonly appears in portfolio management

G(µ,Σ) =

P∈P0

(
RIu
) ∣∣∣∣∣∣∣∣

ũ∼ P

EP[ũ] =µ

EP[(ũ−µ)(ũ−µ)>] = Σ

 .
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Here the Iu-dimensional random variable ũ can be a scalar or a vector and refers to the random

return(s) of the risky asset(s). For any utility function U : R 7→R, Popescu (2007) has shown that

the robust expected utility of the random weighted sum w>ũ satisfies:

inf
P∈G(µ,Σ)

EP[U(w>ũ)] = inf
P∈G(w>µ,w>Σw)

EP[U(ũ)]. (11)

This property enables Natarajan et al. (2010) to obtain an attractive computationally tractable

second-order cone reformulation when U is concave piecewise affine, which is surprising as a direct

duality approach would result in a positive semidefinite program that is much harder to solve. We

next recover this result using the RSO framework to obtain the second-order cone reformulation.

Theorem 4. Given a concave piecewise affine utility function U(u) = min`∈[L] {g`u+h`}, the

robust expected utility inf
P∈G(µ,Σ)

EP[U(w>ũ)] is equivalent to

max inf
P∈F

EP[y(ũ, ṽ)]

s.t. y(u, v)≤ g`(ru+w>µ) +h` ∀(u, v)∈Z, `∈ [L]

r≥
√
w>Σw

r ∈R, y ∈ Ā({1},{1,2}),

where the ambiguity set

F =

P∈P0

(
R2
) ∣∣∣∣∣∣∣∣

(ũ, ṽ)∼ P

EP[ũ] = 0, EP[ṽ]≤ 1

P[(ũ, ṽ)∈Z] = 1


has only one scenario (i.e., S = 1) and takes a support set Z = {(u, v)∈R2 | v≥ u2}.

Expectation of Saddle Functions

The RSO model is primary based on a linear optimization framework, where the objective func-

tion and soft constraints are bilinear with respect to the underlying decision variable r(s) and the

random variable z̃. With auxiliary decisions and auxiliary random variables, we can also consider

saddle functions that are convex with respect to the decision variables and concave with respect

to the random variables (see, Ben-Tal et al. 2015). Observe that unlike earlier robust and distribu-

tionally robust optimization models, the random variable mappings in (1) include affine relations

involving the auxiliary random variable, ṽ, which is embedded in z̃. This generality allows us to

extend the objective function and soft constraints to saddle functions under the RSO framework.

We consider a saddle function f(r(s),u, s) such that for a given scenario s, it is jointly convex

with respect to the decision r(s) ∈ Xs for any fixed u ∈ Us and jointly concave with respect to

u∈ Us for any fixed r(s)∈Xs as follows:

f(r(s),u, s), ξ>(r(s), s)ζ(u, s) =
∑
`∈[Iv ]

ξ`(r(s), s)ζ`(u, s). (12)
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Here for a given scenario s and the corresponding partition of indices [Iv] =Ls1 ∪Ls2 ∪Ls3 ∪Ls4:

• ξ`(r(s), s) is nonnegative and convex in r(s) and ζ`(u, s) is nonnegative and concave in u,

for `∈Ls1;

• ξ`(r(s), s) is nonnegative and affine in r(s) and ζ`(u, s) is concave in u, for `∈Ls2;

• ξ`(r(s), s) is convex in r(s) and ζ`(u, s) is nonnegative and affine in u, for `∈Ls3;

• ξ`(r(s), s) is affine in r(s) and ζ`(u, s) is affine in u, for `∈Ls4.

Theorem 5. The worst-case expectation sup
P∈G

EP [f(r(s̃), ũ, s̃)] for the ambiguity set

G =


P∈P0

(
RIu × [S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ, s̃)∼ P

EP [ũ | s̃∈ Ek]∈Qk ∀k ∈ [K]

P [ũ∈ Us | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = ps ∀s∈ [S]

for some p∈P


,

is the same as
min sup

P∈F
EP[r̄>(s̃)ṽ]

s.t. r̄`(s)≥ ξ`(r(s), s) ∀`∈Ls1 ∪Ls3, s∈ [S]

r̄`(s) = ξ`(r(s), s) ∀`∈Ls2 ∪Ls4, s∈ [S]

r̄(s)∈RIv ∀s∈ [S],

(13)

for the lifted event-wise ambiguity set

F =


P∈P0

(
RIu+Iv × [S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((ũ, ṽ), s̃)∼ P

EP [ũ | s̃∈ Ek]∈Qk ∀k ∈ [K]

P [(ũ, ṽ)∈Zs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = ps ∀s∈ [S]

for some p∈P


(14)

with lifted support sets

Zs =

(u,v)∈RIu+Iv

∣∣∣∣∣∣∣∣
u∈ Us
v` ≤ ζ`(u, s) ∀`∈Ls1 ∪Ls2
v` = ζ`(u, s) ∀`∈Ls3 ∪Ls4

 ∀s∈ [S].

Two-Stage Problem with Wasserstein Ambiguity Sets

Optimization models based on the Wasserstein ambiguity set have recently attracted considerable

interests from both stochastic programming and robust optimization communities. While most of

the existing models are static, dynamic models with the Wasserstein ambiguity set are scarce due

to limited solution approaches. We next demonstrate that the RSO framework provides a tractable
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approximation for two-stage linear optimization problems with the Wasserstein ambiguity set (6),

which has the potential to serve the modeling of multi-stage dynamic problems.

In particular, we consider the following second-stage problem given the here-and-now decision w

and the realization u of the underlying primary random variable ũ.

f(w,u) = min c>0 y

s.t. a>` (u)w+ c>` y≥ d`(u) ∀`∈ [L]

y ∈RJy ,

(15)

where similar to the random variable mappings in (1), for each `th constraint, a` and d` are affine

mappings of the realization of ũ. For any here-and-now decision w, we approximate its worst-case

expected second-stage cost sup
P∈FW (θ)

EP[f(w, ũ)] under the Wasserstein ambiguity set through

min sup
P∈FW (θ)

EP
[
c>0 y(s̃, z̃)

]
s.t. a>` (u)w+ c>` y(s,z)≥ d`(u) ∀z ∈Zs, s∈ [S], `∈ [L]

yj ∈ Ā(Cj,Ij) ∀j ∈ [Jy],

(16)

where z̃ = (ũ, ṽ) and where the collections Cj, j ∈ [Jy] of MECE events and information index sets

Ij ⊆ [Iu + 1], j ∈ [Jy] jointly control how the recourse decision y(·, ·) adapts to (ũ, ṽ) and s̃. The

optimal w can then be selected by minimizing the sum of the deterministic first-stage cost c>0 w

and the worst-case expected second-stage cost (16). In Appendix D, we report the performance

of this conservative approximation in comparison with (i) the computationally expensive exact

approach and (ii) a state-of-the-art approximation scheme by Hanasusanto and Kuhn (2018).

The event-wise adaptation can be extended to address two-stage problems with the type-∞

Wasserstein metric, and interestingly, it would coincide with the multi-policy approximation (MPA)

proposed by Bertsimas et al. (2019a). We refer to Bertsimas et al. (2018) for using generalization

of MPA to address multi-stage problems with the type-∞ Wasserstein ambiguity set.

