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Resource pooling strategies have been widely used in industry to match supply with demand. However,

effective implementation of these strategies can be challenging. Firms need to integrate the heterogeneous

service level requirements of different customers into the pooling model and allocate the resources (inventory

or capacity) appropriately in the most effective manner. The traditional analysis of inventory pooling, for

instance, considers the performance metric in a centralized system and does not address the associated

issue of inventory allocation. Using Blackwell’s Approachability Theorem, we derive a set of necessary and

sufficient conditions to relate the fill rate requirement of each customer to the resources needed in the system.

This provides a new approach to study the value of resource pooling in a system with differentiated service

requirements. Furthermore, we show that with “allocation flexibility” the amount of safety stock needed in a

system with independent and identically distributed demands does not grow with the number of customers

but instead diminishes to zero and eventually becomes negative as the number of customers grows sufficiently

large. This surprising result holds for all demand distributions with bounded first and second moments.
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1. Introduction

Sales in global retail e-commerce increased more than 20% worldwide in 2014–to almost $840

billion–and they are expected to hit close to $1 trillion by 2015, according to a recent Global

Retail E-Commerce Index published by A.T. Kearney. At the same time, both brick-and-mortar

and pure-play online retailers are competing to create omni-channel offerings that link online and

physical shopping. Brick-and-mortar leaders (such as Walmart and Nordstrom) continue to expand
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their online offerings, while online players (such as Amazon and Singapore’s Zalora) are setting up

physical retail channels.

However, the boom in online sales has led to a proliferation of digital distribution channels for the

manufacturers and suppliers. P&G China, for instance, employs four distinct business models in

the e-commerce market space: The Open Market Model supports sales through small distributors

on platforms such as TMall or Taobao; the Pure Player Model supports big distributors of P&G

products (such as JD.com, Yihaodian, Walmart, and Suning.com); the Bricks-and-Clicks Model

and the Direct-to-Customer Model support many of the other players in the e-commerce sector

in China. Many of these e-distributors do not have an extensive network of offline inventory to

support their online sales. Therefore, they rely on their manufacturers and suppliers to maintain

inventory in the supply network and use the technique of “drop shipping”1 to deliver goods to

customers. A key challenge for such suppliers and manufacturers (such as P&G) is to maintain

enough inventory required by each and every one of such e-distributors. This has led to a surge

in the size of inventory maintained at the warehouses of manufacturers. Instead of locking in a

fixed amount of inventory for each distributor in its warehouse, can the manufacturer execute a

type of virtual transshipment of inventory within its warehouse to support sales generated from

different e-distributors? Intuitively, this approach would enable the manufacturer to achieve higher

profitability with less stock by pooling the inventory for different e-distributors together. However,

how much can the manufacturer save using this approach?

To make the discussion concrete, we consider a manufacturer supporting a number of e-

distributors, each facing uncertain demand that is met by filling orders with the inventory available

to each e-distributor in a virtual inventory2 system (cf. Figure 1). Each e-distributor i fills orders by

drawing from a pile of inventory, say Qi, in the virtual inventory system to satisfy its own demand.

This is followed by a shipment from the manufacturer to the customer using drop shipping.

We note that with a dedicated pile of inventory in the system, each e-distributor can be guaran-

teed a certain service level, as a function of the inventory level. However, given the unpredictable

1 Drop shipping is a supply chain management technique in which the retailer does not keep goods in stock but
instead transfers customer orders and shipment details to a product supplier (either a manufacturer, distributor, or
wholesaler) who then ships the goods directly to the customer. A 2009 report from the American Society of Business
and Behavioral Sciences estimated that 22–33% of Internet retailers had adopted drop shipping as their primary
method of order fulfillment. Forrester reported in 2012 that 34% of the products sold on Amazon.com in 2011 came
from drop shipping, which accounted for orders worth $14.2 billion dollars (see e-Commerce Drop Shipping Standards
(e-DSS), http://www.e-dss.org/drop-shipping). The advantage of drop shipping is clear: Retailers can broaden their
product offerings to consumers and grow revenues while avoiding inventory-carrying costs and warehouse expenses.

2 A virtual inventory includes all of the products available to a company for its sales, whether on a retail floor, in a
back room or at a warehouse. When a customer requests a specific product which is available in the virtual inventory,
the company either retrieves the product or sends a request for the product to be shipped to the point of sales (say
the retail store) or customer’s house. Note that a virtual inventory lists not only all of the products currently in the
possession of the company, but also those the company can order from other sources and in turn sell to the customer
(Symes, 2011).
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nature of online sales, some of the inventory may not be utilized. Instead of maintaining an aggre-

gate inventory (the sum of all the dedicated inventories) in its warehouse, the manufacturer can

exploit its allocation flexibility to reduce the total inventory held for these e-distributors, while

maintaining the service levels delivered to each e-distributor (as with dedicated virtual inventories).

To this end, the manufacturer must address the following question:

What is the minimum amount of inventory needed at the warehouse, such that it can be

allocated to each e-distributor in a way that ensures each will get the required service level?

A common service level used in practice measures (and aims to increase) the fill rate, also called

type 2 service level, obtained by subtracting the proportion of lost sales from the orders received.

In other words, it measures the proportion of demand that can be fulfilled. When the manufacturer

is able to pool the demand from the e-distributors together and allocate inventory appropriately,

how would the safety stock level scale? Interestingly, we show in this paper that in a system with a

sufficiently large group of e-distributors serving independent and identically distributed demands,

as long as the fill rate requirement of each e-distributor is less than 1, the system does not need to

stock more than the mean demand (i.e., the sum of the expected demand from all the e-distributors)

to meet the fill rate obligations. This implies that there is actually no need to maintain any safety
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stock3 at all in the system! This adds further to the appeal of drop shipping for the suppliers in

the booming e-commerce supply chain operations.

The rest of this paper is organized as follows. We review the relevant literature in the next section.

In Section 3, we formally define the problem with a single pool of resources and develop our model

and solution. Numerical analysis is presented to analyze the performance and robustness of our

proposed policy. In Section 4, we analyze the safety stock phenomenon by exploring the structural

properties of our model. In Section 5, we extend our analysis to incorporate issues with (i) 100%

fill rate, (ii) minimal fill rate and (iii) finite-horizon fill rate requirements. Section 6 concludes the

paper and discusses potential future research directions.

2. Literature Review

Inventory pooling has been studied in many settings. Here, we restrict our attention to papers that

are closely related to ours. With regard to the newsvendor framework, researchers have mainly

focused on studying the effect of inventory pooling under different settings. For example, Eppen

(1979) was the first to demonstrate that the pooling effect (on cost) is always positive by aggregating

all the individual demands that are assumed to be independent and identically distributed (i.i.d.)

normal random variables. Van Mieghem and Rudi (2002) further analyzed the pooling effect in

the newsvendor network setting. Corbett and Rajaram (2006) generalized the results found by

Eppen (1979) to arbitrary demand distributions. Recently, Mak and Shen (2014) considered the

risk pooling benefit in a general two-tiered supply chain structure, where both the demand and

supply are stochastic. Other papers in this area have considered inventory pooling by integrating

new factors. For instance, Özer (2003) studied a periodic-review distribution system with advance

demand information and investigated the joint value of pooling demand and advance demand

information in the system. Swinney (2012) introduced strategic customer behavior into inventory

pooling and studied the impact of this feature on the benefit of inventory pooling.

The above traditional analysis derives a well-known “Square-Root Law”: The safety stock required

for a pool of customers with i.i.d. demands grows in the order of the square root of the number of

customers. This rule is derived with a centralized system, when the demands of all the customers

are pooled together. However, the traditional analysis is silent on how the centralized stock can

be allocated to affect the service level experienced by each customer, and how individual service

level requirement in turn affects the amount of safety stock needed. This is a core problem in the

management of distribution systems with a central depot serving multiple locations/warehouses.

In this paper, we explicitly address these gaps and associated issues.

3 Safety stock is defined as the stock exceeding average demand that is maintained in the system in order to achieve
a required service level.
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Eppen and Schrage (1981) used the classical multi-echelon, multi-period inventory model to

solve this problem, under the assumption that each warehouse has the same type 1 service level.

Federgruen and Zipkin (1984) derived a dynamic programming model to analyze a similar problem,

using a class of myopic allocation policies. They proved that a single-location inventory model could

be used to approximate this dynamic problem. Erkip et al. (1990) further generalized the model of

the depot-warehouse system to allow for demand correlation across warehouses and over time. They

derived a closed-form expression for the optimal safety stock by assuming that each warehouse

has the same coefficient of variation of demand. Benjaafar et al. (2008) studied a network system,

with multi-inventory locations and multi-demand sources. For reviews of this line of research,

please refer to Hopp et al. (1999), Caglar et al. (2004), and Özer and Xiong (2008). The focus of

the above-mentioned models is mainly on cost minimization, as they ignore service differentiation

concerns.

In this paper, we follow another stream of the literature, which classifies customers by their

service level requirements. The literature in this area has traditionally focused on type 1 service

level (stock out probability) requirements. Swaminathan and Srinivasan (1999) were the first to

consider the problem of a single firm serving multiple customers with an individual type 1 service

level requirement in a single period. Since the chance-constrained optimization model is hard to

solve without specifying an allocation policy, they reformulated the model (through partitioning

the space of the allocation outcomes) and proposed an algorithm to solve the problem. However, the

computational time increases exponentially with the numbers of customers. Zhang (2003) studied

the same problem as that in the paper by Swaminathan and Srinivasan (1999) and derived a closed-

form expression for the optimal stocking level, under the assumption that at most one customer

is not served. Recently, Alptekinoǧlu et al. (2013) presented a systematic study of this problem.