6. Conclusion

The RSO model unifies an important class of scenario-tree based stochastic linear optimization

problems and a number of distributionally robust optimization models (based on convex generalized

moments, mixture distribution, φ-divergence, Wasserstein metric, etc.) that have been considered

in isolation to date. As we have demonstrated, the RSO model also opens up to new approaches

including those inspired by machine learning techniques. Based on such a unified framework for

generic modeling and optimization under uncertainty, we firmly believe that algebraic modeling

package such as RSOME would help us in navigating and evaluating the plethora of approaches to
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address a wide variety of uncertainty-affected optimization problems in practice. We refer readers

to the perpetually updated manual of RSOME for more examples that can be modeled in RSO.
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Bertsimas, Dimitris, Aurélie Thiele. 2006. A robust optimization approach to inventory theory. Operations

Research 54(1) 150–168.

Birge, John R, Francois Louveaux. 2011. Introduction to stochastic programming . Springer.

Bogentoft, Erik, H Edwin Romeijn, Stanislav Uryasev. 2001. Asset/liability management for pension funds

using CVaR constraints. The Journal of Risk Finance 3(1) 57–71.

Danzig, George B. 1955. Linear programming under uncertainty. Management Science 1(3-4) 197–206.

Delage, Erick, Dan A Iancu. 2015. Robust multistage decision making. The Operations Research Revolution.

INFORMS, 20–46.

Delage, Erick, Yinyu Ye. 2010. Distributionally robust optimization under moment uncertainty with appli-

cation to data-driven problems. Operations Research 58(3) 595–612.

Dubes, Richard C, Anil K Jain. 1988. Algorithms for clustering data. Prentice Hall.
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A. Proofs

Proof of Theorem 1. Let µ= (µk)k∈[K] and Q= {µ |µk ∈Qk ∀k ∈ [K]}. We can re-express

λ∗ = sup
P∈F

EP
[
r>(s̃)Gm(s̃)z̃+hm(s̃)

]
by λ∗ = sup(p,µ)∈P×Q λ(p,µ), where given (p,µ)∈P ×Q, we define an ambiguity set

F(p,µ) =


P∈P0

(
RIz × [S]

)
∣∣∣∣∣∣∣∣∣∣∣

(z̃, s̃)∼ P

EP [z̃ | s̃∈ Ek] =µk ∀k ∈ [K]

P [z̃ ∈Zs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = ps ∀s∈ [S]


and correspondingly the worst-case expectation

λ(p,µ) = sup
P∈F(p,µ)

EP
[
r>(s̃)Gm(s̃)z̃+hm(s̃)

]
.

Using the law of total probability, we can construct the joint distribution P of (z̃, s̃) from the

marginal distribution P̂ of s̃ supported on [S] and the conditional distributions Ps of z̃ given s̃= s,

s∈ [S]. In this way, we can reformulate λ(p,µ) as

λ(p,µ) = sup
∑
s∈[S]

psEPs
[
r>(s̃)Gm(s̃)z̃+hm(s̃)

]
s.t.

∑
s∈Ek

psEPs [z̃] = qkµk ∀k ∈ [K]

Ps [z̃ ∈Zs] = 1 ∀s∈ [S]

with qk =
∑

s∈Ek
ps, k ∈ [K]. We can express the dual of λ(p,µ) as

λ1(p,µ) = inf
∑
s∈[S]

αs +
∑
k∈[K]

qkβ
>
k µk

s.t. αs + ps
∑
k∈Ks

β>k z ≥ ps(r>(s)Gm(s)z+hm(s)) ∀z ∈Zs, s∈ [S]

α∈RS, βk ∈RIz ∀k ∈ [K]

= inf α>p+
∑
k∈[K]

qkβ
>
k µk

s.t. αs +
∑
k∈Ks

β>k z ≥ r>(s)Gm(s)z+hm(s) ∀z ∈Zs, s∈ [S]

α∈RS, βk ∈RIz ∀k ∈ [K],

where the second equality follows from for all s ∈ [S], first changing variable from αs to psαs and

then dividing both sides of the constraint by ps, which is allowed since p∈P is strictly positive.

By weak duality, λ(p,µ)≤ λ1(p,µ). By the general min-max theorem, we further observe that

λ∗1 = sup
(p,µ)∈P×Q

λ1(p,µ)≤ λ∗2,
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where

λ∗2 = inf γ

s.t. γ ≥α>p+
∑
k∈[K]

qkβ
>
k µk ∀p∈P, µk ∈Qk, k ∈ [K]

αs +
∑
k∈Ks

β>k z ≥ r>(s)Gm(s)z+hm(s) ∀z ∈Zs, s∈ [S]

γ ∈R, α∈RS, βk ∈RIz ∀k ∈ [K].

(17)

Due to the presence of products of uncertain variables (e.g., qkµk), problem (17) is nonconvex.

Since p> 0 (and hence qk > 0), an equivalent convex representation can be obtained by changing

variables in problem (17) from qkµk to µk for all k ∈ [K], which turns out to be problem (4).

Assuming the conic representation of the following system

∑
s∈Ek

ξs∑
s∈Ek

τs
∈Qk ∀k ∈ [K]

ξs
τs
∈Zs ∀s∈ [S]

τ ∈P

(18)

satisfies the Slater’s condition (see Theorem 1.4.2 in Ben-Tal and Nemirovski 2001), one can estab-

lish strong duality, i.e., λ∗ = λ∗1 = λ∗2 and show that problem (4) is solvable (Bertsimas et al. 2019b,

Theorem 1). �

Proof of Theorem 2. We consider an ambiguity set without the auxiliary random variable ṽ

ḠW (θ) =


P∈P0

(
RIu × [S]

)
∣∣∣∣∣∣∣∣∣∣∣

(ũ, s̃)∼ P

EP [ρ(ũ, ûs̃) | s̃∈ [S]]≤ θ

P [ũ∈ U | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = 1
S

∀s∈ [S]


. (19)

Since this ambiguity set satisfies Π(ũ,s̃)FW (θ) = ḠW (θ) for all θ ≥ 0, thus it is sufficient to prove

ΠũḠW (θ) = GW (θ) for all θ≥ 0.

To this end, we first prove GW (θ)⊆ΠũḠW (θ). Consider ũ∼ P for some P∈ GW (θ). By definition

of the Wasserstein ambiguity set GW (θ), there exists a joint distribution Q ∈ P(P, P̂) of (ũ, ũ†)

such that ΠũQ = P, Πũ†Q = P̂, and EQ [ρ(ũ, ũ†)]≤ θ. Since we can construct Q from the marginal

distribution P̂ of ũ† supported on {û1, . . . , ûS} and the conditional distributions Ps of ũ, given

the realization of ũ† is ûs, s ∈ [S], we have (ũ, ũ†) ∼ 1
S

∑
s∈[S] Ps ⊗ δûs . We can then construct

a distribution Q′ ∈ P0(RIu × [S]) for the random variable (ũ, s̃) ∼ Q′ via Q′ = 1
S

∑
s∈[S] Ps ⊗ δs.