They identified the optimal policy to be of the priority type: Customers are served in accordance

to a priority list. To be precise, an allocation policy belongs to the class of priority policies if it

operates as follows: First, customers are ordered in a priority list; second, customer demands are

filled from the available inventory in a decreasing order of priority; the sequential allocation process

stops when all demands are filled or when the available inventory is exhausted, whichever occurs

first. In this paper, we adopt their classification of priority-based allocation policies.

We obtain our inspiration for this study from a different field–wireless communication and net-

works. Wireless networks refer to computer networks that are connected using standard protocols

but without cables of any kind. They have many applications, such as video streaming, online

gaming, VoIP, and so on. In the area of wireless communication and networks, the theory of qual-

ity of service (QoS) has been well studied. The requirements include end-to-end deadline delay

constraints, loss probabilities, and so forth. There are two core problems: One is deciding whether
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the demands of a set of clients with given QoS constraints can be fulfilled; and the other is to find

an optimal scheduling policy to meet the demands of all clients. There have been many studies

on scheduling polices for wireless networks with QoS constraints. For instance, Hou et al. (2009)

proposed an analytical framework for the problems; the authors used Blackwell’s Approachability

Theorem to prove the optimality of a proposed scheduling policy. Their fascinating paper paved the

way for an important line of research on the applications of Blackwell’s Approachability Theorem

to scheduling problems. Hou and Kumar (2009) further extended the model in order to handle

variable bit rate applications, including MPEG variable-bit-rate (VBR) video streaming, VoIP

with differentiated quality, and wireless sensor networks (WSN). For more applications of their

analytical framework, please refer to Hou and Kumar (2013).

Interestingly, the QoS requirements in wireless communication and networks are very similar to

the service level requirements in inventory pooling. To the best of our knowledge, this paper is

the first to exploit such connection in order to study the inventory pooling problem with fill rate

requirements from customers.

There is another stream of literature, which attempts to integrate the service differentiation issue

into the inventory rationing model by assuming that there are different priority classes among the

demands. Topkis (1968) first derived the optimal rationing policy to satisfy the requirements of

different customer classes over multiple time periods. The optimal policy is determined by a set

of critical rationing levels such that at a given time demand of a given class is to be satisfied only

if no demand of a higher priority class remains unsatisfied and the stock level does not fall below

the critical rationing level for that class at that time. Ha (1997a, 1997b) analyzed the optimal

rationing policy in a multi-class system with lost sales and backorders. He found that the optimal

rationing policy is of a threshold type. Other related articles can be found in de Véricourt et

al. (2001, 2002), Ding et al. (2006), and Yu et al. (2013). In several studies, researchers have

tried to integrate service-level constrained models with traditional cost-minimization models by

establishing some equivalence results (e.g., van Houtum and Zijm 2000, Boyaci and Gallego 2001,

Axsäter 2003, and Zhang and Sobel 2012.) In these papers, the authors have either assumed that

there is a single customer class or have studied backorder models, where unmet demands can be

backlogged. However, in our problem, there are multiple customer classes with differentiated service

level requirements and any unmet demand is assumed to be lost. Therefore, to the best of our

knowledge, there is no previous study mapping our problem to any traditional cost minimization

model.

In addition, there have been many studies on queuing control that discuss the scheduling policies

for allocating demand among multiple servers. Many of these policies are shown to be asymptoti-

cally optimal (e.g., Gans and van Ryzin 1997, Harrison 1998, and Maglaras 2000). The objectives
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in these models are mainly on minimizing the average system time, the delays that customers

experience, or related costs etc. These queuing systems can be viewed as make-to-order systems in

which no inventory is held in anticipation of future demand (Benjaafar et al. 2008).

3. Resource Pooling

In this section, we introduce our model and describe the main results. We first describe the single-

period problem, and then map it to an equivalent problem using stochastic linear programming

framework. We next develop a solution approach to the stochastic linear programming problem,

and then translate it into a solution approach for the single-period problem. We end this section

by presenting some numerical analysis on the benefit of pooling and allocation flexibility.

3.1. Model Formulation

We consider a system with one firm (manufacturer) and N customers (e-distributors), where the

firm supplies a common item to all the customers from a centralized pool of resources in a single

period. The resource can be viewed as inventory or various capacities in manufacturing or service

systems. Every customer faces a nonnegative random demand Xi (i= 1, . . . ,N) and their demand

distributions can be different and/or correlated. Throughout the paper, we use bold face letters to

denote vectors; for example, the demand vector is denoted as X := (X1, . . . ,XN). At the beginning

of a period, the firm needs to determine the resource capacity level in the common pool (denoted

as S) before knowing the actual demand from the customers. Next, the demand realizes for each

customer, who then orders from the firm. After learning the customers’ demand, the firm allocates

Di(X, S) units of resources to customer i, from its pre-configured capacity S. Let βi denote the fill

rate requirement of customer i, which measures the expected proportion of demand from customer

i that is fulfilled immediately. The allocation rule Di(X, S) must satisfy the following inequality:

E [Di(X, S)]≥ βiE [Xi] ∀i= 1, . . . ,N. (1)

For a single-period problem that we consider in this section, the above inequality basically says:

the expected proportion of demand from each and every customer i that is fulfilled immediately is

at least βi. While it cannot be measured directly, this imposes indirectly constraints on the class of

allocation rules that can be used, for a given level of capacity S. In existing inventory management

literature, Inequality (1) is also widely used to define expected fill rate (e.g., Chen et al. 2003, Choi

et al. 2004, Thomas 2005, Katok et al. 2008, and Bensoussan et al. 2010).

More formally, our problem can be formulated as the following Problem (P):

(P) min
S,D(X,S)

S

s.t. E [Di (X, S)]≥ βiE [Xi] , ∀i= 1, . . . ,N
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Di (X, S)≤Xi, ∀i= 1, . . . ,N, ∀X ∈Ω
N∑
i=1

Di (X, S)≤ S, ∀X ∈Ω

S ≥ 0

where Ω represents the set of all possible realizations for demand X. The second and third con-

straints in Problem (P) require that, under any demand realization, the amount of resources

allocated to customer i cannot exceed the demand quantity Xi and the total amount of resources

allocated cannot exceed the capacity level S. Note that there are two sets of decision variables for

this problem: capacity level S and allocation decisions D(X, S) = (D1(X, S), . . . ,DN(X, S)). This

problem is challenging, in particular because there are infinitely many ways to characterize the

allocation function D(X, S), which in turn has to be jointly optimized with the capacity decision

S. Next, we discuss some common heuristics and provide counterexamples to illustrate why they

fail to solve the problem.

A standard heuristic to estimate the minimum capacity level is to translate the problem into a

single centralized system that aggregates all the demands and service level requirements. Unfortu-

nately, the following example shows that this approach fails if the service level requirements are

different even when the demand distributions are i.i.d.

Example 1. Suppose the demand from two customers, denoted by X1 and X2, are independent

and take the values 50 or 150 with equal probability. The fill rate requirements are β1 = 0.9 and

β2 = 0.1, respectively. We need to serve the customers, using a single pool of resources with capacity

level S. One common approach is to pool the service requirements of the two customers together

and then divide this pooled service requirement by the pooled demand, leading to a pooled fill rate

requirement β0 as follows:

β0 :=
β1E [X1] +β2E [X2]

E [X1] + E [X2]
= 0.5.

To ensure that E[min{S,X1 +X2}]≥ β0E[X1 +X2], the minimum level required is S = 100, since

E [min{100,X1 +X2}] = 100 = 0.5 (E [X1] + E [X2]) . However, to achieve a fill rate of 0.9 for cus-

tomer 1 we need S = 130, since E [min{130,X1}] = 0.5× 50 + 0.5×130 = 90 = β1E [X1] . Therefore,

the right capacity profile for this problem is S = 130 but not S = 100 (as inferred from a pooled

system). We therefore cannot solve the problem with differentiated service requirements simply by

employing a system with a pooled service requirement derived this way.

Intuitively, the term βiE [Xi] can be viewed as the minimum amount of resources we need to

allocate for customer i. This can be seen by observing (1): In order to achieve fill rate βi, we need
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to have at least βiE [Xi] units of resource for customer i. Therefore, we can view
∑N

i=1 βiE[Xi] as

a simple lower bound for S needed to achieve the required fill rate βi for every customer i. The

next example shows that this simple lower bound for S is insufficient even when there is only one

customer in the system.

Example 2. Suppose the firm has one customer with demand X, which takes values 10 or 20

with equal probability. The fill rate requirement is β = 0.8. The simple lower bound gives a capacity

level of S = 12 (= βE [X]). Using this amount of resources, the expected amount allocated to the

customer is 11 (= 0.5×10 + 0.5×12), and the firm can guarantee a fill rate of only 0.73 (= 11/15),

not 0.8. For this example, using reasoning similar to that in Example 1, it is possible to verify

that the minimum resource capacity needed to deliver the required fill rate is 14, which is strictly

above the lower bound of 12. The issue here arises from the situations when the demand is small,

the allocated resources cannot exceed the demand quantity and thus any unused resources will

be wasted. Therefore, the firm has to raise the capacity level above the lower bound in order to

accommodate the situations with low resource utilization.

Note that another simple policy such as Di(X, S) = βiXi does not work either, because the total

resources available for allocation are bounded by S. In other words, none of the constraints in

Problem (P) is redundant and all of them have to be considered when we design the allocation

policies.

3.2. Priority Policies and the Stochastic Programming Approach

The standard approach to solve problem (P) is to translate this into a stochastic linear programming

problem, by sampling demand scenarios {X(t)}Tt=1 and solving the following model:

min
S,D(X(t),S)

S

s.t.