Observe that Q′ ∈ ḠW (θ), hence GW (θ)⊆ΠũḠW (θ).
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To prove ΠũḠW (θ)⊆GW (θ), we fix any P ∈ ḠW (θ) and we write its projection over ũ as ΠũP =

1
S

∑
s∈[S] Ps, where Ps is the conditional distribution of z̃ given the outcome of the random scenario

is s. We can then construct a joint distribution Q= 1
S

∑
s∈[S] Ps⊗ δûs of (ũ, ũ†) that satisfies

EQ
[
ρ(ũ, ũ†)

]
=

1

S

∑
s∈[S]

EPs [ρ(ũ, ûs)] =EP [ρ(ũ, ûs̃) | s̃∈ [S]]≤ θ.

Hence, ΠũP∈ GW (θ), which gives ΠũḠW (θ)⊆GW (θ) to conclude GW (θ) = ΠũḠW (θ). �

Proof of Theorem 3. Previous derivations in the proof of Theorem 1 implies that (i) the worst-case

expectation (9) is equivalent to the following problem

inf γ

s.t. γ ≥α>p+
∑
k∈[K]

β>k µk ∀p∈P, µk∑
s∈Ek

ps
∈Qk, k ∈ [K]

αs +
∑
k∈Ks

β>k z ≥ r>(s)G`(s)z+h`(s) ∀z ∈Zs, s∈ [S], `∈ [L]

γ ∈R, α∈RS, βk ∈RIz ∀k ∈ [K];

(20)

and (ii) problem (10) is equivalent to

inf γ

s.t. γ ≥α>p+
∑
k∈[K]

β>k µk ∀p∈P, µk∑
s∈Ek

ps
∈Qk, k ∈ [K]

αs +
∑
k∈Ks

β>k z ≥ y(s,z) ∀z ∈Zs, s∈ [S]

y(s,z)≥ r>(s)G`(s)z+h`(s) ∀z ∈Zs, s∈ [S], `∈ [L]

y ∈ Ā(C̄, [Iz])

γ ∈R, α∈RS, βk ∈RIz ∀k ∈ [K].

(21)

It is then sufficient to construct a feasible solution to problem (21) from a feasible solution to

problem (20) such that the constructive solution yields the same objective. Indeed, given a feasible

solution (γ†,α†, (β†k)k∈[K]) to problem (20), we can construct such a desired solution via:

γ = γ†, α=α†, βk =β†k ∀k ∈ [K], y(s,z) = α†s +
∑
k∈Ks

(β†k)
>z ∀s∈ [S],

for which the recourse decision y(·, ·)∈ Ā(C̄, [Iz]). �

Proof of Theorem 4. Using the result of Popescu (2007), we first show that

inf
P∈G(w>µ,w>Σw)

EP[U(ũ)] = sup
r

{
inf
P∈F

EP[U(rũ+w>µ)]
∣∣∣ r≥√w′Σw}.

By duality, we have

inf
P∈G(w>µ,w>Σw)

EP[U(ũ)] = inf
P∈G(0,w>Σw)

EP[U(ũ+w>µ)]

= sup
α,β1,β2

{
α+w>Σw ·β2

∣∣ α+β1u+β2u
2 ≤U(u+w>µ) ∀u

}
.
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Note that it requires β2 ≤ 0 for the above problem to be feasible, as otherwise the constraint would

be violated for some sufficiently large u. Hence, we can further rewrite this problem into

sup
α,β1,β2,r

{
α+ r2β2

∣∣∣∣∣ α+β1u+β2u
2 ≤U(u+w>µ) ∀u

r≥
√
w>Σw

}
= sup

r

{
inf

P∈G(0,r2)
EP[U(ũ+w>µ)]

∣∣∣ r≥√w>Σw
}

= sup
r

{
inf

P∈G(0,1)
EP[U(rũ+w>µ)]

∣∣∣ r≥√w>Σw
}

= sup
α,β1,β2,r

{
α+β2

∣∣∣∣∣ α+β1u+β2u
2 ≤U(ru+w>µ) ∀u

r≥
√
w>Σw

}

= sup
α,β1,β2,r

{
α+β2

∣∣∣∣∣ α+β1u+β2v≤U(ru+w>µ) ∀(u, v) : v≥ u2

β2 ≤ 0, r≥
√
w>Σw

}
= sup

r

{
inf
P∈F

EP[U(rũ+w>µ)]
∣∣∣ r≥√w>Σw

}
.

The result then follows by applying Theorem 3. �

Proof of Theorem 5. Observe that for any feasible recourse decision r̄(·) to problem (13), we have

sup
P∈F

EP[r̄>(s̃)ṽ] = sup
P∈G

EP[r̄>(s̃)ζ(ũ, s̃)].

In addition, the optimal r̄?(·) to problem (13) satisfies r̄?` (s) = ξ`(r(s), s) for all `∈ [Iv] and s∈ [S].

Therefore, our claim holds. �

B. Worst-Case Expectation of Quadratic Functions

The RSO framework can be used to provide a tight characterization of the worst-case expectation

of some quadratic functions that are known in the literature and extend them to include discrete

scenarios. Let SI be the space of symmetric matrices in RI×I . Given X,Y ∈ SI , we denote by

X � Y (resp., X � Y ) to represent X − Y is positive semidefinite (resp., definite), and denote

by X • Y as the trace inner product of X,Y . Special matrices and vectors of the appropriate

dimension include O, I, and 0, which respectively correspond to the zero matrix, the identity

matrix, and the zero vector.

Bi-Convex-Quadratic Function

We explore the following bi-convex-quadratic function as an extension of Ben-Tal and Nemirovski

(1998) to include discrete scenarios:

g(r(s),u, s),u>A>(r(s), s)A(r(s), s)u+ 2u>b(r(s), s) + c(r(s), s),
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where given a scenario s, A(r(s), s),b(r(s), s), c(r(s), s) are affine mappings of r(s). The event-wise

ambiguity set is given by

G =


P∈P0

(
RIu × [S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ũ, s̃)∼ P

EP
[(

1
ũ

)(
1
ũ

)> ∣∣ s̃∈ Ek]∈Qk ∀k ∈ [K]

P
[(

1
ũ

)(
1
ũ

)> ∈ Us ∣∣ s̃= s
]

= 1 ∀s∈ [S]

P[s̃= s] = ps ∀s∈ [S]

for some p∈P


.

The support set Us is general enough to capture the ubiquitous uncertainty set {u | u>Λsu≤ 1}
parameterized by some Λs � 0, for which we only need to define

Us =

{
U ∈ SIu+1

∣∣∣∣∣ U •
(
−1 0>

0 Λs

)
≤ 0

}
. (22)

Theorem 6. The worst-case expectation

sup
P∈G

EP [g(r(s̃), ũ, s̃)] (23)

is bounded from above by

min sup
P∈F

EP[R(s̃) • Z̃]

s.t.


R(s)−

(
1 b>(r(s), s)

b(r(s), s) O

) (
0 0>

0 A>(r(s), s)

)
(

0 0>

0 A(r(s), s)

)
I

�O ∀s∈ [S]

R(s)∈ SIu+1 ∀s∈ [S],

(24)

where the lifted event-wise ambiguity set

F =


P∈P0

(
SIu+1× [S]

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Z̃, s̃)∼ P

EP[Z̃ | s̃∈ Ek]∈Qk ∀k ∈ [K]

P[Z̃ ∈Zs | s̃= s] = 1 ∀s∈ [S]

P[s̃= s] = ps ∀s∈ [S]

for some p∈P


takes lifted support sets Zs = {Z ∈ Us |Z �O, [Z]1,1 = 1}, s∈ [S]. Moreover, the bound is tight for

ellipsoidal support sets defined in (22).