∑T

t=1 [Di (X(t), S)]

T
≥ βi

∑T

t=1 [Xi(t)]

T
, ∀i= 1, . . . ,N,

Di (X(t), S)≤Xi(t), ∀i= 1, . . . ,N,∀ t= 1, . . . , T,
N∑
i=1

Di (X(t), S)≤ S, ∀ t= 1, . . . , T,

S ≥ 0.

This approach focuses on finding a solution for S, but ignores the structure of the allocation policy

Di(·, ·), since the latter is usually computed with brute force from the mathematical programming

model.
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On the other hand, we can construct explicit allocation policy, say a priority rule, and then

determine the minimal S needed to deliver the required service with this allocation policy. Note

that, under any priority policy, at most one customer’s demand will be partially served. The rest

of the customers, depending on their priority in the list, either have their demands fully satisfied

or not served at all. The priority rules can be further differentiated by whether or not they make

use of actual demand information X when forming the priority list (cf. Alptekinoǧlu et al. 2013).

• Responsive priority policies: The priority list is constructed using the realized demand infor-

mation X. For instance, a greedy allocation policy based on a smaller-demand-filled-first rule is

responsive since the priority list is based on the actual demand realization.

• Anticipative priority policies: The priority list is constructed without using the demand real-

ization information. These lists may be either deterministic or randomly generated.

The novelty of our approach is that we explicitly construct the allocation rule in the stochastic

linear programming model. More specifically, for each demand sample, we construct a priority rule

and serve the customers accordingly, allocating the available resources to meet the full demand

from each customer in turn if possible. The priority rule we construct for the tth sample depends

on the demand realization and priority rules constructed for the previous (t− 1) samples, but not

on the demand realized in the current sample. Hence our priority rules are anticipative and not

responsive in nature. In this way, we can use the priority rules we constructed for the stochastic

linear programming model to compose a randomized priority policy for the single period problem

(P). The priority list is picked randomly from a set of priority lists generated by solving the above

stochastic linear programming problem. We formally describe our analysis in the rest of this section.

We consider the case when the allocation problem is solved using an infinite number of sample

scenarios, with each customer i facing a nonnegative random demand Xi(t)∼Xi in the tth sample

scenario. At every sampling epoch t, the firm has S units of resources to be allocated to the

customers; and the allocation happens after the demand is realized for each customer. We develop

an anticipative allocation policy D(t), for each t, with capacity level S, so that the long-run

proportion of demand met for customer i is at least βi, i.e.,

lim inf
T→∞

∑T

t=1Di (t)∑T

t=1Xi (t)
≥ βi, a.s. (2)

For notational convenience, we suppress the dependence on the history. Note that Di(t) is bounded

above by Xi(t). Furthermore, because the allocation mechanism can be history-dependent, the

existence of lim
T→∞

[∑T

t=1Di(t)/
∑T

t=1Xi(t)
]

is not assured. Therefore, we use the operator lim inf

and require βi to be exceeded almost surely when we model the stochastic linear programming

reformulation of Problem (P) using infinite number of samples:

(P′) min
S,D(t)

S
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s.t. lim inf
T→∞

∑T

t=1Di (t)∑T

t=1Xi (t)
≥ βi, a.s., ∀i= 1, . . . ,N

Di (t)≤Xi (t) , ∀t, ∀i= 1, . . . ,N
N∑
i=1

Di (t)≤ S, ∀t

S ≥ 0

To solve Problem (P′), we derive a set of necessary and sufficient conditions involving only X and

β for the capacity level S to be feasible when delivering the required service level performance.

Therefore, we can eliminate the allocation decisionsD(t) from Problem (P′) and solve it as a single-

variable optimization problem. By exploring the structural properties of the reformulated problem,

we are able to develop an efficient algorithm for Problem (P) and derive interesting managerial

insights for the original problem, which are elaborated in detail in Section 4.

3.3. Necessary and Sufficient Conditions

In this subsection, we first present the main result before getting into the logic and intuition behind

it. We relegate the proofs of all technical results in this paper to Appendix I.

Theorem 1. (1) Necessary conditions for the existence of a feasible allocation policy with capac-

ity S for Problem (P′) are:

∑
i∈U

βiE[Xi]≤E

[
min

{
S,
∑
i∈U

Xi

}]
, ∀U ⊆ {1,2, ...,N}. (3)

(2) Moreover, the largest-debt-first policy4 is feasible when (3) holds, to deliver the fill rate of βi to

each customer i, for problem (P ′)

Based on the first part of Theorem 1, we can simplify Problem (P′) to the following optimization

problem with a single decision variable, S:

(P′′) min
S

S

s.t.
∑
i∈U

βiE[Xi]≤E

[
min

{
S,
∑
i∈U

Xi

}]
, ∀U ⊆ {1,2, ...,N}

S ≥ 0

Let Ŝ denote the optimal solution to (P′′). Note that the right-hand side of (3) is monotone in

S. Therefore, the optimal capacity Ŝ can be found by bisection search, even for a large number

of customers. In Section 3.5 we will describe in detail the algorithm for computing the optimal

capacity level.

4 The largest-debt-first policy is defined in section 3.3.2.
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3.3.1. Necessary Conditions To see that (3) gives a set of necessary conditions, for any

given subset U of customers at any sampling epoch t, the amount of resources allocated to U

cannot exceed the total demand for all customers in U nor the total supply. That is, for any given

U ,
∑

i∈U Di(t)≤
∑

i∈U Xi(t) and
∑

i∈U Di(t)≤ S, which implies

∑
i∈U

Di (t)≤min

{
S,
∑
i∈U

Xi (t)

}
.

Then (3) can be obtained by taking the average over an infinite number of sampling epochs of both

sides of the above inequality and using the following lemma to complete the inequality.

Lemma 1. The fill rate of customer i is at least βi in (P′) if and only if the average amount of

resources allocated to customer i over an infinite number of sampling epochs is at least βiE[Xi],

i.e.,

lim inf
T→∞

∑T

t=1Di(t)

T
≥ βiE[Xi], a.s.

Note that the average amount of resources allocated to customer i over an infinite number of

sampling epochs is actually the expected amount of resources allocated to customer i in a single

period. Therefore, intuitively, an allocation policy meeting the customized service level requirement

of each and every customer is feasible as long as the expected allocated resources to each customer i

exceeds the average implied workload, βiE[Xi]. Lemma 1 allows us to translate the desired fill rates

into the desired properties of an allocation policy. Observe that the amount of resources allocated

to customer i increases as the required service level βi and expected demand E[Xi] increase.

3.3.2. Sufficient Conditions To prove that (3) is a sufficient condition, we construct an

anticipative allocation policy, called largest-debt-first policy (denoted by ADF ), that requires only

Ŝ units of resources to deliver the desired fill-rate of βi to customer i.

Define ri(t+1) to be the debt of customer i at the beginning of sampling epoch (t+1) as follows:

ri(t+ 1) := tβiE[Xi]−
t∑

s=1

Di(s). (4)

The term tβiE[Xi] represents the expected amount of resources needed in the first t sample scenarios

to attain a fill rate of βi from Lemma 1, and
∑t

s=1Di(s) is the actual amount received by customer

i for the first t samples. Therefore, the gap between these two terms can be viewed as the debt,

based on the required fill rates, that the firm owes each customer. Define

R(t) :=

(
β1E[X1(t)]−D1(t), β2E[X2(t)]−D2(t), . . . , βNE[XN(t)]−DN(t)

)
,
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as the debt accrued in the tth sample. Note that ri(t+1) =
∑t

s=1Ri(s). Furthermore, let ρ(t) denote

the vector of the average debts for the first t samples, i.e.,

ρ(t) :=
1

t

t∑
s=1

R(s) =
r(t+ 1)

t
.

We use the largest-debt-first priority policy ADF to allocate the resources: the priority list at

epoch (t+ 1) is formed according to the ordering of ρi(t), from largest to smallest. Note that this

is an anticipative policy since the demand information in epoch (t+ 1) is not used to construct

the priority list. Next, we show that, with capacity level Ŝ, the above scheduling policy satisfies

the service level requirements of all customers. This result relies on Blackwell’s Approachability

Theorem, which we briefly review next.

Definition 1. A set D ⊆ RN is approachable by the sequence ρ(t) if and only if there is an

allocation policy A(·) such that the sample-average debt ρ(t) can be made to stay in or as close

to D as we wish, for large enough t.

In 1956, Blackwell established the sufficient condition for approachability, as follows.

Theorem 2. [Blackwell (1956)] Suppose that D is any closed set, and for every α /∈ D there

is an action A(·) such that the mean debt E[R|A(·)] lies on the other side of the hyperplane H

passing through γ (the point in D closest to α) and perpendicular to the line segment αγ (see

Figure 2). Then D is approachable with the strategy A(·), where any arbitrary action can be taken

when α∈D.

Figure 2 Schematic Drawing for Blackwell’s Approachability Theorem

Intuitively, the classical approachability theorem can be explained as follows: If, whenever the

current sample-average debt vector is outside the set D there is a policy to move the updated

sample-average debt vector towards D, then we can say that the time-average debt vector will
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eventually get (arbitrarily close) to D. Indeed, if the debts are bounded, by the Hoeffding-Azuma

inequality together with the Borel-Cantelli lemma, the distance between ρ(t) and D converges to

zero almost surely as t approaches infinity.

We exploit Blackwell’s Theorem to establish the result in the second part of Theorem 1, that is,

the necessary conditions for the resource pooling problem with fill rate constraints are sufficient,

using our largest-debt-first policy as the allocation rule.

According to Lemma 1, to guarantee a fill rate of βi for each customer i, the long-run average

resource allocated to customer i must be at least βiE[Xi]. This immediately translates into the

requirement on long-run average debt, which must lie in the nonpositive orthant

D :=RN− = {z = [z1, . . . , zN ] : zi ≤ 0, ∀i= 1, . . . ,N}.

In other words, we must show that the set D is approachable by the sequence ρ(t) with our

allocation policy ADF (·) at capacity level Ŝ, i.e.,

lim inf
T→∞

ri(T + 1)

T
≤ 0, ∀ i= 1, . . . ,N. (5)

Therefore, we can follow Blackwell’s result in Theorem 2 to prove the approachability of D. Specif-

ically, we show that whenever the average debt vector ρ(t) falls outside the set D, the largest-debt-

first policy will give higher priority to customers with positive entries in ρ(t); and with an Ŝ that

satisfies (3) we are able to guarantee that the expected debt in epoch (t+ 1) moves towards D, as

required in Theorem 2.

More precisely, if the priority list at epoch t is ordered according to the sequence ([1], [2], . . . , [N ]),

then our priority-based allocation mechanism ADF (·) ensures that

n∑
k=1

D[k](t) = min

{
Ŝ,

n∑
k=1

X[k](t)

}
, ∀ n= 1, . . . ,N.

Since Ŝ satisfies
∑n

k=1 β[k]E[X[k]]≤E[min{Ŝ,
∑n

k=1X[k](t)}], we have

n∑
k=1

E
[
R[k](t)|ADF (·)

]
=

n∑
k=1

β[k]E
[
X[k]

]
−E

[
n∑
k=1

D[k](t)

]

≤ E

[
min

{
Ŝ,

n∑
k=1

X[k](t)

}]
−E

[
n∑
k=1

D[k](t)

]
= 0, ∀n= 1, . . . ,N. (6)

This is a crucial property that we exploit in our analysis of the performance of the allocation

mechanism.
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3.4. Randomized Priority Policy

In this subsection, we show that the desired fill rate performance can be attained in our original

single-period model as in Problem (P) by using a randomized priority policy constructed from

the largest-debt-first policy in the stochastic linear programming model. The specific randomizing

procedure to generate the priority list is given as follows.

Algorithm 1. Randomized Priority List for Problem (P)

1. We first simulate the demands X(t) over T samples, where T is a sufficiently large number.

2. In each sample t (t= 1, . . . , T ) we allocate the resources S according to the largest-debt-first

policy ADF (·), as described earlier.

3. Let L(t) denote the priority list in epoch t. Note that L(t) is a random list that depends on

the demand realized in the first (t− 1) samples, but is independent of X(t).

4. Finally, we randomly draw a priority list from L(t), t= 1, . . . , T , with equal probability.

Let L represent the priority list generated by the above procedure. We refer to this allocation rule

as the randomized largest-debt-first policy, denoted by AL(·). It follows from the previous analysis

that the randomized priority policy inherits the desired properties of the largest-debt-first policy.

Theorem 3. If the resource capacity level S satisfies the conditions in (3) and resources are

allocated according to the randomized largest-debt-first policy AL(·) generated from Algorithm 1

(with sufficiently large T ), then the expected fill rate for customer i is at least βi as defined in (1).

The proof of Theorem 3 follows easily from Theorem 1 and the randomized mechanism. Theorem

3 implies that the optimal resource capacity level for (P′′) is also optimal for the single-period

problem. In other words, the optimal capacity level for solving Problem (P) can also be obtained

by solving Problem (P′′).

3.5. Numerical Analysis

In this subsection, we perform numerical analysis to assess the value of resource pooling in our

model. Solving Problem (P′′) is still computationally prohibitive, due to the exponential number

of constraints involved. However, we can exploit the existence of a simple allocation mechanism

that can determine whether the fill rate targets are attainable with the existing resource capacity

level. We summarize our algorithm in detail below.

Algorithm 2. Optimal Capacity Level for Solving Problem (P′′)

1. Compute a lower and upper bound for the optimal resource capacity level. For instance, an

upper bound for the optimal capacity can be constructed from Theorem 4, derived in Section 4.
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2. Use the mid-point of the lower bound and upper bound as the initial capacity level and

simulate the performance of the randomized largest-debt-first policy, using Algorithm 1 with a

given T .

3. Perform a binary search for the minimum S between the lower and upper bounds obtained

in Step 1; repeat Step 2 until all customers’ service level requirements are satisfied.

We consider a system with three customers. We assume that the demand distributions among

these customers are correlated and that τ is the common coefficient of correlation. We analyze

three cases, where τ =−0.4, τ = 0, and τ = 0.4. The optimal resource capacity levels are obtained

after running the above algorithm, with T = 1000. To measure the numerical error of our solution

algorithms, we define the approximation rate as follows:

AR= 1−
∑N

i=1 max
{
βi− β̄i,0

}∑N

i=1 βi
,

where β̄i represents the simulated fill rate for customer i. Even for T = 100, the approximation

rates in most sample paths already exceed 99.6%.

Table 1 shows the optimal resource capacity levels in the system (with and without pooling) and

the associated pooling effect (defined as the percentage reduction in resource capacity level). In

the table, “no pooling S” is the sum of the minimum capacity levels required to serve each retailer.

Our results show that the pooling effects can be very significant as the demand variability increases

for all three demand correlation cases–both when the variance of individual demand increases and

when the distribution becomes more skewed (from normal to log-normal). Moreover, the pooling

effect also increases when there is more differentiation in the service level requirements of all three

demand correlation cases. The main reason for this is that customers with higher service level

requirements need to be served with a higher capacity buffer, which can be partially used to cushion

the demands from other customers with lower service levels. In addition, from Table 1, we observe

that the pooling effect always decreases when demand becomes more positively correlated. Table

2 shows that our findings continue to hold even when the demand distributions are not identical.

4. Safety Stock Effects

Recall that safety stock is defined as the stock exceeding average demand that is maintained in

the system in order to achieve a required service level. To see the implication of our results on

safety stock, we first consider the case when demands are normally distributed. It is well known

that (Jensen and Bard, 2002)

E

[
min

{
S,

N∑
i=1

Xi

}]
= E

[
N∑
i=1

Xi

]
−E

[
max

{
S,

N∑
i=1

Xi

}
−S

]
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Table 1 Pooling Effect in Type 2 Systems with 3 Customers, i.i.d. Demands, and Differentiated Service Level

Requirements

Optimal Capacity Pooling Effect
Demand Required Service Level No Pooling τ =−0.4 τ = 0 τ = 0.4 τ =−0.4 τ = 0 τ = 0.4

Distribution β1(%) β2(%) β3(%) S Ŝ Ŝ Ŝ (%) (%) (%)
N (10, 2) 80.0 80.0 80.0 24.60 24.00 24.06 24.24 2.44 2.20 1.46

75.0 80.0 85.0 24.67 24.00 24.06 24.24 2.72 2.45 1.74
70.0 80.0 90.0 24.88 24.00 24.06 24.24 3.54 3.28 2.57
85.0 85.0 85.0 26.55 25.49 25.67 26.00 3.99 3.30 2.07
82.5 85.0 87.5 26.59 25.49 25.67 26.00 4.14 3.42 2.22
80.0 85.0 90.0 26.67 25.49 25.67 26.00 4.44 3.75 2.52
90.0 90.0 90.0 28.88 27.01 27.47 28.00 6.48 4.88 3.05
87.5 90.0 92.5 28.96 27.01 27.47 28.00 6.73 5.15 3.31
85.0 90.0 95.0 29.16 27.01 27.47 28.00 7.37 5.79 3.98
95.0 95.0 95.0 32.06 28.67 29.77 30.75 10.57 7.17 4.09
92.5 95.0 97.5 32.35 28.67 29.77 30.75 11.38 7.98 4.95

N (10, 3) 80.0 80.0 80.0 25.93 24.00 24.36 24.95 7.44 5.97 3.78
75.0 80.0 85.0 26.00 24.00 24.36 24.95 7.69 6.29 4.04
70.0 80.0 90.0 26.35 24.00 24.36 24.95 8.92 7.53 5.31
85.0 85.0 85.0 28.30 25.52 26.20 27.06 9.82 7.40 4.38
82.5 85.0 87.5 28.34 25.52 26.20 27.06 9.95 7.56 4.52
80.0 85.0 90.0 28.49 25.52 26.20 27.06 10.42 8.00 5.02
90.0 90.0 90.0 31.27 27.13 28.35 29.55 13.24 9.29 5.50
87.5 90.0 92.5 31.33 27.13 28.35 29.55 13.41 9.53 5.68
85.0 90.0 95.0 31.72 27.13 28.35 29.55 14.47 10.60 6.84
95.0 95.0 95.0 35.45 29.04 31.24 33.02 18.08 11.71 6.85
92.5 95.0 97.5 35.83 29.04 31.24 33.02 18.95 12.74 7.84

LogN (10, 5) 80.0 80.0 80.0 29.05 24.11 25.30 26.73 17.01 12.90 7.99
75.0 80.0 85.0 29.32 24.11 25.30 26.73 17.77 13.71 8.83
70.0 80.0 90.0 30.27 24.11 25.30 26.73 20.35 16.42 11.69
85.0 85.0 85.0 32.98 25.82 27.73 29.71 21.71 15.92 9.92
82.5 85.0 87.5 33.11 25.82 27.73 29.71 22.02 16.25 10.27
80.0 85.0 90.0 33.52 25.82 27.73 29.71 22.97 17.27 11.37
90.0 90.0 90.0 38.47 27.87 30.89 33.92 27.55 19.70 11.83
87.5 90.0 92.5 38.75 27.87 30.89 33.92 28.08 20.29 12.46
85.0 90.0 95.0 39.74 27.87 30.89 33.92 29.87 22.27 14.65
95.0 95.0 95.0 47.81 30.88 35.77 40.50 35.41 25.14 15.29
92.5 95.0 97.5 49.15 30.88 35.77 40.50 37.17 27.23 17.60