Proof of Theorem 6. We note that

g(r(s),u, s) =

(
1 b>(r(s), s)

b(r(s), s) A>(r(s), s)A(r(s), s)

)
•

((
1

u

)(
1

u

)>)
.
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By Schur complement, each positive semidefinite constraint of problem (24) is equivalent to

R(s)�

(
1 b>(r(s), s)

b(r(s), s) A>(r(s), s)A(r(s), s)

)
.

Since Z ∈Zs is positive semidefinite, an optimal R(s) would be

R(s) =

(
1 b>(r(s), s)

b(r(s), s) A>(r(s), s)A(r(s), s)

)
.

Observe that the ambiguity set F coincides with G if every support set Zs is replaced by Z̄s = {Z ∈
Us |Z �O, [Z]1,1 = 1, rank(Z) = 1}, which however, would lead to a harder problem to solve due

to the rank constraint. Since Z̄s ⊆Zs, we obtain the conservative upper bound.

We next show that the bound is tight for ellipsoidal uncertainty sets defined in (22). After using

Theorem 1 to reformulate problem (23), we need to deal with the following robust counterpart.

αs ≥Φs •

((
1

u

)(
1

u

)>)
∀u>Λsu≤ 1

for some αs ∈R,Φs ∈ SIu+1, which by S-lemma, is equivalent to(
αs 0>

0 0

)
+ δs

(
−1 0>

0 Λs

)
�Φs,

for some δs ≥ 0. On the other hand, the robust counterpart in the reformulation of problem (24)

αs ≥Φs •Z ∀Z •
(
−1 0>

0 Λs

)
≤ 0, [Z]1,1 = 1, Z �O

is equivalent to (
τs 0>

0 0

)
+ δs

(
−1 0>

0 Λs

)
�Φs,

for some τs ≤ αs and δs ≥ 0, for which we can replace τs with αs without affecting its feasibility.

This establishes the desired tight bound for ellipsoidal uncertainty sets. �

Bi-Conic-Quadratic Function

We can also extend the bi-conic-quadratic function considered in Ben-Tal and Nemirovski (1998)

to include discrete scenarios as follows:

h(r(s),u, s), ‖A(r(s), s)u+ b(r(s), s)‖2,

where given s, A(r(s), s),b(r(s), s) are affine mappings of r(s). The event-wise ambiguity set takes

G =


P∈P0

(
RIu × [S]

)
∣∣∣∣∣∣∣∣∣∣∣

(ũ, s̃)∼ P

P
[(

1
ũ

)(
1
ũ

)> ∈ Us ∣∣ s̃= s
]

= 1 ∀s∈ [S]

P[s̃= s] = ps ∀s∈ [S]

for some p∈P


.
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Theorem 7. The worst-case expectation

sup
P∈G

EP [h(r(s̃), ũ, s̃)]

is bounded from above by

min sup
P∈F

EP[x(s̃)]

s.t. x(s)≥R(s) •Z ∀Z ∈Zs, s∈ [S] R(s)

(
b>(r(s), s)

A>(r(s), s)

)
(b(r(s), s) A(r(s), s)) x(s)I

�O ∀s∈ [S]

R(s)∈ SIu+1 ∀s∈ [S]

x∈A(C̄),

(25)

where C̄ , {{s} | s∈ [S]} and where the lifted event-wise ambiguity set

F =


P∈P0

(
SIu+1× [S]

)
∣∣∣∣∣∣∣∣∣∣∣

(Z̃, s̃)∼ P

P[Z̃ ∈Zs | s̃= s] = 1 ∀s∈ [S]

P[s̃= s] = ps ∀s∈ [S]

for some p∈P


takes lifted support sets Zs = {Z ∈ Us |Z �O, [Z]1,1 = 1}, s∈ [S]. Moreover, the bound is tight for

ellipsoidal uncertainty sets defined in (22).

Proof of Theorem 7. Since the ambiguity set does not contain any expectation constraint, we

can obtain a tractable reformulation by replacing h(r(s),u, s) with a recourse variable x(s) and

imposing the following constraint (see reformulation in Theorem 1):

x2(s)≥ h2(r(s),u, s) ∀
(

1

u

)(
1

u

)>
∈ Us, s∈ [S].

We next discuss how such a constraint can be specified in problem (25). Observe that

h2(r(s),u, s) =

((
b>(r(s), s)

A>(r(s), s)

)
(b(r(s), s) A(r(s), s))

)
•

((
1

u

)(
1

u

)>)
.

By Schur complement, each positive semidefinite constraint of problem (24) is equivalent to

x(s)R(s)�

(
b>(r(s), s)

A>(r(s), s)

)
(b(r(s), s) A(r(s), s)).

Since Z ∈Zs is positive semidefinite and x(s)≥ 0, an optimal R(s) would be

x(s)R(s) =

(
b>(r(s), s)

A>(r(s), s)

)
(b(r(s), s) A(r(s), s)).

The rest of the proof follows similarly as in the proof of Theorem 6. �
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Affine-Quadractic Function

As an extension of Tütüncü and Koenig (2004), we consider a saddle function that is convex

quadratic with respect to the decision variable and that is affine with respect to z:

g(r(s),z, s), r>(s)H(s,z)r(s) + r>(s)G(s)z+h(s), (26)

where given a scenario s, H(s,z) is an affine mapping of z and Zs ⊆ {z |H(z, s)�O}. Introducing

auxiliary variables R(s) ∈ SIv , s ∈ [S] and using the Schur complement, the robust expectation

sup
P∈F

EP [g(r(s̃), z̃, s̃)] is the same as

min sup
P∈F

EP
[
R(s̃) •H(s̃, z̃) + r>(s̃)G(s̃)z̃+h(s̃)

]
s.t.

(
1 r>(s)

r(s) R(s)

)
� 0 ∀s∈ [S]

R(s)∈ SIv ∀s∈ [S],

which falls within the RSO framework.

C. Representation of Wasserstein Ambiguity Sets

For p∈ [1,∞), the type-p Wasserstein metric between two distributions P and P̂ for a given distance

metric ρ is defined as

dpW (P, P̂), inf
Q∈Q(P,P̂)

(
EQ
[
ρp(ũ, ũ†)

]) 1
p

.

Correspondingly, the type-p Wasserstein ambiguity set is defined by

GpW (θ) =

P∈P0(U)

∣∣∣∣∣∣ ũ∼ P

dpW (P, P̂)≤ θ

 .

Consider another distance metric ρp and the corresponding type-1 Wasserstein metric d̄W (P, P̂)

between P and P̂ which is determined by

d̄W (P, P̂), inf
Q∈Q(P,P̂)

EQ
[
ρp(ũ, ũ†)

]
.

We then have

GpW (θ) =

P∈P0(U)

∣∣∣∣∣∣ ũ∼ P

d̄W (P, P̂)≤ θp

 .