LogN (10, 10) 80.0 80.0 80.0 44.53 26.08 30.56 35.32 41.43 31.38 20.68
75.0 80.0 85.0 45.36 26.08 30.56 35.32 42.50 32.63 22.13
70.0 80.0 90.0 48.52 26.08 30.56 35.32 46.25 37.01 27.21
85.0 85.0 85.0 54.11 29.20 35.20 41.56 46.04 34.95 23.19
82.5 85.0 87.5 54.52 29.20 35.20 41.56 46.44 35.44 23.77
80.0 85.0 90.0 55.75 29.20 35.20 41.56 47.62 36.86 25.45
90.0 90.0 90.0 68.98 33.71 42.05 50.57 51.13 39.05 26.69
87.5 90.0 92.5 70.00 33.71 42.05 50.57 51.84 39.93 27.76
85.0 90.0 95.0 73.67 33.71 42.05 50.57 54.24 42.92 31.36
95.0 95.0 95.0 97.62 42.27 53.37 68.12 56.70 45.33 30.22
92.5 95.0 97.5 103.62 42.27 53.37 68.12 59.27 48.50 34.27

= E

[
N∑
i=1

Xi

]
−

√√√√Var

[
N∑
i=1

Xi

][
φ(k) + kΦ(k)

]
,



Author: Resource Pooling and Allocation Policies to Deliver Differentiated Service
18 Article submitted to Management Science; manuscript no. MS-14-00384

Table 2 Pooling Effect in Type 2 Systems with 3 Customers, Non-Identical but Independent Demands, and

Differentiated Service Level Requirements

Customer 1: N (10,22); Customer 2: N (10,32); Customer 3: Log-N (10,52)

Optimal Capacity Pooling Effect
Required Service Level No Pooling τ =−0.4 τ = 0 τ = 0.4 τ =−0.4 τ = 0 τ = 0.4
β1(%) β2(%) β3(%) S S∗ S∗ S∗ (%) (%) (%)
80.0 80.0 80.0 26.08 24.01 24.41 25.01 7.95 6.38 4.12
75.0 80.0 85.0 26.81 24.01 24.41 25.01 10.42 8.95 6.61
70.0 80.0 90.0 24.88 24.01 24.41 25.01 14.59 13.08 10.84
85.0 85.0 85.0 28.72 25.57 26.35 27.25 10.97 8.30 5.09
82.5 85.0 87.5 29.17 25.57 26.35 27.25 12.40 9.85 6.46
80.0 85.0 90.0 29.88 25.57 26.35 27.25 14.39 11.72 8.82
90.0 90.0 90.0 32.07 27.31 28.74 30.05 14.85 10.40 6.33
87.5 90.0 92.5 32.99 27.31 28.74 30.05 17.22 12.92 8.88
85.0 90.0 95.0 34.43 27.31 28.74 30.05 20.56 16.35 12.64
95.0 95.0 95.0 37.30 29.71 32.27 34.54 20.29 13.49 7.43
92.5 95.0 97.5 39.98 29.71 32.27 34.54 25.51 18.61 13.75

where φ(·) and Φ(·) are the standard normal density and distribution functions, respectively.

Var[X] represents the variance of random variable X, and

k=
E
[∑N

i=1Xi

]
−S√

Var
[∑N

i=1Xi

] .
Let G(x) := φ(x)+xΦ(x) denote the expected shortage function for a standard normal distribution.

Then our system of necessary conditions in (3) can be rewritten as

G

 E
[∑

i∈U Xi

]
−S√

Var
[∑

i∈U Xi

]
≤ E

[∑
i∈U(1−βi)Xi

]√
Var

[∑
i∈U Xi

] , ∀U ⊆ {1,2, . . . ,N} .

Since G(·) is monotone and convex, we need

S ≥max

E

[∑
i∈U

Xi

]
−

√√√√Var

[∑
i∈U

Xi

]
G−1

E
[∑

i∈U(1−βi)Xi

]√
Var

[∑
i∈U Xi

]
 : ∀U ⊆ {1,2, . . . ,N}

 . (7)

Note that G−1(x)< 0 only if x <
√

1/2π. Suppose the term E[
∑

i∈U(1− βi)Xi] grows faster than√
Var[

∑
i∈U Xi], as U grows larger; then we expect the term

G−1

E
[∑

i∈U(1−βi)Xi

]√
Var

[∑
i∈U Xi

]


to be non-negative for large U . If one of these subsets attains the maximum value in (7), S does

not exceed the mean demand of all the customers in the system, implying that there is no need for

safety stock.
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To see this in a more concrete manner, consider the case when the demands of the customers are

independent and identically distributed. For a system with N customers–each with demand mean

µ and variance σ2, and a fill rate requirement of β–the optimal resource capacity level simplifies to

Ŝ = max

{
nµ−σ

√
n×G−1

(
(1−β)µ

√
n

σ

)
: n= 1, . . . ,N

}
.

Figure 3 shows how the amount of safety stock needed (Ŝ−Nµ) varies as N varies when

• µ= 5, σ= 1, and

• β = 0.99.

Interestingly, from Figure 3, we observe that the amount of safety stock grows initially as N grows

larger. However, once the size breaks the barrier of around 11, the pooling effect of allocation

flexibility starts to dominate and the safety stock requirement starts to shrink, hitting zero at

around N = 64. Note that in this case, the binding inequality in (3) is the one for U = {1,2, . . . ,N}.

The term E[
∑N

i=1(1− βi)Xi] grows in the order of N , but
√

Var[
∑N

i=1Xi] grows in the order of
√
N . In the beginning, the “negative” effect of increasing total variance due to pooling–measured

by the term
√

Var[
∑N

i=1Xi]–dominates, so the safety stock requirement increases. However, as

the number of customers, N , increases, the benefit of allocation flexibility–measured by the term

E[
∑N

i=1(1−βi)Xi]–gradually takes over. Recall that G−1(x) is increasing, concave, and crosses zero

at x=
√

1/2π. As a result, in a system with customers all facing i.i.d. and normally distributed

demand, there is no need to maintain any safety stock for sufficiently large N !

Our results can be sharpened further. We also compare the optimal inventory level to the lower

bound, Nβµ, and plot the gap in Figure 4. In this case, we can use the property of G−1(·) to

argue that this gap will converge to zero for sufficiently large N . In fact, for N ≥ 3500, our result

essentially indicates that we need only Nβµ units of capacity to ensure that each customer will

receive fill rate of β from the pooled system.

We next examine the situation when we want to satisfy in full the demand of the customers.

Intuitively, with a higher fill rate requirement for each customer, the chances of the customer facing

shortfall will be reduced. Figure 5 shows that, indeed, as the fill rate β gets closer to 1, the average

number of customers suffering shortfalls reduces to zero. In fact, for N = 100 and β = 0.99, we

can fulfill the fill rate requirement for each customer using only 498 units of inventory, slightly

less than the average total demand. At the same time, on average, only 1.3 customers will not get

her demand met in full.5 If we choose β = 0.999, then we need around 512 units of inventory to

5 This may sound counter-intuitive since there is more than 50% chance that the total demand will be more than
498. To understand this result, suppose we serve the customers using the greedy policy, i.e., customers with smaller
demands will have higher priority over customers with higher demand. In this case, we note that the probability
mass for aggregate demand to be in the intervals (−∞,498], (498,506], (506,514], (514,522], (522,530] and (530,538]
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Figure 3 Safety Stock Requirement (Ŝ−Nµ) as N varies
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Figure 4 Gap Between the Optimal Inventory Level and Lower Bound (Ŝ−Nβµ) as N varies

meet the fill rate obligations, but this time, on average, only less than 0.2 customers will not get

are 0.42,0.305,0.193,0.067,0.013, and 0.0012 respectively. In the first interval, we can meet all demand in full. In the
subsequent intervals, since the maximum demand from 100 customers is around 8, the number of customers with
shortfall is roughly 1,2, . . . ,5 in the intervals listed in that order. The average number of customers with shortfall is
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Figure 5 No. of customers who suffered shortfall on average as N varies

her demand met in full. By choosing β = 0.9999 and using around 522 units of inventory, we can

virtually assure that all customers will be able to get their demand met in full.

Remark: The above also suggest a natural solution to the problem posed in the introduction. In

order to serve the e-distributors as if Qi units of inventory are reserved for each of them in the

virtual inventory system, the manufacturer can do the following:

• Partition the demand of each customer into two groups: min{Qi,Xi} and (Xi−Qi)
+, where

(x)+ := max{0, x};

• Serve the demand group min{Qi,Xi} with a very high fill rate, say 0.9999;

• Serve the demand group (Xi−Qi)
+ with fill rate βi such that

0.9999E [min{Qi,Xi}] +βiE
[
(Xi−Qi)

+
]
≥E [min{Qi,Xi}] .

This is possible as long as

E
[
(Xi−Qi)

+
]
≥ 0.0001×E[min{Qi,Xi}].

Our analysis shows that at a fill rate of 0.9999, all demands from the first group can be met in

full with very high probability, i.e., each e-distributor can expect orders up to Qi units to be filled

only around 0.9495 in this case. Our allocation policy focuses on fill rate performance, but nevertheless can indirectly
keep the number of stock out to be small when fill rate is high.
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with very high probability, using (0.9999
∑N

i=1 E[min{Qi,Xi}] +O(1)) units of inventory in the

system. At the same time, the demand in the second group can be served using (
∑N

i=1 βiE[(Xi−

Qi)
+] +O(1)) units of inventory. The total inventory needed is only

∑N

i=1 E[Xi] +O(1). Compared

to the case when the manufacturer reserves Qi units for each e-distributor, this can translate into

a significant amount of savings for the manufacturer when the number of e-distributors is large,

and Qi >E[Xi].

4.1. Distributionally Robust Solution

In the rest of this section, we prove that this insight concerning the safety stock requirement

holds for all demand distributions with finite first and second moments. Note that the value of

Ŝ depends on the distribution used to model the demand Xi. In practice, the full distributional

information may be unavailable or difficult to put together, especially in the case when demands

may be correlated. On the other hand, the means and covariances of the demands are often known

or at least can be easily estimated. We next derive a bound for the resource pooling problem, using

a well-known classical mean-variance bound (Scarf 1958). See also Natarajan et al. (2009) for an

alternate derivation and generalization.

Proposition 1. [Scarf (1958)] Suppose that demands are independent and have known means

µi’s and covariance σi,j’s. Then

E

[
min

{
S,

N∑
i=1

Xi

}]
≥ 1

2

S+
N∑
i=1

µi−

√√√√( N∑
i=1

µi−S

)2

+ Var

[
N∑
i=1

Xi

] .
Building on Proposition 1, we can obtain a simple upper bound for the optimal resource capacity

level in our model.

Theorem 4. Suppose that demands have known means and variances. Then

S := max
U⊆{1,2,...,N}

{∑
i∈U

βiµi +
Var

[∑
i∈U Xi

]
4
∑

i∈U(1−βi)µi

}
is feasible for (P).

When the demands are independent, the optimal resource capacity level for any allocation policies

lies in the following interval: [
N∑
i=1

βiµi,
N∑
i=1

βiµi +
1

4
max
i

σ2
i

(1−βi)µi

]
.

Theorem 4 follows by choosing S to ensure that

1

2

S+
∑
i∈U

µi−

√√√√(∑
i∈U

µi−S

)2

+ Var

[∑
i∈U

Xi

]≥∑
i∈U

βiµi,∀U ⊆ {1,2, . . . ,N}.
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This result is interesting because for each customer i, a capacity of βiµi is not sufficient to ensure

a fill rate of βi, since E[min{βiµi,Xi}] < βiµi. However, in a pooled system we need only an

additional (1/4)maxi σ
2
i /[(1−βi)µi] units above the theoretical lower bound of

∑N

i=1 βiµi to ensure

that each customer receives a fill rate of at least βi. The managerial implication of this bound is

clear: If managers need to invest in a lot of capacity to meet the high fill rate demanded by a

customer, then it pays to pool into the system the demand of “many” other customers whose fill

rate requirement–measured by the term σ2
i /((1−βi)µi)–may not be as stringent.

One slight drawback of the above bound is that, when βi is close to 1, the “constant” term in the

upper bound may be prohibitively large. However, as the Scarf’s bound is tight for some demand

distributions, it is in general impossible to improve on this upper bound. In the worst case, if there

exists some βi = 1, the upper bound will not be useful. However, we can easily extend our approach

to obtain a reasonable upper bound for such an extreme case as shown in Section 5.1.

5. Extensions

In this section, we extend our basic model by incorporating additional service-level constraints,

including 100% fill rate requirement, minimal (non-expected) fill rate requirement and finite-horizon

fill rates.

5.1. 100% Fill Rate Requirement

Suppose there is a customer (denoted as customer 0) with random demand X0 and fill rate require-

ment β0 = 1. Similarly, let µ0 denote the mean of X0. Although we focus on the case with only

one such customer, the results below can be easily generalized to the case in which more than one

customer have 100% fill rate requirements.

Note that a 100% fill rate requirement is reasonable only if X0 is bounded above by a constant,

i.e., P(X0 ≤ ∆0) = 1 for some constant ∆0. In this case, it is clear that ∆0 units of capacity

is enough in order to satisfy this customer. The question is then how many additional units of

capacity, denoted as S, would be needed to meet the fill rate (βi) requirement of customer i whose

demand is Xi for the rest of the customers, i= 1,2 . . . ,N . Note that although ∆0 units of capacity

are set aside for customer 0, the remaining (∆0−X0) units will be available for other customers if

needed. We can modify our theory to show that the following conditions are both necessary and

sufficient for the additional capacity level S in this setting:∑
i∈U

βiE[Xi]≤E

[
min

{
S+ ∆0−X0,

∑
i∈U

Xi

}]
, ∀U ⊆ {1,2, ...,N}. (8)

Similarly, an upper bound for the optimal capacity level needed, (S+∆0), is given by the following

expression:

max
U⊆{1,2,...,N}

{
µ0 +

∑
i∈U

βiµi +
Var

[
X0 +

∑
i∈U Xi

]
4
∑

i∈U(1−βi)µi

}
. (9)
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This can be used to strengthen the earlier bound when we have customers demanding a 100%

fill rate in the system. The analysis for this extension follows exactly the same steps as before. We

present the main differences in the derivation in Appendix II.

5.2. Minimal Fill Rate Requirement

Using the idea for the above extension, we can further generalize the results in this paper to capture

more realistic conditions.

The fill rate condition discussed so far as stated in (1) is an expected fill rate condition. One may

argue that it would be difficult to track such performance measures in practice for a single period

problem. A natural fix to this issue is to consider an additional fill rate condition that requires a

certain proportion of the realized demand to be satisfied in all scenarios, i.e.,

Di (X, S)≥ βriXi, ∀i= 1,2, . . . ,N,∀X ∈Ω, (10)

where βri ∈ [0,1]. We refer to βri as the minimal (non-expected) fill rate requirement. For these

requirements to be feasible, we must have an upper limit on possible demand realization similar to

the case with a 100% fill rate requirement, i.e., there exists ∆max := inf{∆ : P
(∑N

i=1 β
r
iXi ≤∆

)
=

1}. Obviously, to satisfy the minimal fill rate requirements, the resource capacity level must be

above ∆max. Again similar to the case with a 100% fill rate requirement, we are interested to find

out the additional resource required to guarantee the expected fill rate requirements. To avoid

trivial cases, we assume βi ≥ βri for every customer i. We can simply treat
∑N

i=1 β
r
iXi as X0 in

the case of a 100% fill rate, and then ∆max is equivalent to ∆0. The expected fill rate requirement

for customer i’s remaining demand of (1− βri )Xi is then (βi− βri ). The results in Section 5.1 can

be applied to this setting. We thus have the following necessary and sufficient conditions for the

additional capacity level S:

∑
i∈U

(βi−βri )E[Xi]≤E

[
min

{
S+ ∆max−

N∑
i=1

βriXi,
∑
i∈U

(1−βri )Xi

}]
, ∀U ⊆ {1,2, ...,N}. (11)

The upper bound on the optimal capacity level (S+ ∆max) can be obtained as follows:

max
U⊆{1,2,...,N}


N∑
i=1

βri µi +
∑
i∈U

(βi−βri )µi +
Var

[∑N

i=1 β
r
iXi +

∑
i∈U (1−βri )Xi

]
4
∑

i∈U (1−βi)µi

 . (12)

It is easy to check that if βri = 0 for all customers, then ∆max = 0 and the above results simply

reduce to our previous results for the case with only expected fill rate requirements. Note that

these results hold even if only partial customers have minimal fill rate requirements, i.e., βri = 0 for

a subset of customers. These extensions demonstrate the flexibility of our approach that allows us

to capture more realistic features.
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5.3. Finite-Horizon Fill Rate

So far, our analysis has focused only on the single-period model which is surrounded by the fill

rate definition as the expected proportion (ratio) of the demand filled immediately. This ratio can

be interpreted as the empirical fill rate observed when the resource allocation problem is solved

repeatedly over an infinite horizon. However, in many applications, especially in the 3PL industry,

fill rate performance is measured over a finite time horizon, i.e.,

E

[
Total demand filled within the planning horizon

Total demand within the planning horizon

]
.

Thomas (2005) investigated the distribution of finite-period fill rates, using a stationary order-up-

to policy, and found that the length of the review periods affects the resource capacity required to

meet the targeted (expected) fill rates. Chen et al. (2003) proved that the expected fill rate in a

finite horizon setting is always greater than or equal to that in an infinite horizon setting with the

same capacity. That is, suppose that the customers’ demand X(t)’s are i.i.d. across t, and define

X as any random variable with the same distribution as X(t); then the following inequality holds

for any positive integer T :

E

[
min{X,S}

X

]
≥E


T∑
t=1

min{X(t), S}

T∑
t=1

X(t)

≥ E [min{X,S}]
E [X]

.

What are the benefits of allocation flexibility when the fill rate is measured by performance over

a finite horizon of T periods? In this setting, when βi is the target fill rate measured over T periods,

we require

E

[
Di(X

[1],S) + · · ·+Di(X
[T ],S)

X
[1]
i + · · ·+X

[T ]
i

]
≥ βi, ∀i= 1,2, . . . ,N, (13)

where X
[t]
i and Di(X

[t],S) denote the demand and allocated amount of resources to customer i in

period t, respectively, and X
[t]
i ’s are i.i.d. random variables. To adjust for the finite horizon effect

in our model, for each customer we map the target fill rate over T time periods onto a new target

fill rate over an infinite horizon, so that the technique proposed in the earlier sections can be used

to analyze the pooling effect. We also assume that the demands are normal, for ease of exposition.

Let L(x) = E [max{Z −x,0}] represent the standardized normal loss function, where Z is a

standard normal random variable. Let θ(Q) = P (X <Q), with Xi being i.i.d. copies of normal

random variable X. We use the following approximation:

min{Xi,Q} ≈ θ (Q) (Xi−µ) + E [min{Xi,Q}] .
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This approximation, built on the work by Zheng et al. (2014), can be viewed as the least-square

solution to the stochastic function min{Xi,Q}. More details of the approximation procedure and

numerical analysis are available in Appendix III. Note that now∑K

i=1 min{Xi,Q}∑K

i=1Xi

≈
∑K

i=1 {θ (Q) (Xi−µ) + E [min{Xi,Q}]}∑K

i=1Xi

=

∑K

i=1

{
θ (Q)Xi− θ (Q)µ+Q+σE

[
min

{
Xi−µ
σ

+ µ−Q
σ
,0
}]}∑K

i=1Xi

= θ (Q) +
K
[
Q− θ (Q)µ−σL

(
µ−Q
σ

)]∑K

i=1Xi

.