Equivalently, for p∈ [1,∞), the type-p Wasserstein ambiguity set of radius θ can be re-interpreted

as a type-1 Wasserstein ambiguity set of radius θp where the type-1 Wasserstein metric between P

and P̂ is d̄W (P, P̂). From this perspective, we can directly use Theorem 2 to represent the type-p

Wasserstein ambiguity set GpW (θ) in the format of an event-wise ambiguity set.
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For p=∞, the type-∞ Wasserstein metric between two distributions P and P̂ is defined as

d∞W (P, P̂), inf
Q∈Q(P,P̂)

Q-ess sup
U×U

ρ(ũ, ũ†),

where the essential supremum of the joint distribution Q is defined by

Q-ess sup
U×U

ρ(ũ, ũ†) = inf{M : Q
[
ρ(ũ− ũ†)>M

]
= 0}.

Bertsimas et al. (2018) show that a distribution P in the type-∞ Wasserstein ambiguity set

G∞W (θ) =

P∈P0(U)

∣∣∣∣∣∣ ũ∼ P

d∞W (P, P̂)≤ θ


is indeed a mixture distribution P = 1

S

∑
s∈[S] Ps consisting of ambiguous components such that

for every s ∈ [S], Ps ∈ P0(U) and Ps[ρ(ũ, ûs) ≤ θ] = 1. Therefore, one can represent the type-∞

Wasserstein ambiguity set using the following mixture-distribution ambiguity set

F∞W (θ) =

P∈P0

(
RIu × [S]

) ∣∣∣∣∣∣∣∣
(ũ, s̃)∼ P

P [ũ∈ U , ρ(ũ, ûs)≤ θ | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = 1
S

∀s∈ [S]

 ,

which is an event-wise ambiguity set satisfying G∞W (θ) = ΠũF∞W (θ) for all θ≥ 0.

In recent independent works, based on a generalized ‘primal-worst equals dual-best’ duality

scheme, Kuhn et al. (2019) and Zhen et al. (2019) provide convex reformulations for many distri-

butionally robust optimization problems with type-p Wasserstein metric for p∈ [1,∞].

D. Computational Experiments with Wasserstein Ambiguity Sets

We focus on two-stage linear optimization problems with the data-driven Wasserstein ambiguity

set of type-1 in the form (7), given some past observations û1, . . . , ûS of the uncertainty.

Multi-Item Newsvendor Problem

We consider a multi-item newsvendor problem with Iu different items. For each item i (i∈ [Iu]), its

unit selling price and ordering cost are denoted by pi and ci, respectively. Under a total budget d,

the decision maker decides the ordering quantity wi of each item before its random demand ũi is

observed. Once the demand realizes, the selling quantity of each item is decided as min{wi, ui}.

The decision maker maximizes the worst-case expected operating revenue by solving

max inf
P∈FW (θ)

EP

[ ∑
i∈[Iu]

pimin{wi, ũi}

]
s.t. c>w= d, w≥ 0,
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which can be recast as a minimization problem,

min −p>w+ sup
P∈FW (θ)

EP

[ ∑
i∈[Iu]

pi(wi− ũi)+
]

s.t. c>w= d, w≥ 0.

(27)

In the objective function,
∑

i∈[Iu] pi(wi−ui)
+ = maxJ⊆[Iu]

∑
j∈J pj(wj−uj) is convex and piecewise

affine involving 2Iu pieces. Thus by Theorem 3, problem (27) can be exactly solved by

λ? = min −p>w+ sup
P∈FW (θ)

EP [y(s̃, z̃)]

s.t. y(s,z)≥
∑
j∈J

pj(wj −uj) ∀z ∈Zs, s∈ [S], J ⊆ [Iu]

c>w= d, w≥ 0

y ∈ Ā(C̄, [Iu + 1]),

(28)

where we introduce a recourse variable y(·, ·) following the event-wise affine adaptation with the

collection C̄ , {{s} | s∈ [S]}. Problem size of this exact approach however, increases exponentially

in the number of items. Alternatively, we can obtain an upper bound by solving an RSO problem:

λ= min −p>x+ sup
P∈FW (θ)

EP [p>y(s̃, z̃)]

s.t. y(s,z)≥ 0 ∀z ∈Zs, s∈ [S]

y(s,z)≥w−u ∀z ∈Zs, s∈ [S]

c>w= d, w≥ 0

yi ∈ Ā(C,I) ∀i∈ [Iu],

(29)

where we control how the recourse decision y(·, ·) adapts to (ũ, ṽ) and s̃ through choosing the

collection C of MECE events and the information index set I.

We consider Iu ∈ {5,7} and S ∈ {5,10,20,50}. The random demand belongs to a support set

U = [0, ū], and we use the Euclidean norm ‖ · ‖2 as the distance metric. In each instance, we

randomly generate the upper bound ū from a uniform distribution on [0,100]Iu . Subsequently, past

observations are randomly generated from the uniform distribution on [0, ū]. We set ci = 1, i∈ [Iu]

and b= 50Iu, and we generate p from a uniform distribution on [0,5]Iu . For different choices of θ,

we run 100 random instances and compare the performance of different cases of event-wise recourse

adaptation against the exact approach:

• case 1: y(·, ·) adapts on ũ, ṽ, s̃, i.e., C = {{s} | s∈ [S]} and I = [Iu + 1];

• case 2: y(·, ·) adapts only on ũ, ṽ, i.e., C = {{1, . . . , S}} and I = [Iu + 1];

• case 3: y(·, ·) adapts only on ũ, i.e., C = {{1, . . . , S}} and I = [Iu].

Case 1 corresponds to the full event-wise affine adaptation. We turn off the event-wise adaptation

in case 2, while in case 3 we further deprive the recourse decision y(·, ·) of the affine adaptation on
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θ

1 2 5 10 20

S

5 < 0.1 2.0 8.7 < 0.1 3.4 8.8 0.1 5.4 9.2 0.2 7.0 9.9 0.5 9.4 10.5

10 < 0.1 4.5 11.6 < 0.1 6.4 11.9 0.2 8.6 12.3 0.3 11.0 12.7 1.0 12.6 13.0

20 < 0.1 4.8 5.7 < 0.1 5.3 5.8 < 0.1 5.6 6.1 0.1 6.4 6.5 0.3 7.9 7.9

50 < 0.1 6.8 7.9 < 0.1 7.4 8.0 < 0.1 8.1 8.4 0.1 9.2 9.2 0.3 11.3 11.3

Table 1 5 items: 90-th percentile optimality gaps (in %) of case 1 (left), case 2 (middle), and case 3 (right).

θ

1 2 5 10 20

S

5 < 0.1 1.3 8.9 0.1 2.3 9.0 0.2 3.8 9.3 0.3 5.6 9.8 0.6 8.2 10.5

10 < 0.1 2.5 6.2 0.1 3.5 6.2 0.1 5.0 6.4 0.2 6.0 6.6 0.5 7.6 7.7

20 < 0.1 4.8 6.7 0.1 5.7 6.8 0.1 6.7 6.9 0.2 7.3 7.3 0.6 7.9 7.9

50 0.1 5.5 6.1 0.1 5.8 6.1 0.2 6.3 6.3 0.2 6.3 6.6 0.5 7.6 7.6

Table 2 7 items: 90-th percentile optimality gaps (in %) of case 1 (left), case 2 (middle), and case 3 (right).

the auxiliary random variable ṽ. For each case, we consider the following relative gap between the

objective value using the event-wise recourse adaptation and the exact optimal objective value:

λ?−λ
λ?