We need to determine the minimum Q such that

E

[
θ (Q) +

K
[
Q− θ (Q)µ−σL

(
µ−Q
σ

)]∑K

i=1Xi

]
≥ β.

This can be written as:

min

Q : KE

 1
K∑
t=1

X(t)

≥ β− θ(Q)

Q− θ(Q)µ−σL
(
µ−Q
σ

)
 . (14)

For any given period K, we can solve (14) to obtain the optimal resource capacity level SK

needed. With resource level at SK , however, we can achieve a long-run average fill rate of β
′

for

the infinite horizon model. In this way, we can map any fill rate requirement for a finite horizon

model onto a new fill rate requirement for the infinite horizon model and can invoke our method

to determine the optimal resource capacity level needed for the pooled model.

We apply this heuristic to develop an approach to determining the capacity level for the pooled

system with N customers, where customer i requires a minimum expected fill rate of βi, measured

over K periods. We demonstrate the idea, using the following numerical example.

Example 3. Consider three customers with i.i.d demands that are normally distributed, with

mean 10 and standard deviation 3. They require expected fill rates of β1 = 0.85, β2 = 0.90, and

β3 = 0.95 over a finite horizon of K periods, where K = 5, 10, 20.

In Table 3, for each value of K, SK for customer i is estimated using (14) and the value of βi.

Then, through simulation, we find the actual long-run average fill rate (β′i) that can be achieved

for customer i. Using the values of β′1, β
′
2, and β′3 for each K, we can obtain the minimum capacity

level of the resource pool S∗K needed to achieve these long-run average fill rates, employing the

method we derived in Section 3. We use the value of S∗K to approximate the optimal capacity
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Table 3 Pooling Results for a Finite Horizon

K = 5 K = 10 K = 20
S5 β

′
S10 β

′
S20 β

′

β1 = 0.85 9.30 0.842 9.38 0.847 9.41 0.849
β2 = 0.90 10.28 0.894 10.36 0.898 10.40 0.899
β3 = 0.95 11.73 0.946 11.79 0.948 11.82 0.949

No Pooling 31.31 31.53 31.63

Pooling S∗5 Realized SL S∗10 Realized SL S∗20 Realized SL
28.06 0.849 28.23 0.850 28.30 0.851

0.901 0.902 0.900
0.952 0.949 0.951

Pooling Effect 10.38% 10.47% 10.75%

level that meets the expected finite-horizon fill rates of each βi, using the largest-debt-first policy

for each K. Finally, to complete the analysis, we perform another simulation to find the realized

expected service levels in K periods.

For instance, when K = 5, without resource pooling there should–according to (14)–be a separate

capacity of 9.30 for the customer with 85% fill-rate requirement, 10.28 for 90% fill rate, and 11.73

for 95% fill rate. Therefore, the total resource capacity level without pooling is 31.31. However,

according to our analysis, using the corresponding β
′

as the new fill-rate requirement in the infinite

horizon model–and using (3)–we need a capacity level of only 28.06 for the pool of resources,

bringing a 10.38% pooling benefit. Interestingly, with resource pooling the realized expected fill

rates over 5 periods are quite close to the required ones. Similar results hold for other values of K.

6. Concluding Remarks

In this paper, we consider the resource pooling problem with differentiated fill rate requirements. A

challenging problem here is to find the optimal resource capacity level and the allocation mechanism

that ensures each customer’s service requirement is met. We obtain a set of necessary and sufficient

conditions for the minimum capacity level and construct an anticipative allocation policy that

can be easily implemented to deliver the targeted fill rate to each customer. The analysis uses

Blackwell’s Approachability Theorem, which may be of use in solving other classes of inventory

problems. Furthermore, we obtain a distribution-free bound on the resource capacity needed, based

on the first two moments of the demand distribution. The results imply that in a system with a

sufficient number of customers whose demands are i.i.d., a firm does not need to hold any safety

stock to deliver the required service levels as long as the fill rates all have an upper bound that is

strictly less than one.

We note that resource allocation is a core problem in many supply chain planning models. The

analytical results derived in this paper could find wider use in many other settings. For instance,
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we can extend the main results derived in this paper to more general production network, to relate

service level requirements to capacity configuration in the network. Finding a tractable closed form

bound for this setting will be challenging though. It would also be interesting to explore further

the connection between our approach and the threshold-type policies used for dynamic allocation

of resources with multiple demand classes. The related issue of contract design in a supply chain

operating under a service level agreement, using the optimal allocation rule, appears to be amenable

to analysis using this approach. We leave these and other issues for future research.
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Alptekindǧlu, A., A. Banerjee, A. Paul, N. Jain. 2013. Inventory pooling to deliver differentiated service.

Manufacturing & Service Operations Management, 15(1), 33–44.
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Özer, Ö. 2003. Replenishment strategies for distribution systems under advance demand information. Man-

agement Science, 49(3), 255–272.
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Appendix I. Proofs of Results in Section 3

Proof of Theorem 1(1). We first prove that the conditions given in (3) are necessary. The

sufficiency is proved later in Theorem 1(2) by explicitly constructing an allocation policy that

achieves the fill rate requirement using the minimum S that satisfies (3).

Consider a feasible allocation policy; then for any subset U ⊆ {1,2, . . . ,N} and for any t, we have∑
i∈U

Di(t)≤ S,

On the other hand, it is obvious that ∑
i∈U

Di(t)≤
∑
i∈U

Xi(t),

Therefore, for any subset U , ∑
i∈U

Di(t)≤min

{
S,
∑
i∈U

Xi(t)

}
,

By taking the long-run average, we have the following necessary condition for any subset U :

∑
i∈U

lim inf
T→∞

∑T

t=1Di(t)

T
≤E

[
min

{
S,
∑
i∈U

Xi

}]
, a.s.

Note that, from Lemma 1, whose proof is given below, we obtain

lim inf
T→∞

∑T

t=1Di(t)

T
≥ βiE [Xi] , a.s.

Therefore, the necessary conditions in (3) hold.

Proof of Lemma 1. According to the definition of a fill rate in (2), we have

lim inf
T→∞

∑T

t=1Di(t)∑T

t=1Xi(t)
≥ βi, a.s.

Looking to the left-hand side (LHS) of the above inequality, we see that

lim inf
T→∞

∑T

t=1Di(t)∑T

t=1Xi(t)
= lim inf

T→∞

∑T

t=1Di(t)

T
· T∑T

t=1Xi(t)

=
1

E [Xi]
lim inf
T→∞

∑T

t=1Di(t)

T
, a.s.,

Thus

lim inf
T→∞

∑T

t=1Di(t)∑T

t=1Xi(t)
≥ βi, a.s.,

if and only if

lim inf
T→∞

∑T

t=1Di(t)

T
≥ βiE [Xi] , a.s.,
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which is the result in Lemma 1.

Proof of Theorem 1(2). Recall that we use the debt, ri(t+ 1), to determine the priority policy

in sample (t+ 1). The debt for sample (t+ 1), Ri(t+ 1), is defined as βiE[Xi]−Di(t+ 1). The

average debt from sample 1 up to sample (t+ 1) is

ρi(t+ 1) =
ri(t+ 1) +Ri(t+ 1)

t+ 1
.

Let D denote the set of nonpositive orthants in RN . According to Lemma 1, we want the average

debt to approach D := {z = [z1, z2, ..., zN ] : zi ≤ 0, ∀i = 1,2, . . . ,N}, to ensure that customer i

receives a service level of at least βi.

Consider a point δ= (δ1, δ2, . . . , δn) not in D, where

δi = ρi(t) =
ri(t+ 1)

t
,

for some t. Without loss of generality, we assume that δ1 ≥ δ2 ≥ · · · ≥ δm > 0≥ δm+1 ≥ δm+2 ≥ · · · ≥
δN . The key idea is to allocate the resources to those with highest debt first. The point in D closest

to δ is γ = (0,0, . . . ,0, δm+1, δm+2, . . . , δN). The hyperplane perpendicular to the line segment δγ is

given by H := {z ∈RN :
∑m

i=1 ziδi = 0}. Note that δ ∈H+ := {z ∈RN :
∑m

i=1 ziδi > 0}. We need to

show only that the mean debt (E[R1(t+ 1)|ADF ], E[R2(t+ 1)|ADF ], . . . , E[RN(t+ 1)|ADF ]) lies in

H−
⋃
H := {z ∈RN :

∑m

i=1 ziδi ≤ 0}, where H− := {z ∈RN :
∑m

i=1 ziδi < 0}.
According to our anticipative policy, the allocation process stops at the (k + 1)th customer

in the priority list once the remaining resources, Ŝ −
∑k

i=1Di(t + 1), are less than 0. That is,

Dk+1(t+ 1) = 0 if
∑k−1

i=1 Di(t+ 1)≤ Ŝ and
∑k

i=1Di(t+ 1)≥ Ŝ. Therefore,

k∑
i=1

Di(t+ 1)≥min

{
Ŝ,

k∑
i=1

Xi(t+ 1)

}
, ∀k= 1,2, . . . ,m. (15)

Since
∑k

i=1 βiE[Xi]≤E
[
min

{
Ŝ,
∑k

i=1Xi(t+ 1)
}]

from (3), we get

$k :=
k∑
i=1

E
[
Ri(t+ 1)|ADF

]
= E

[
k∑
i=1

βiE[Xi]−
k∑
i=1

Di(t+ 1)

]
≤ 0, ∀k= 1,2, . . . ,m. (16)

Consequently, we have

$kδk ≤ 0, ∀k= 1,2, . . . ,m.