× 100%.

Results for Iu = 5 and Iu = 7 are summarized in Table 1 and Table 2, respectively. With (i)

the notion of event-wise adaptation and (ii) the inclusion of auxiliary random variable ṽ, the full

event-wise affine adaptation could provide a reasonably good conservative approximation to the

exact approach; while excluding either (i) or (ii) may lead to a more conservative approximation.

We evaluate the scalability of the full event-wise affine adaptation (case 1), the affine adaptation

without event-wise dependence (case 2), and the exact approach, by comparing their computation

times and limits for different pairs of problem sizes. For the exact approach, the computer runs out

of memory when the number of items exceeds 10 and the number of samples exceeds 5 (see Table 3),

which is not practically favorable. In contrast, we are able to obtain a conservative solution via the

full event-wise affine adaptation with modest computational effort. Quite interestingly, the event-

wise adaptation that plays the key role in delivering the less conservative approximation seems to

require only a little extra computational effort (see Table 4).
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(S, Iu)

(5, 5) (10, 5) (20, 5) (50, 5) (100, 5) (200, 5) (5, 10)

0.1 1.1 0.2 0.5 1.3 9.4 9.8

Table 3 Computation times of the exact approach. We report only those (S, Iu) pairs for which the exact

approach were solved.

Iu

5 10 15 20 25 30

S

5 < 0.1 < 0.1 0.2 0.5 0.7 1.1

10 < 0.1 0.1 0.3 0.6 2.4 3.7

20 < 0.1 0.3 0.7 1.3 2.2 3.8

50 0.2 0.8 1.8 3.7 6.8 10.9

100 0.4 1.8 5.2 10.3 17.8 31.0

200 0.5 2.0 5.5 11.0 19.1 32.8

300 0.8 3.1 7.8 16.5 32.3 49.6

500 1.4 5.7 16.6 36.6 — —

800 2.5 14.8 — — — —

Iu

5 10 15 20 25 30

S

5 < 0.1 0.2 0.2 0.2 0.4 0.5

10 < 0.1 < 0.1 0.2 0.3 0.7 2.3

20 < 0.1 0.1 0.3 0.6 1.3 1.9

50 0.1 0.4 0.8 1.9 3.0 4.4

100 0.2 1.1 2.7 5.1 9.2 10.5

200 0.4 1.7 5.2 15.8 30.7 25.3

300 0.8 3.2 8.6 14.2 36.1 48.4

500 1.1 5.3 13.8 — — —

800 4.3 13.8 — — — —

Table 4 Computation times and limits of the affine approximation without event-wise adaptation (left) and the

full event-wise affine adaptation (right). The symbol “—” indicates “out of memory”.

The following code segment shows how to implement the full event-wise affine adaptation for

the multi-item newsvendor problem with Wasserstein ambiguity sets in RSOME.

% I: number of items
% S: number of past observations
% theta: radius
% Gamma: total budget
% cost (price): cost (price) parameters
% ubar: upper bound of demand
% U = (u_1 , ..., u_S): past realizations

% Create RSOME model
model = rsome(’newsvendor ’);

% Define random variables
u = model.random; % random demand
v = model.random; % auxiliary random variable
P = model.ambiguity(S); % create ambiguity set
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% Define support sets for scenarios
for s = 1:S

P(s).suppset (0 <= u, u <= ubar , norm(u - U(:,s)) <= v);
end

% Define probabilities for scenarios
pr = P.prob;
P.probset(pr == 1/S);

% Define event -wise expectation
P.exptset(expect(u) <= theta);

% Declare Warsserstein ambiguity set
model.with(P);

% Define decision variables
w = model.decision(I,1);
y = model.decision(I,1);

% Define event -wise adaptation
for s = 1:S

y.evtadapt(s);
end

% Define affine adaptation
y.affadapt(u);
y.affadapt(v);

% Define objective function
model.min(-price ’*w - expect(price ’*y));

% Define constraints
model.append(y >= 0);
model.append(y >= w - u);
model.append(w >= 0);
model.append(cost ’*w == Gamma);

% Solution
model.solve;

Experiment of Hanasusanto and Kuhn (2018)

We benchmark the RSO model against a state-of-art approximation scheme proposed by Hanasu-

santo and Kuhn (2018). Particularly, we repeat their experiment using the same set-ups.

Consider the second-stage problem of the form

f(u) = min{e>y | y≥ 0,y≥Au− b}, (30)

where e is a vector of ones. The problem does not have any here-and-now decision w and assumes

that the random variable ũ resides in a box U = [0,1]Iu . Under the distance metric ρ(u,u†) =
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‖u−u†‖22, Hanasusanto and Kuhn (2018) have shown that the worst-case expectation

sup
P∈FW (θ)

EP [f(ũ)] (31)

amounts exactly to the optimal value of the following copositive program.

inf
1

S

∑
s∈[S]

αs + q>ψs−β‖ûs‖22 +
∑

`∈[Iu+Jy ]

φs`q
2
`

+βθ2

s.t.


βI +Q

>
diag(φs)Q −1

2
T
>−Q>diag(φs)W

> −βûs−
1

2
Q
>
ψs

−1

2
T −Wdiag(φs)Q Wdiag(φs)W

> 1

2
(Wφs−h)

−βû>s −
1

2
ψ>s Q

1

2
(Wφs−h)> αs

�Kcop O ∀s∈ [S]

α∈RS, β ∈R+, ψs,φs ∈RIu+Jy ∀s∈ [S].

(32)

Here, Kcop = {M ∈ SK |x>Mx≥ 0 ∀x≥ 0} is the copositive cone,

Q=

O
I

 , q=

 e

−e

 , T =

A
O

 , h=

−b
0

 , W =

W O

O − I

 with W =

I
I

 ,

and O, I, 0 and ei respectively correspond to the zero matrix, the identity matrix, the zero

vector and the i-th standard unit basis, all of which are of the appropriate dimension. Because the

copostive program (32) is generally intractable, Hanasusanto and Kuhn (2018) adopt a conservative

K0-approximation by replacing the copostive cone Kcop with

K0 = {M ∈ SK |M =P +N ,P �O,N ≥O} ⊆Kcop,

which leads problem (32) to a semidefinite program.

We run numerical tests for different pairs of the uncertainty dimension Iu and the sample size

S, and for each pair, we use the same set-ups as in Hanasusanto and Kuhn (2018) to generate

100 random instances. The Wasserstein radius is set to θ= 1/S. The dimension Jy of the recourse

decision is sampled uniformly at random from {1,2, . . . , dlog(Iu + 1)e}, A is sampled uniformly

from [0,1]Jy×Iu , and b is sampled uniformly from [0,e>A1:]×· · ·× [0,e>AJy :]. Here, A1: stands for

the first row of A and so forth. Lastly, we generate independent training samples from the uniform

distribution on [0,1]Iu . We evaluate the worst-case expectation (31) approximately by using (i) the

K0-approximation and (ii) the following full event-wise affine adaptation:

min sup
P∈FW (θ)

EP [e>y(s̃, z̃)]

s.t. y(s,z)≥ 0 ∀z ∈Zs, s∈ [S]

y(s,z)≥Au− b ∀z ∈Zs, s∈ [S]

yj ∈ Ā({{1}, . . . ,{S}}, [Iu + 1]) ∀j ∈ [Jy],
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Iu

1 2 4 8 16

S

5 0.3 < 0.1 0.3 < 0.1 0.3 < 0.1 0.5 < 0.1 2.3 < 0.1

10 0.4 < 0.1 0.4 < 0.1 0.5 < 0.1 0.9 < 0.1 5.1 < 0.1

20 0.6 < 0.1 0.7 < 0.1 0.8 < 0.1 1.8 < 0.1 11.6 < 0.1

40 1.1 < 0.1 1.3 < 0.1 1.6 < 0.1 3.5 < 0.1 23.1 0.1

80 2.3 < 0.1 2.5 < 0.1 3.2 < 0.1 7.8 0.1 51.1 0.1

160 4.5 < 0.1 5.1 < 0.1 7.0 0.1 18.0 0.2 118.0 0.3

320 9.2 0.1 10.8 0.1 15.5 0.2 45.4 0.3 281.5 0.6

640 19.7 0.1 26.9 0.2 43.9 0.3 141.5 1.0 684.3 2.3

Table 5 Computation times (in seconds) of K0-approximation (left) and event-wise affine adaptation (right).

where for each s∈ [S], Zs = {(u, v) |u∈ [0,1]Iu , v≥ ‖u− ûs‖22}.

Quite surprisingly, for all pairs of problem sizes, the solutions of both approximation approaches

coincide for all 100 randomly generated instances. Unfortunately, we are not able to give a formal

proof for this observation. Nevertheless, this observation supports that our proposed event-wise

affine adaptation delivers solutions with competitive approximation quality as the state-of-the-

art approximation scheme by Hanasusanto and Kuhn (2018). We report in Table 5 the average

computation times of both approaches. In terms of computation efficiency, the event-wise affine

adaptation outperforms because it leads to a second-order cone approximation to problem (32).

We note that the K0-approximation by Hanasusanto and Kuhn (2018) also works when the cost

vector of the second-stage problem (30) is affinely affected by the uncertainty, while our event-wise

affine adaptation does not. On the other hand, the event-wise affine adaptation works with more

general distance metrics and more general support sets that are not necessarily polyhedral (in the

current experiment, the support set is a box [0,1]Iu), while the K0-approximation does not.

E. Multi-Stage Stochastic Financial Planning Problem

We adopt a financial planning problem from Birge and Louveaux (2011) to illustrate how to

incorporate the scenario tree approach in the RSO framework.

At the beginning of the first stage in this multi-stage problem, the decision maker allocates the

wealth d into two possible investment types, stocks (S) and bonds (B). Eight possible scenarios

may occur, which corresponds to independent and equal likelihoods of having high returns of 1.25

for stocks and 1.14 for bonds, or low returns of 1.06 for stocks and 1.12 for bonds over subsequent
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Figure 5 Scenario tree of the financial planning problem.

stages (see Figure 5). Hence we can construct the following singleton ambiguity set of the known

discrete distribution of uncertain returns over all stages.

F =

P∈P0

(
R2×R2×R2× [S]

) ∣∣∣∣∣∣∣∣
(z̃1, z̃2, z̃3, s̃)∼ P

P [(z̃1, z̃2, z̃3)∈Zs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = 1
S

∀s∈ [S]

 ,

where S = 8 and the singleton support sets Zs = {(a1s,a2s,a3s)}, s ∈ [S] are determined by

a1s = (1.25,1.14) for s ∈ {1,2,3,4}, a2s = (1.25,1.14) for s ∈ {1,2,5,6}, a3s = (1.25,1.14) for s ∈

{1,3,5,7}, and ais = (1.06,1.12) otherwise.

The decision maker evaluates the difference between the final return r and a prescribed target

τ based on a concave and piecewise affine utility function that takes U(r − τ) = r − τ if r ≥ τ

and U(r− τ) = 4(r− τ) otherwise. The initial investment decisions w, made before the first stage

returns of stocks and bonds realize, must be indifferent among all eight scenarios. The rebalanced

investment decison x1, made after the first stage returns realize but before the second stage returns

realize, shall be indifferent among scenarios {1,2,3,4} and indifferent among scenarios {5,6,7,8}.

Similarly, x2 is indifferent between scenarios {1,2} as well as between scenarios {3,4}, {5,6}, and

{7,8}. Finally, the nonnegative auxiliary recourse decisions x and x, respectively standing for the

excess above or shortfall below the target, are adaptive to revealed uncertainties and thus can be
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different across the eight scenarios. In all, we can formulate the RSO model as follows:

max inf
P∈F

EP [x(s̃)− 4x(s̃)]

s.t. w1,w2 ≥ 0, w1 +w2 = d

x11(s) +x12(s)−z>1 w= 0 ∀z ∈Zs, s∈ [S]

x21(s) +x22(s)−z>2 x1(s) = 0 ∀z ∈Zs, s∈ [S]

z>3 x2(s)−x(s) +x(s) = τ ∀z ∈Zs, s∈ [S]

x11(s), x12(s), x21(s), x22(s), x(s), x(s)≥ 0 ∀s∈ [S]

x11, x12 ∈A({{1,2,3,4},{5,6,7,8}})

x21, x22 ∈A({{1,2},{3,4},{5,6},{7,8}})

x,x∈A({{1},{2},{3},{4},{5},{6},{7},{8}}).

F. Portfolio Management with K-means Adaptive Rebalancing

We consider a three-period portfolio allocation and rebalancing problem to minimize the investment

risk at the last period taking into account of transaction costs. At the beginning of the first period,

we decide the number of shares wi ≥ 0 of stock i∈ [Iu] to invest at price ai, incurring a transaction

cost biwi. The price of stock i in the second period is ã1i , ai(ũ
1
i +1), where ũ1

i is the corresponding

return. Subsequently, for each stock i, we rebalance its shares to xi ≥ 0, which incurs a transaction

cost bi|xi−wi|. In the last period, the price of stock i is ã2i , ai(ũ
2
i +1), where ũ2

i is the third period

return with respect to the first period price. The effective portfolio return at the last period, taking

into account of the total transaction costs, amounts to

w>ã1−w>a+x>ã2−x>ã1− b>(w+ |x−w|) =w>Aũ1 +x>A(ũ2− ũ1)− b>(w+ |x−w|),

where A= diag(a) and the operator | · | takes the absolute value component-wise.

Ideally, the rebalancing decision x should only depend on the realization of ũ1. However,

this would lead to an intractable problem. Instead, we propose an alternative K-means adaptive

approach, where the recourse decision x(s̃) depends on the random scenario s̃ that is associated

with the realization of ũ1. In particular, using the available historical returns {(û1
n, û

2
n)}n∈[N ], we

construct a two-layer K-means ambiguity set by first partitioning {û1
n}n∈[N ] into K1 clusters, each

of which we then further partition into K2 clusters based on a subset of {û2
n}n∈[N ] that are affiliated

with this specific first-layer cluster. As a result, we obtain a total number of S =K1K2 scenarios,

each of which corresponds to a unique cluster determined by the first and second layers; see an

illustration in Figure 2. For each of the first-layer cluster k ∈ [K1], we denote by Ek ⊆ [S] as the

set of scenarios associated with that cluster. Correspondingly, we define κ(s)∈ [K1] as the specific
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Figure 6 Two-layer K-means clustering. There are 3 clusters for {û1
n}n∈[N ] in the first layer, and a subset of

{û2
n}n∈[N ] affiliated with each of these clusters is further partitioned into 4 clusters in the second layer.