Therefore,
m∑
i=1

E
[
Ri(t+ 1)|ADF

]
δi = $1δ1 +

m∑
i=2

($i−$i−1)δi

≤ $1δ1 +
m∑
i=2

$iδi−
m∑
i=2

$i−1δi−1

= $mδm
≤ 0,
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where the second inequality follows from δi−1 ≥ δi. By Blackwell’s Approachability Theorem, our

allocation policy approaches D. Therefore, the long-run average performance of our policy attains

the desired service level requirements for all customers.

Proof of Theorem 3. From the randomizing mechanism in Algorithm 1, we have

E
[
DL
i (X, S)

]
= E

[∑T

t=1D
L(t)
i (X, S)

T

]
,

where the superscripts are used to emphasize the priority lists that are used to carry out the

allocation. Since X follows the same distribution as X(t) and the latter is independent of L(t),

E
[
D
L(t)
i (X, S)

]
= E

[
D
L(t)
i (X(t), S)

]
.

Therefore,

E
[
DL
i (X, S)

]
= E

[∑T

t=1D
L(t)
i (X(t), S)

T

]
= E

[∑T

t=1Di(t)

T

]
≥ βiE [Xi] , for large enough T,

and the proof is completed.

Proof of Theorem 4. To ensure that

1

2

S+
n∑
i=1

µi−

√√√√( n∑
i=1

µi−S

)2

+ Var

[
n∑
i=1

Xi

]≥ n∑
i=1

βiµi,

we need [
S+

n∑
i=1

(1− 2βi)µi

]2
≥

(
n∑
i=1

µi−S

)2

+ Var

[
n∑
i=1

Xi

]
,

i.e.,

4

(
S+

n∑
i=1

βiµi

)
n∑
i=1

(1−βi)µi ≥Var

[
n∑
i=1

Xi

]
.

Therefore, to obtain an S that satisfies (3) for all U , we need

S ≥
∑
i∈U

βiµi +
Var

[∑
i∈U Xi

]
4
∑

i∈U(1−βi)µi
, ∀ U ⊆ {1,2, . . . ,N}.

This concludes the first part of the theorem.

When the demands are independent, it is obvious that

N∑
i=1

βiµi +
1

4
max
i

σ2
i

(1−βi)µi
≥ max

U⊆{1,2,...,N}

{∑
i∈U

βiµi +

∑
i∈U σ

2
i

4
∑

i∈U(1−βi)µi

}
,

which gives us the upper bound on the optimal S. On the other hand, it is easy to see that
∑N

i=1 βiµi

is a lower bound for the resource capacity needed for any allocation policy. Thus, we complete the

proof.
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Appendix II. Extension for 100% Fill Rate Requirement

It is obvious that the conditions presented as (8) in Section 5.1 are necessary conditions for the

additional capacity S. The proof follows exactly the same logic as Theorem 1 with the difference

in notation only.

To show that these conditions are also sufficient, we can adopt the same allocation policy with

a modification that X0 always has the highest priority, while the rest of the customers are served

according to the randomized largest-debt-first policy using the remaining capacity. We can follow

the same setup as in the proof of Theorem 1(2) to show the sufficiency of (8), with only one concern

that whether (16) still holds, i.e., $k ≤ 0, ∀k= 1,2, . . . ,m. To check this, we first note that (15) is

still true with the modified allocation policy, i.e., the allocation stops either when the remaining

capacity is exhausted or all the remaining customers are served,

k∑
i=1

Di(t+ 1)≥min

{
Ŝ+ ∆0−X0 (t+ 1) ,

k∑
i=1

Xi(t+ 1)

}
, ∀k= 1,2, . . . ,m,

where Ŝ now denotes the minimum value of S that satisfies (8). Taking expectations on both sides

of the above inequality and combing with (8), we get

E

[
k∑
i=1

Di(t+ 1)

]
≥E

[
min

{
Ŝ+ ∆0−X0 (t+ 1) ,

k∑
i=1

Xi(t+ 1)

}]
≥

k∑
i=1

βiE[Xi], ∀k= 1,2, . . . ,m.

Consequently,

$k =
k∑
i=1

E
[
Ri(t+ 1)|ADF

]
= E

[
k∑
i=1

βiE[Xi]−
k∑
i=1

Di(t+ 1)

]
≤ 0, ∀k= 1,2, . . . ,m.

Then all the other steps in derivation follow easily, and therefore, we can conclude that the condi-

tions in (8) are both necessary and sufficient.

The proof of the new upper bound in (9) follows the same algebra as in the proof of Theorem 4.

For completeness, we present all the steps below. For every subset U ⊆ {1,2, . . . ,N},

1

2

S+ ∆0−µ0 +
∑
i∈U

µi−

√√√√(S+ ∆0−µ0−
∑
i∈U

µi

)2

+ Var

[∑
i∈U

Xi +X0

]≥∑
i∈U

βiµi

⇐⇒

[
S+ ∆0−µ0 +

∑
i∈U

(1− 2βi)µi

]2
≥

(
S+ ∆0−µ0−

∑
i∈U

µi

)2

+ Var

[∑
i∈U

Xi +X0

]

⇐⇒ 4

[∑
i∈U

(1−βi)µi

](
S+ ∆0−µ0−

∑
i∈U

βiµi

)
≥Var

[∑
i∈U

Xi +X0

]

⇐⇒ S+ ∆0 ≥
∑
i∈U

βiµi +µ0 +
Var

[∑
i∈U Xi +X0

]
4
∑

i∈U (1−βi)µi
.
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Appendix III. Approximating Finite-Horizon Fill Rates

Consider a finite horizon order-up-to system, where the demand Xi’s are i.i.d., with mean µ and

standard deviation σ. Let Q denote the order-up-to level. We are interested in approximating the

fill rate over K periods, given by

min{X1,Q}+ . . .+ min{XK ,Q}
X1 + . . .+XK

.

Chen et al. (2003) established that

E

min
{
D̃1,Q

}
X1

≥E

[∑K

i=1 min{Xi,Q}∑K

i=1Xi,

]
≥ E [min{X1,Q}]

E [X1]
, ∀K = 1,2, . . . .

They argued that the distribution of the fill rate measurement affects the stocking deci-

sion.Therefore, the choice of the planning horizon in the fill rate measurement is an important

consideration in the design of the fill rate target. Define θ(Q) = P(X1 <Q). Assume Xi’s are nor-

mally distributed (truncated to remove negative values). Let L(x) = E[max{Z − x,0}] denote the

standardized normal loss function, where Z is the standard normal random variable. Note that

L(x) =−E[min{Z +x,0}]. Then∑K

i=1 min{Xi,Q}∑K

i=1Xi

≈
∑K

i=1 {θ (Q) (Xi−µ) + E [min{Xi,Q}]}∑K

i=1Xi

=

∑K

i=1

{
θ (Q)Xi− θ (Q)µ+Q+σE

[
min

{
Xi−µ
σ

+ µ−Q
σ
,0
}]}∑K

i=1Xi

= θ (Q) +
K
[
Q− θ (Q)µ−σL

(
µ−Q
σ

)]∑K

i=1Xi

,

where the first approximation is based on Theorem 1 on least squares approximation from Zheng

et al. (2016). Therefore,

E

[∑K

i=1 min{Xi,Q}∑K

i=1Xi

]
≈ E

[
θ (Q) +

K
(
Q− θ (Q)µ−σL

(
µ−Q
σ

))∑K

i=1Xi

]

= θ (Q) +

[
Q− θ (Q)µ−σL

(
µ−Q
σ

)]
E

[
K∑K

i=1Xi

]
.

Example 4. Consider the case when the i.i.d. demands Xi are normally distributed with mean

µ= 10 and standard deviation σ = 3. The mean fill rates obtained from simulation and the linear

estimator developed above are summarized in Table 4.

The mean of the estimator obtained using our approximation approach is surprisingly close to

the simulated fill rate performance, for all values of Q. Moreover, the effect of the review periods is

more visible for small Q. For instance, when Q= 6, the mean fill rate is around 61% when K = 2,

but it drops to 59% when K is around 10 to 20.
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Table 4 Comparison between simulated and estimated finite-horizon fill rates

Q
K = 2 K = 10 K = 20

Simulation Estimation Simulation Estimation Simulation Estimation
6 0.6116 0.6135 0.5918 0.5919 0.5895 0.5895
7 0.6997 0.7023 0.6797 0.6798 0.6773 0.6774
8 0.7780 0.7812 0.7592 0.7593 0.7569 0.7570
9 0.8441 0.8477 0.8278 0.8279 0.8258 0.8258
10 0.8969 0.9004 0.8837 0.8838 0.8820 0.8821
11 0.9360 0.9392 0.9264 0.9264 0.9251 0.9251
12 0.9630 0.9656 0.9565 0.9566 0.9556 0.9556
13 0.9802 0.9821 0.9762 0.9762 0.9756 0.9756
14 0.9902 0.9914 0.9880 0.9880 0.9876 0.9876

This method can be used to determine the Q needed to meet a target (expected) fill rate of β,

given the number of review periods K:

θ (Q) +

[
Q− θ (Q)µ−σL

(
µ−Q
σ

)]
E

[
K∑K

i=1Xi

]
= β,

i.e.,

KE

[
1∑K

i=1Xi

]
=

β− θ (Q)

Q− θ (Q)µ−σL
(
µ−Q
σ

) .
Figure 6 shows how the right-hand side (RHS) varies as a function of Q for selected β, for the

instance in Example 1. For K = 2 (with corresponding LHS value of 0.1053), to attain a service

level of β = 0.7 the graph indicates that we need Q to be only around 7. However, for a target of

β = 0.99 we need Q to be around 13.

Figure 6 RHS as a function of Q and β