In total, we have 12 distinctive clusters.

first-layer cluster that the scenario s affiliates with. Observe that C = {Ek | k ∈ [K1]} is a collection

of MECE events. In this way, we obtain the two-layer K-means ambiguity set

F =



P∈P0

(
R2Iu+2Iv × [S]

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((ũ1, ũ2, ṽ1, ṽ2), s̃)∼ P

EP [ũ1 | s̃∈ Ek] = µ̂1
k ∀k ∈ [K1]

EP [ṽ1 | s̃∈ Ek]≤ σ̂1
k ∀k ∈ [K1]

EP [ũ2 | s̃= s] = µ̂2
s ∀s∈ [S]

EP [ṽ2 | s̃= s]≤ σ̂2
s ∀s∈ [S]

P [(ũ1, ũ2, ṽ1, ṽ2)∈Zs | s̃= s] = 1 ∀s∈ [S]

P [s̃= s] = ps ∀s∈ [S]



,

where for each s∈ [S], the cluster-wise support set is determined by

Zs = {(u1,u2,v1,v2) |u1 ∈ U1
κ(s),u

2 ∈ U2
s ,v

1 ≥φ(u1),v2 ≥φ(u2)}.

The objective function evaluates the worst-case conditional value-at-risk (CVaR) of the final

return at a pre-specified risk threshold ε∈ (0,1).

sup
P∈F

P-CVaRε

(
w>Aũ1 +x>(s̃)A(ũ2− ũ1)− b>(w+ |x(s̃)−w|)

)
,

which using now standard techniques, can be rewritten as

min
δ

δ+
1

ε
sup
P∈F

EP
[ (
x>(s̃)A(ũ1− ũ2)−w>Aũ1 + b>(w+ |x(s̃)−w|)− δ

)+ ]
.
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Using Theorem 3, we formulate the RSO model for this portfolio optimization problem as follows:

min δ+
1

ε
sup
P∈F

EP [y(s̃, z̃)]

s.t. y(s,z)≥ 0 ∀z ∈Zs, s∈ [S]

y(s,z)≥x>(s)A(u1−u2)−w>Au1 + b>(w+ x̄(s))− δ ∀z ∈Zs, s∈ [S]

x̄(s)≥x(s)−w ∀s∈ [S]

x̄(s)≥w−x(s) ∀s∈ [S]

b>x̄(s)≤ η ∀s∈ [S]

x(s)≥ 0 ∀s∈ [S]

a>w= d

w≥ 0

xi, x̄i ∈A(C) ∀i∈ [Iu]

y ∈ Ā(C̄, [2Iu + 2Iv])

where z̃ , (ũ1, ũ2, ṽ1, ṽ2) and C̄ , {{s} | s∈ [S]} consists of singleton MECE events. For simplicity,

we impose a limit η on the transaction cost to prohibit over rebalancing in the second period, and

d is the initial allocation budget. We next provide the sample code in RSOME to elucidate the

intuitive implementation of the RSO model via an algebraic modeling language.

Sample Code for K-means Adaptive Rebalancing

We assume Ek = {(k− 1)K2 + 1, . . . , kK2} ⊆ [S] for all k ∈ [K1]. Correspondingly, κ(s) = d s
K2
e for

all s∈ [S]. We take a convex function φ that specifies the mean absolute deviation of each random

return within a particular cluster. Hence for each s∈ [S], the cluster-wise support set is given by

Zs = {(u1,u2,v1,v2) |D1
κ(s)u

1 ≤ f 1
κ(s),D

2
su

2 ≤ f 2
s ,v

1 ≥ |u1− µ̂1
κ(s)|,v2 ≥ |u2− µ̂2

s|},

where each cluster is in fact a polyhedron and where | · | applies component-wise. The estimates

{D1
k}k∈[K1], {f 1

k}k∈[K1], {µ̂1
k}k∈[K1], {σ̂1

k}k∈[K1] are contained in MATLAB cells D1, f1, mu1, sigma1,

and similarly, {D2
s}s∈[S], {f 2

s }s∈[S], {µ̂2
s}s∈[S], {σ̂2

s}s∈[S] are contained in D2, f2, mu2, sigma2.

% I: number of stocks
% K1: number of first -layer clusters
% K2: number of second -layer clusters
% ps: probabilities of clusters
% epsilon: risk threshold
% a,b,d,eta: parameters

% Create RSOME model
model = rsome(’portfolio ’);

% Define random variables
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u = model.random(I,2); % random demand
v = model.random(I,2); % auxiliary random variable
P = model.ambiguity(K1*K2); % create ambiguity set

% Define support sets for scenarios
for s = 1:K1*K2

P(s).suppset(D1{ceil(s/K2)}*u(:,1) <= f1{ceil(s/K2)}, ...
D2{s}*u(:,2) <= f2{s}, ...
v(:,1) >= abs(u(:,1) - mu1{ceil(s/K2)}), ...
v(:,2) >= abs(u(:,2) - mu2{s}));

end

% Define probabilities for scenarios
pr = P.prob;
P.probset(pr == ps);

% Define event -wise expectation
for k = 1:K1

P((k-1)*K2+1:k*K2).exptset(expect(u(:,1)) == mu1{k}, ...
expect(v(:,1)) <= sigma1{k});

end
for s = 1:K1*K2

P(s).exptset(expect(u(:,2)) == mu2{s}, ...
expect(v(:,2)) <= sigma2{s});

end

% Declare K-means ambiguity set
model.with(P);

% Define decision variables
w = model.decision(I,1);
x = model.decision(I,1);
xbar = model.decision(I,1);
y = model.decision;
delta = model.decision;

% Define event -wise adaptation
for k = 1:K1

x.evtadapt ((k-1)*K2+1:k*K2);
xbar.evtadapt ((k-1)*K2+1:k*K2);

end
for s = 1:K1*K2

y.evtadapt(s);
end

% Define affine adaptation
y.affadapt(u);
y.affadapt(v);

% Define objective function
model.min(delta + expect ((1/ epsilon)*y));
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% Define constraints
model.append(y >= 0);
model.append(y >= x’*diag(a)*(u(:, 1)- u(:, 2)) ...

- w’*diag(a)*u(:, 1) + b’*(w + xbar) - delta);
model.append(xbar >= abs(x - w));
model.append(b’*xbar <= eta);
model.append(x >= 0);
model.append(a’*w == d);
model.append(w >= 0);

% Solution
model.solve;

G. Endnote

All mathematical programs in numerical experiments are solved using MOSEK on an Intel Core

(TM) @ 3.40 GHz with 8GB RAM. The semidefinite program related to the K0-approximation

is implemented using the CVX interface (Grant and Boyd 2008), while remaining models are

implemented using our developped algebraic modeling package RSOME (available at https://

www.rsomerso.com/).


